
The Shortest Path problem in 
graphs with selfish edges  



Review 

 VCG-mechanism: pair M=<g,p> where 

 g(r) = arg maxyX i vi(ri,y)  

 pi(g(r)) = -j≠i vj(rj,g(r-i)) +j≠i vj(rj,g(r)) 

 

 VCG-mechanisms are truthful for utilitarian problems (i.e., 
problems in which the SCF is given by the sum of players’ 
valuation functions) 
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The private-edge SP problem  

 Given: an undirected graph G=(V,E) such that 
each edge is owned by a distinct player, a 
source node s and a destination node z; we 
assume that a player’s private type is the 
positive cost (length) of the edge, and her 
valuation function is equal to her negated type 
if edge is selected in the solution, and 0 
otherwise.  

 Question: design a truthful mechanism in order 
to find a shortest path in Gt=(V,E,t)  between s 
and z. 



Notation and assumptions 

 n=|V|, m=|E| 
 dG(s,z): distance in G=(V,E,r)  between s ans z 

(sum of reported costs of edges on a shortest 
path PG(s,z) in G) 

 Nodes s and z are 2-edge-connected in G, i.e., 
there exists in G at least 2 edge-disjoint 
paths between s and z  for any edge of 
PG(s,z) removed from the graph there exists 
at least one replacement path in G-e between 
s and z (this will bound the problem, since 
otherwise a  bridge-edge might have an 
unbounded marginal utility) 



VCG mechanism 

 The problem is utilitarian (indeed, the (negated) cost of a solution is 
given by the sum of valuations)  VCG-mechanism M=<g,p>: 
 g: computes arg maxyX eE ve(r(e),y), i.e., PG(s,z) in G=(V,E,r), where 

r(e) denotes the reported cost of e; indeed, valuation functions are 
negative, so maximizing their sum means to compute a cheapest path;  

 p (Clarke payments): for each eE:  

pe =-j≠e vj(r(j),g(r-e)) +j≠e vj(r(j),g(r)), namely 
 

         dG-e(s,z)-[dG(s,z)-r(e)] = dG-e(s,z)-dG(s,z) + r(e)  if ePG(s,z) 
                 dG(s,z)-dG(s,z) = 0                                           otherwise 

 
 For each ePG(s,z), we have to compute dG-e(s,z), namely the length of a 

shortest path in G-e =(V,E\{e},r-e) between s and z. 

 

pe= { 
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PG-e(s,z)  dG-e(s,z)=12 

 

PG(s,z)  dG(s,z)=11 

Remark: ue = pe+ve= pe- te = pe- r(e) = 
dG-e(s,z)-dG(s,z)+ r(e) - r(e) , and since dG-e(s,z) ≥dG(s,z)  ue0  

pe=dG-e(s,z)-dG(s,z) + r(e) = 
12-11+2=3 



A trivial but costly implementation 

 Step 1: First of all, apply Dijkstra to 
compute PG(s,z)  this costs O(m + n log n) 
time by using Fibonacci heaps. 

 Step 2: Then, e PG(s,z) apply Dijkstra in 
G-e to compute PG-e(s,z)  we spend O(m + 
n log n) time for each of the O(n) edges in 
PG(s,z), i.e., O(mn + n2 log n) time 

Overall complexity: O(mn + n2 log n) time 
 We will see an efficient solution costing 

O(m + n log n) time 



Notation 

 SG(s), SG(z): single-source shortest-
path trees rooted at s and z 

 Ms(e): set of nodes in SG(s) not 
descending from edge e (i.e., the set 
of nodes whose shortest path from s 
does not use e) 

 Ns(e)=V/Ms(e) 
 Mz(e), Nz(e) defined analogously 
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Crossing edges 

 (Ms(e),Ns(e)) is a cut in G 

 Cs(e)={(x,y) E\{e}: x Ms(e), yNs(e)} 
edges “belonging” to the cut: crossing 
edges 
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What about PG-e(s,z)? 

 Trivial: it does not use e, and it is shortest among 
all paths between s and z not using  e 

 There can be many replacement (shortest) paths 
between s and z not using  e, but each one of them 
must cross at least once the cut Cs(e)  

 Thus, the length of a replacement shortest path 
can be written as follows: 

 dG-e(s,z)=    min    {dG-e(s,x)+r(f)+dG-e(y,z)} 
f=(x,y)Cs(e) 



A replacement shortest path for e 
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dG-e(s,z)=    min    {dG-e(s,x)+r(f)+dG-e(y,z)} 
f=(x,y)  Cs(e) 

Remark: since 
edge weights 
are positive, it 
must cross 
only once the 
cut. Can you 
see why? 



How to compute dG-e(s,z) 

Let f=(x,y)  Cs(e); we will show that 

   dG-e(s,x)+r(f)+dG-e(y,z)=dG(s,x)+r(f)+dG(y,z) 

 

Remark: dG-e(s,x)=dG(s,x), since xMs(e) 

Lemma: Let f=(x,y)Cs(e) be a crossing edge 
(xMs(e)). Then yMz(e) (from which it follows 
that dG-e(y,z)=dG(y,z)). 



A simple lemma 

Proof (by contr.) Assume yMz(e), then 
yNz(e). Hence, y is a descendant of u in SG(z), 
i.e., PG(z,y) uses e. Notice that v is closer to z 
than u in SG(z), and so PG(v,y) is a subpath of 
PG(z,y) and (recall that r(e) is positive): 
 dG (v,y)=r(e) + dG (u,y) > dG (u,y). 
But yNs(e), and so PG(s,y) uses e. However, u is 
closer to s than v in SG(s), and so PG(u,y) is a  
subpath of PG(s,y) and: 
 dG (u,y)=r(e) + dG (v,y) > dG (v,y). 
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Computing the length of 
replacement paths 

Given SG(s) and SG(z), in O(1) time we can compute 
the length of a shortest path between s and z 
passing through f and avoiding e as follows: 

 

k(f):= dG-e(s,x) + r(f) + dG-e(y,z) 

 

 
dG(s,x) 

 given by SG(s) 
dG(y,z) 

 given by SG(z) 



A corresponding algorithm 

Step 1: Compute SG(s) and SG(z) 
Step 2: e PG(s,z) check all the crossing edges in 

Cs(e), and take the minimum w.r.t. the key k. 
Time complexity 

Step 1: O(m + n log n) time 
Step 2: O(m) crossing edges for each of the O(n) 

edges on PG(s,z): since in O(1) we can establish 
whether an edge of G is currently a crossing edge 
(can you guess how?), Step 2 costs O(mn) time 

 Overall complexity: O(mn) time 
 Improves on O(mn + n2 log n) if m=o(n log n) 



A more efficient solution: the Malik, 
Mittal and Gupta algorithm (1989) 

 MMG have solved in O(m + n log n) time the 
following related problem: given a SP PG(s,z), 
compute its most vital edge, namely an edge 
whose removal induces the worst (i.e., 
longest) replacement shortest path between s 
and z. 

 Their approach computes efficiently all the 
replacement shortest paths between s and z… 

 …but this is exactly what we are looking for in 
our VCG-mechanism!  

 



The MMG algorithm at work 

The basic idea of the algorithm is that when an 
edge e on PG(s,z) is considered, then we have a 
priority queue H containing the set of nodes in 
Ns(e); with each node yH remains associated a 
key k(y) and a corresponding crossing edge, 
defined as follows: 

k(y) = min   {dG(s,x)+r(x,y)+dG(y,z)} 
 

 k(y) is the length of a SP in G-e from s to z 
passing through the node y, and so the minimum 
key is associated with a replacement shortest path 
for e 

(x,y)E, xMs(e) 



The MMG algorithm at work (2) 

 Initially, H =V, and k(y)=+ for each yV 

 Let PG(s,z) = {e1, e2,…, eq}, and consider these edges one 
after the other. When edge ei is considered, modify H as 
follows: 
 Remove from H all the nodes in Ws(ei)=Ns(ei-1)\Ns(ei) (for i=1, set 

Ns(ei-1)=V) 

 Consider all the edges (x,y) s.t. xWs(ei) and yH, and compute 
k’(y)=dG(s,x)+r(x,y)+dG(y,z). If k’(y)<k(y), decrease k(y) to k’(y), and 
update the corresponding crossing edge to (x,y) 

 Then, find the minimum in H w.r.t. k, which returns the length of a 
replacement shortest path for ei (i.e., dG-ei(s,z)), along with the 
selected crossing edge 
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An example (2) 
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Here we may have 
a decrease_key 



Time complexity of MMG 

Theorem: 

Given a shortest path between two 
nodes s and z in a graph G with n 
vertices and m edges, all the 
replacement shortest paths between s 
and z can be computed in O(m + n log n) 
time. 

 



Time complexity of MMG 

 
Proof: Compute SG(s) and SG(z) in O(m + n log n) time. Then, 
use a Fibonacci heap to maintain H (observe that Ws(ei) can be 
computed in O(|Ws(ei)|) time), on which the following 
operations are executed: 

 A single make_heap 
 n insert 
 q=O(n) find_min 
 O(n) delete 
 O(m) decrease_key 

In a Fibonacci heap, the amortized cost of a delete is O(log n), 
the amortized cost of a decrease_key is O(1), while insert, 
find_min, and  make_heap cost O(1), so 

O(m + n log n) 
total time 



Plugging-in the MMG algorithm into the 
VCG-mechanism 

Corollary 

There exists a VCG-mechanism for the private-
edge SP problem running in O(m + n log n) time. 

Proof. 

Running time for the mechanism’s algorithm: O(m + 
n log n) (Dijkstra). 

Running time for computing the payments: O(m + n 
log n), by applying MMG to compute all the 
distances dG-e(s,z). 


