The Shortest Path problem in graphs with selfish edges

Review

- VCG-mechanism: pair $M=<g, p>$ where
- $g(r)=\arg \max _{y \in X} \sum_{i} v_{i}\left(r_{i}, y\right)$
- $p_{i}(g(r))=-\sum_{j \neq i} v_{j}\left(r_{j}, g\left(r_{-i}\right)\right)+\sum_{j \neq i} v_{j}\left(r_{j}, g(r)\right)$
- VCG-mechanisms are truthful for utilitarian problems (i.e., problems in which the SCF is given by the sum of players' valuation functions)

Buying a path in a network

X: set of all paths between s and z
$f(t, x)$:
The length of a path w.r.t. the true edge costs
\dagger_{e} : cost of edge e
if edge e is selected and receives a payment of p_{e} e's utility:

Mechanism

$$
\mathrm{P}_{e}-t_{e}
$$

The private-edge SP problem

- Given: an undirected graph G=(V,E) such that each edge is owned by a distinct player, a source node s and a destination node z; we assume that a player's private type is the positive cost (length) of the edge, and her valuation function is equal to her negated type if edge is selected in the solution, and 0 otherwise.
- Question: design a truthful mechanism in order to find a shortest path in $G_{t}=(V, E, t)$ between s and z.

Notation and assumptions

- $n=|V|, m=|E|$
- $d_{G}(s, z)$: distance in $G=(V, E, r)$ between s ans z (sum of reported costs of edges on a shortest path $P_{G}(s, z)$ in $\left.G\right)$
- Nodes s and z are 2-edge-connected in G, i.e., there exists in G at least 2 edge-disjoint paths between s and $z \Rightarrow$ for any edge of $P_{G}(s, z)$ removed from the graph there exists at least one replacement path in G-e between s and z (this will bound the problem, since otherwise a bridge-edge might have an unbounded marginal utility)

VCG mechanism

- The problem is utilitarian (indeed, the (negated) cost of a solution is given by the sum of valuations) \Rightarrow VCG-mechanism $M=\langle g, p>$:
- g: computes arg max $\max \sum_{e \in E} V_{e}(r(e), y)$, i.e., $P_{G}(s, z)$ in $G=(V, E, r)$, where $r(e)$ denotes the reported cost of e; indeed, valuation functions are negative, so maximizing their sum means to compute a cheapest path;
- p (Clarke payments): for each $e \in E$:

$$
\begin{gathered}
p_{e}=-\sum_{j \neq e} v_{j}\left(r(j), g\left(r_{-e}\right)\right)+\sum_{j \neq e} v_{j}(r(j), g(r)), \text { namely } \\
p_{e}= \begin{cases}d_{G-e}(s, z)-\left[d_{G}(s, z)-r(e)\right]=d_{G-e}(s, z)-d_{G}(s, z)+r(e) & \text { if } e \in P_{G}(s, z) \\
d_{G}(s, z)-d_{G}(s, z)=0 & \text { otherwise }\end{cases}
\end{gathered}
$$

\Rightarrow For each $e \in P_{G}(s, z)$, we have to compute $d_{G-e}(s, z)$, namely the length of a shortest path in $G-e=\left(V, E \backslash\{e\}, r_{-e}\right)$ between s and z.

The replacement shortest path

Remark: $u_{e}=p_{e}+v_{e}=p_{e}-t_{e}=p_{e}-r(e)=$ $d_{G-e}(s, z)-d_{G}(s, z)+r(e)-\not p(e)$, and since $d_{G-e}(s, z) \geq d_{G}(s, z) \Rightarrow u_{e} \geq 0$

A trivial but costly implementation

- Step 1: First of all, apply Dijkstra to compute $P_{G}(s, z) \Rightarrow$ this costs $O(m+n \log n)$ time by using Fibonacci heaps.
- Step 2: Then, $\forall e \in P_{G}(s, z)$ apply Dijkstra in G-e to compute $P_{G-e}(s, z) \Rightarrow$ we spend $O(m+$ $n \log n$) time for each of the $O(n)$ edges in $P_{G}(s, z)$, i.e., $O\left(m n+n^{2} \log n\right)$ time
\Rightarrow Overall complexity: $O\left(m n+n^{2} \log n\right)$ time
- We will see an efficient solution costing $O(m+n \log n)$ time

Notation

- $S_{G}(s), S_{G}(z)$: single-source shortestpath trees rooted at s and z
- $M_{s}(e)$: set of nodes in $S_{G}(s)$ not descending from edge e (i.e., the set of nodes whose shortest path from s does not use e)
- $N_{s}(e)=V / M_{s}(e)$
- $M_{z}(e), N_{z}(e)$ defined analogously

A picture

Crossing edges

- $\left(M_{s}(e), N_{s}(e)\right)$ is a cut in G
- $C_{s}(e)=\left\{(x, y) \in E \backslash\{e\}: x \in M_{s}(e), y \in N_{s}(e)\right\}$ edges "belonging" to the cut: crossing edges

Crossing edges

What about $P_{G-e}(s, z)$?

- Trivial: it does not use e, and it is shortest among all paths between s and z not using e
- There can be many replacement (shortest) paths between s and z not using e, but each one of them must cross at least once the cut $C_{s}(e)$
- Thus, the length of a replacement shortest path can be written as follows:

$$
d_{G-e}(s, z)=\min _{f=(x, y) \in C_{s}(e)}\left\{d_{G-e}(s, x)+r(f)+d_{G-e}(y, z)\right\}
$$

A replacement shortest path for e

Remark: since edge weights are positive, it must cross only once the cut. Can you see why?

$$
d_{G-e}(s, z)=\min _{f(x, y) \in C_{s}(e)}\left\{d_{G-e}(s, x)+r(f)+d_{G-e}(y, z)\right\}
$$

How to compute $d_{G-e}(s, z)$

Let $f=(x, y) \in C_{s}(e)$; we will show that

$$
d_{G-e}(s, x)+r(f)+d_{G-e}(y, z)=d_{G}(s, x)+r(f)+d_{G}(y, z)
$$

Remark: $d_{G-e}(s, x)=d_{G}(s, x)$, since $x \in M_{s}(e)$
Lemma: Let $f=(x, y) \in C_{s}(e)$ be a crossing edge $\left(x \in M_{s}(e)\right.$). Then $y \in M_{z}(e)$ (from which it follows that $\left.d_{G-e}(y, z)=d_{G}(y, z)\right)$.

A simple lemma

Proof (by contr.) Assume $y \notin M_{z}(e)$, then $y \in N_{z}(e)$. Hence, y is a descendant of u in $S_{G}(z)$, ie., $P_{G}(z, y)$ uses e. Notice that v is closer to z than u in $S_{G}(z)$, and so $P_{G}(v, y)$ is a subpath of $P_{G}(z, y)$ and (recall that $r(e)$ is positive):

$$
d_{G}(v, y)=r(e)+d_{G}(u, y)>d_{G}(u, y) .
$$

But $y \in N_{s}(e)$, and so $P_{G}(s, y)$ uses e. However, u is closer to s than v in $S_{G}(s)$, and so $P_{G}(u, y)$ is a subpath of $P_{G}(s, y)$ and:

$$
d_{G}(u, y)=r(e)+d_{G}(v, y)>d_{G}(v, y) .
$$

A picture

Computing the length of replacement paths

Given $S_{G}(s)$ and $S_{G}(z)$, in $O(1)$ time we can compute the length of a shortest path between s and z passing through f and avoiding e as follows:

$$
k(f):=\underbrace{\text { given by } S_{G}(z)}_{\begin{array}{c}
d_{G}(s, x) \\
\text { given by } S_{G}(s)
\end{array} d_{G-e}(s, x)}
$$

A corresponding algorithm

Step 1: Compute $S_{G}(s)$ and $S_{G}(z)$
Step 2: $\forall e \in P_{G}(s, z)$ check all the crossing edges in $C_{s}(e)$, and take the minimum w.r.t. the key k. Time complexity
Step 1: $O(m+n \log n)$ time
Step 2: $O(m)$ crossing edges for each of the $O(n)$ edges on $P_{G}(s, z)$: since in $O(1)$ we can establish whether an edge of G is currently a crossing edge (can you guess how?), Step 2 costs $O(\mathrm{mn})$ time
\Rightarrow Overall complexity: $O(m n)$ time
() Improves on $O\left(m n+n^{2} \log n\right)$ if $m=o(n \log n)$

A more efficient solution: the Malik, Mittal and Gupta algorithm (1989)

- MMG have solved in $O(m+n \log n)$ time the following related problem: given a $S P P_{G}(s, z)$, compute its most vital edge, namely an edge whose removal induces the worst (i.e., longest) replacement shortest path between s and z.
- Their approach computes efficiently all the replacement shortest paths between s and z... ...but this is exactly what we are looking for in our VCG-mechanism!

The MMG algorithm at work

The basic idea of the algorithm is that when an edge e on $P_{G}(s, z)$ is considered, then we have a priority queue H containing the set of nodes in $\mathrm{N}_{\mathrm{s}}(\mathrm{e})$; with each node $\mathrm{y} \in \mathrm{H}$ remains associated a key $k(y)$ and a corresponding crossing edge, defined as follows:

$$
k(y)=\min _{(x, y) \in E, x \in M_{s}(e)}\left\{d_{G}(s, x)+r(x, y)+d_{G}(y, z)\right\}
$$

$\Rightarrow k(y)$ is the length of a SP in G-e from s to z passing through the node y, and so the minimum key is associated with a replacement shortest path for e

The MMG algorithm at work (2)

- Initially, $H=V$, and $k(y)=+\infty$ for each $y \in V$
- Let $P_{G}(s, z)=\left\{e_{1}, e_{2}, \ldots, e_{q}\right\}$, and consider these edges one after the other. When edge e_{i} is considered, modify H as follows:
- Remove from H all the nodes in $\mathrm{W}_{s}\left(e_{i}\right)=\mathrm{N}_{s}\left(e_{i-1}\right) \backslash \mathrm{N}_{s}\left(e_{\mathrm{i}}\right)$ (for $\mathrm{i}=1$, se \dagger $\mathrm{N}_{\mathrm{s}}\left(\mathrm{e}_{\mathrm{i}-1}\right)=\mathrm{V}$)
- Consider all the edges (x, y) s.t. $x \in W_{s}\left(e_{i}\right)$ and $y \in H$, and compute $k^{\prime}(y)=d_{G}(s, x)+r(x, y)+d_{G}(y, z)$. If $k^{\prime}(y)<k(y)$, decrease $k(y)$ to $k^{\prime}(y)$, and update the corresponding crossing edge to (x, y)
- Then, find the minimum in H w.r.t. k, which returns the length of a replacement shortest path for $e_{i}\left(i . e ., d_{G-i}(s, z)\right)$, along with the selected crossing edge

An example

An example (2)

Time complexity of MMG

Theorem:
Given a shortest path between two nodes s and z in a graph G with n vertices and m edges, all the replacement shortest paths between s and z can be computed in $O(m+n \log n)$ time.

Time complexity of MMG

Proof: Compute $S_{G}(s)$ and $S_{G}(z)$ in $O(m+n \log n)$ time. Then, use a Fibonacci heap to maintain H (observe that $W_{s}\left(e_{i}\right)$ can be computed in $O\left(\left|W_{s}\left(e_{i}\right)\right|\right)$ time), on which the following operations are executed:

- A single make_heap
- n insert
- $q=O(n)$ find_min
- $O(n)$ delete

$O(m+n \log n)$ total time

- $O(m)$ decrease_key

In a Fibonacci heap, the amortized cost of a delete is $O(\log n)$, the amortized cost of a decrease_key is O(1), while insert, find_min, and make_heap cost $O \overline{(1)}$, so

Plugging-in the MMG algorithm into the VCG-mechanism

Corollary
There exists a VCG-mechanism for the privateedge $S P$ problem running in $O(m+n \log n)$ time. Proof.
Running time for the mechanism's algorithm: $O(m+$ $n \log n$) (Dijkstra).
Running time for computing the payments: $O(m+n$ $\log n$), by applying MMG to compute all the distances $\mathrm{d}_{G-e}(\mathrm{~s}, \mathrm{z})$.

