
The Shortest Path problem in
graphs with selfish edges

Review

 VCG-mechanism: pair M=<g,p> where

 g(r) = arg maxyX i vi(ri,y)

 pi(g(r)) = -j≠i vj(rj,g(r-i)) +j≠i vj(rj,g(r))

 VCG-mechanisms are truthful for utilitarian problems (i.e.,
problems in which the SCF is given by the sum of players’
valuation functions)

Buying a path in a
network

decides the path
and the payments

te: cost of edge e

if edge e is selected
and receives a payment of pe

e’s utility:

 pe-te

X: set of all paths
 between s and z

f(t,x):
The length of a
path w.r.t. the

true edge costs

Mechanism

t5

t3

t6

t2

t4

t1

s

z

The private-edge SP problem

 Given: an undirected graph G=(V,E) such that
each edge is owned by a distinct player, a
source node s and a destination node z; we
assume that a player’s private type is the
positive cost (length) of the edge, and her
valuation function is equal to her negated type
if edge is selected in the solution, and 0
otherwise.

 Question: design a truthful mechanism in order
to find a shortest path in Gt=(V,E,t) between s
and z.

Notation and assumptions

 n=|V|, m=|E|
 dG(s,z): distance in G=(V,E,r) between s ans z

(sum of reported costs of edges on a shortest
path PG(s,z) in G)

 Nodes s and z are 2-edge-connected in G, i.e.,
there exists in G at least 2 edge-disjoint
paths between s and z for any edge of
PG(s,z) removed from the graph there exists
at least one replacement path in G-e between
s and z (this will bound the problem, since
otherwise a bridge-edge might have an
unbounded marginal utility)

VCG mechanism

 The problem is utilitarian (indeed, the (negated) cost of a solution is
given by the sum of valuations) VCG-mechanism M=<g,p>:
 g: computes arg maxyX eE ve(r(e),y), i.e., PG(s,z) in G=(V,E,r), where

r(e) denotes the reported cost of e; indeed, valuation functions are
negative, so maximizing their sum means to compute a cheapest path;

 p (Clarke payments): for each eE:

pe =-j≠e vj(r(j),g(r-e)) +j≠e vj(r(j),g(r)), namely

 dG-e(s,z)-[dG(s,z)-r(e)] = dG-e(s,z)-dG(s,z) + r(e) if ePG(s,z)
 dG(s,z)-dG(s,z) = 0 otherwise

 For each ePG(s,z), we have to compute dG-e(s,z), namely the length of a

shortest path in G-e =(V,E\{e},r-e) between s and z.

pe= {

The replacement shortest path
s

z

e

2

2

3
4

5 6

5

10

5

12

PG-e(s,z) dG-e(s,z)=12

PG(s,z) dG(s,z)=11

Remark: ue = pe+ve= pe- te = pe- r(e) =
dG-e(s,z)-dG(s,z)+ r(e) - r(e) , and since dG-e(s,z) ≥dG(s,z) ue0

pe=dG-e(s,z)-dG(s,z) + r(e) =
12-11+2=3

A trivial but costly implementation

 Step 1: First of all, apply Dijkstra to
compute PG(s,z) this costs O(m + n log n)
time by using Fibonacci heaps.

 Step 2: Then, e PG(s,z) apply Dijkstra in
G-e to compute PG-e(s,z) we spend O(m +
n log n) time for each of the O(n) edges in
PG(s,z), i.e., O(mn + n2 log n) time

Overall complexity: O(mn + n2 log n) time
 We will see an efficient solution costing

O(m + n log n) time

Notation

 SG(s), SG(z): single-source shortest-
path trees rooted at s and z

 Ms(e): set of nodes in SG(s) not
descending from edge e (i.e., the set
of nodes whose shortest path from s
does not use e)

 Ns(e)=V/Ms(e)
 Mz(e), Nz(e) defined analogously

A picture

s

u

v

z

e

Ms(e)

Ns(e)

SG(s)

Crossing edges

 (Ms(e),Ns(e)) is a cut in G

 Cs(e)={(x,y) E\{e}: x Ms(e), yNs(e)}
edges “belonging” to the cut: crossing
edges

Crossing edges

s

u

v

z

e

Ms(e)

Ns(e)

SG(s)

Cs(e)

What about PG-e(s,z)?

 Trivial: it does not use e, and it is shortest among
all paths between s and z not using e

 There can be many replacement (shortest) paths
between s and z not using e, but each one of them
must cross at least once the cut Cs(e)

 Thus, the length of a replacement shortest path
can be written as follows:

 dG-e(s,z)= min {dG-e(s,x)+r(f)+dG-e(y,z)}
f=(x,y)Cs(e)

A replacement shortest path for e

s

u

v

z

e
x

y

dG-e(s,z)= min {dG-e(s,x)+r(f)+dG-e(y,z)}
f=(x,y) Cs(e)

Remark: since
edge weights
are positive, it
must cross
only once the
cut. Can you
see why?

How to compute dG-e(s,z)

Let f=(x,y) Cs(e); we will show that

 dG-e(s,x)+r(f)+dG-e(y,z)=dG(s,x)+r(f)+dG(y,z)

Remark: dG-e(s,x)=dG(s,x), since xMs(e)

Lemma: Let f=(x,y)Cs(e) be a crossing edge
(xMs(e)). Then yMz(e) (from which it follows
that dG-e(y,z)=dG(y,z)).

A simple lemma

Proof (by contr.) Assume yMz(e), then
yNz(e). Hence, y is a descendant of u in SG(z),
i.e., PG(z,y) uses e. Notice that v is closer to z
than u in SG(z), and so PG(v,y) is a subpath of
PG(z,y) and (recall that r(e) is positive):
 dG (v,y)=r(e) + dG (u,y) > dG (u,y).
But yNs(e), and so PG(s,y) uses e. However, u is
closer to s than v in SG(s), and so PG(u,y) is a
subpath of PG(s,y) and:
 dG (u,y)=r(e) + dG (v,y) > dG (v,y).

A picture

s

z

Ns(e) Mz(e)

Ms(e)

e

Computing the length of
replacement paths

Given SG(s) and SG(z), in O(1) time we can compute
the length of a shortest path between s and z
passing through f and avoiding e as follows:

k(f):= dG-e(s,x) + r(f) + dG-e(y,z)

dG(s,x)

 given by SG(s)
dG(y,z)

 given by SG(z)

A corresponding algorithm

Step 1: Compute SG(s) and SG(z)
Step 2: e PG(s,z) check all the crossing edges in

Cs(e), and take the minimum w.r.t. the key k.
Time complexity

Step 1: O(m + n log n) time
Step 2: O(m) crossing edges for each of the O(n)

edges on PG(s,z): since in O(1) we can establish
whether an edge of G is currently a crossing edge
(can you guess how?), Step 2 costs O(mn) time

 Overall complexity: O(mn) time
 Improves on O(mn + n2 log n) if m=o(n log n)

A more efficient solution: the Malik,
Mittal and Gupta algorithm (1989)

 MMG have solved in O(m + n log n) time the
following related problem: given a SP PG(s,z),
compute its most vital edge, namely an edge
whose removal induces the worst (i.e.,
longest) replacement shortest path between s
and z.

 Their approach computes efficiently all the
replacement shortest paths between s and z…

 …but this is exactly what we are looking for in
our VCG-mechanism!

The MMG algorithm at work

The basic idea of the algorithm is that when an
edge e on PG(s,z) is considered, then we have a
priority queue H containing the set of nodes in
Ns(e); with each node yH remains associated a
key k(y) and a corresponding crossing edge,
defined as follows:

k(y) = min {dG(s,x)+r(x,y)+dG(y,z)}

 k(y) is the length of a SP in G-e from s to z
passing through the node y, and so the minimum
key is associated with a replacement shortest path
for e

(x,y)E, xMs(e)

The MMG algorithm at work (2)

 Initially, H =V, and k(y)=+ for each yV

 Let PG(s,z) = {e1, e2,…, eq}, and consider these edges one
after the other. When edge ei is considered, modify H as
follows:
 Remove from H all the nodes in Ws(ei)=Ns(ei-1)\Ns(ei) (for i=1, set

Ns(ei-1)=V)

 Consider all the edges (x,y) s.t. xWs(ei) and yH, and compute
k’(y)=dG(s,x)+r(x,y)+dG(y,z). If k’(y)<k(y), decrease k(y) to k’(y), and
update the corresponding crossing edge to (x,y)

 Then, find the minimum in H w.r.t. k, which returns the length of a
replacement shortest path for ei (i.e., dG-ei(s,z)), along with the
selected crossing edge

An example

Ns(e1)

e1

e2

e3

e5

e4

s

z

Ws(e1)

An example (2)

Ns(e2)

e1

e2

e3

e5

e4

s

z

Ws(e2)

Here we may have
a decrease_key

Time complexity of MMG

Theorem:

Given a shortest path between two
nodes s and z in a graph G with n
vertices and m edges, all the
replacement shortest paths between s
and z can be computed in O(m + n log n)
time.

Time complexity of MMG

Proof: Compute SG(s) and SG(z) in O(m + n log n) time. Then,
use a Fibonacci heap to maintain H (observe that Ws(ei) can be
computed in O(|Ws(ei)|) time), on which the following
operations are executed:

 A single make_heap
 n insert
 q=O(n) find_min
 O(n) delete
 O(m) decrease_key

In a Fibonacci heap, the amortized cost of a delete is O(log n),
the amortized cost of a decrease_key is O(1), while insert,
find_min, and make_heap cost O(1), so

O(m + n log n)
total time

Plugging-in the MMG algorithm into the
VCG-mechanism

Corollary

There exists a VCG-mechanism for the private-
edge SP problem running in O(m + n log n) time.

Proof.

Running time for the mechanism’s algorithm: O(m +
n log n) (Dijkstra).

Running time for computing the payments: O(m + n
log n), by applying MMG to compute all the
distances dG-e(s,z).

