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The Shortest Path problem in
graphs with selfish edges




i Review

= VCG-mechanism: pair M=<g,p> where

= g(r) = arg maxy .y 2 (r.y)
= pi(9(r)) = 'iji vi(r;.g(r.)) "'iji vi(r;.9(r))

= VCG-mechanisms are truthful for utilitarian problems (i.e.,
problems in which the SCF is given by the sum of players'
valuation functions)



Buying a path ina
network

f(t,x):
The length of a
path w.r.t. the
true edge costs

X: set of all paths
between s and z

decides the path
and the payments

t,: cost of edge e

if edge e is selected
and receives a payment of p,
e's utility:

pe_Te




i The private-edge SP problem

= Given: an undirected graph 6=(V E) such that
each edge is owned by a distinct player, a
source hode s and a destination node z; we
assume that a player's private type is the
positive cost (length) of the edge, and her
valuation function is equal to her negated type
if edge is selected in the solution, and O
otherwise.

= Question: design a truthful mechanism in order
to find a shortest path in 6,=(V,E,t) between s
and z.



i Notation and assumptions

= n=| V], m=|E]

n dg(s,z): distance in 6=(V,E,r) between s ans z
(sum of reported costs of edges on a shortest
path P.(s,z) in G)

= Nodes s and z are 2-edge-connected in G, i.e.,
there exists in G at least 2 edge-disjoint
Ba’rhs between s and z = for any edge of

c(s,z) removed from the graph there exists
at least one replacement path in G-e between
s and z (this will bound the problem, since
otherwise a bridge—ed?e might have an
unbounded marginal utility)



i VCG mechanism

= The problem is utilitarian (indeed, the (negated) cost of a solution is
given by the sum of valuations) = VC6-mechanism M=<g p>:

= g: computes arg max, x>, .e V.(r(e)y), i.e., P5(s,z) in 6=(V Er), where
r(e) denotes the repor‘red cost of e; mdeed valuation functions are
negative, so maximizing their sum means to compuTe a cheapest path;

= p (Clarke payments): for each e<E:
Pe :'Zl:jze J('“(J) g(r )) +ZJ¢e J(l"(j),g(r)l), namely
|

— :
D, dG_e(s,z)-[dG(s,z) r(e)] = dg.(s,z)-ds(s,z) + r(e) if ecP,(s,z)
© dg(s,z)-dg(s,2z) = 0 otherwise

=~ For each eeP¢(s,z), we have to compute d¢_.(s,z), hamely the length of a
shortest pa’rh in G-e =(V ,E\{e},r_.) between s and z.



The replacement shortest path

S

3 Ps(s,2) = dg(s,z)=11

10

P=dgo(s.2)-dg(s.2) + r(e) =
12-11+2=3

12

Pso(S,2) = dg.(S,2)=12

Z

Remark: Up = PetVe= Pe- Te = Pe- r'(e) -
dg.(s,2)-dg(s,2)* r(€) - F{e) , and since dg.(s,2) 2d4(s,2) = u20



i A trivial but costly implementation

= Step 1: First of all, apply Dijkstra to
compute Pg(s,z) = this costs O(m + n log n)
time by using Fibonacci heaps.

= Step 2: Then, Ve €P,(s,z) apply Dijkstra in
G-e to compute P._.(s,z) = we spend O(m +
n log n) tfime for each of the O(h) edges in
Ps(s,z), i.e., O(mn + nlog n) time

=Qverall complexity: O(mn + n?log n) time

= We will see an efficient solution costing
O(m + n log n) time



i Notation

n S5.(8), S¢(z): single-source shortest-
path trees rooted at s and z

» M (e): set of nodes in S;(s) not
descending from edge e (i.e., the set
of nodes whose shortest path from s
does not use ¢e)

= N (e)=V/M(e)
= M,(e), N,(e) defined analogously



A picture

Sa(S)




i Crossing edges

s (M,(e)N,(e))isacutinG

= Ci(e)={(x)y) eE\{e}: xe M/(e), yeN(e)}
edges "belonging” to the cut: crossing
edges



Crossing edges

Sc(s) @




i What about P._.(s,2)?

= Trivial: it does not use e, and it is shortest among
all paths between s and z not using e

= There can be many replacement (shortest) paths
between s and z not using e, but each one of them
must cross at least once the cut C (e)

s Thus, the length of a replacement shortest path
can be written as follows:

dG'e(S'Z):f:(xT)' Er\CS((a§dG_e(s,x)+r(f )+de.(Y.2)}



A replacement shortest path for e

- s

Remark: since
edge weights
are positive, it
must cross
only once the
cut. Can you
see why?

d; .(s.z)= min {d; (s x)+r(f)+d; . (y,z
6-e( )f:(x'y)ecs(g)e( y+r(f)rdg_.(y.2)}



‘_LHOW to compute d;_.(s,z)

Let f=(x,y) € C,(e); we will show that
dg-o(8.X)+r(f)+dg_ (y,z)=ds(s,x)+r(f)+ds(y,2)

Remark: d._.(s,x)=d(s,x), since xeM(e)

Lemma: Let f=(x,y)eC (e) be a crossing edge
(xeM(e)). ThenyeM,(e) (from which it follows
that dg_.(y,2)=dg(y.2)).



A simple lemma

+

22—

f‘

.

Proof (by contr.) Assume yzM,(e), then
yeN,(e). Hence, y is a descendant of u in Sg(z),
l.e., Pc(z,y) uses e. Notice that v is closer to z
than u in S¢(z), and so P.(v,y) is a subpath of
Ps(z,y) and (recall that r(e) is positive):

dg (v.y)=r(e) + dg (uy) > dg (uy).
But yeN(e), and so P.(s,y) uses e. However, u is

closer to s than v in S,(s), and so P;(uy) is a
subpath of P,(s,y) and:

dg (uy)=r(e) + dg (v.y) > dg (v.y).




A picture

+ s

Z

Ns( e) C Mz( 6’)



Computing the length of
replacement paths

Given Sg(s) and S,(z), in O(1) time we can compute
the length of a shortest path between s and z
passing through f and avoiding e as follows:

k(f)= dg.o(s.x) + r(f) + dg.oy.2)

Y Y
dG(S,X) dG(YIZ)
given by S;(s) given by S.(z)




A corresponding algorithm

Step 1: Compute Sg(s) and Sg(z)

Step 2: Ve €P,(s,z) check all the crossing edges in
C.(e), and take the minimum w.r.t. the key k.

Time complexity
Step 1. O(m + n log n) time

Step 2: O(m) crossing edges for each of the O(nh)
edges on P,(s,z): since in O(1) we can establish
whether an edge of G is currently a crossing edge
(can you guess how?), Step 2 costs O(mn) time

- Overall complexity: O(mn) time
© Improves on O(mn + n?log n) if m=o(n log n)



A more efficient solution: the Malik,
i Mittal and Gupta algorithm (1989)

s MMG have solved in O(m + n log n) time the
following related problem: given a SP P.(s,z),
compute its most vital edge, namely an edge
whose removal induces the worst (i.e.,
longest) replacement shortest path between s
and z.

= Their approach computes efficiently all the
replacement shortest paths between s and z...

..but this is exactly what we are looking for in
our VCG-mechanism!



EL The MMG algorithm at work
I

e basic idea of the algorithm is that when an
edge e on P,(s,z) is considered, then we have a
oriority queue H containing the set of nodes in
N.(e); with each node yeH remains associated a
ey k(y) and a corresponding crossing edge,
defined as follows:

k(y) = min {dg(s,x)+r(x,y)+d:(y,z)}

(x.y)eE, xeM(e)

= k(y) is the length of a SP in G-e from s to z
passing through the node y, and so the minimum
key is associated with a replacement shortest path
fore



‘_L The MMG algorithm at work (2)

= Initially, H =V, and k(y)=+x for each yeV

s Let P.(s,z) = {ey, e,,.., eq}, and consider these edges one
after the other. When edge e, is considered, modify H as
follows:

= Remove from H all the nodes in W (e;)=N.(e; ;)\N,(e;) (for i=1, set
Ns(ei-l):v)
= Consider all the edges (x,y) s.t. xeW,(e;) and yeH, and compute

K'(y)=ds(s,x)+r(x y)+ds(y.z). If K'(y)k(y), decrease k(y) to k'(y), and
update the corresponding crossing edge to (x,y)

= Then, find the minimum in H w.r.t. k, which returns the length of a
replacement shortest path for e; (i.e., dg_..(s.z)), along with the
selected crossing edge



An example

s

N(e,) * el ..



An example (2)

Ws(ez)

Here we may have

a decrease_ ke)/ o .

s(ez)




Time complexity of MMG

Theorem:

Given a shortest path between two
nodes s and z in a graph G with n
vertices and m edges, all the
replacement shortest paths between s
and z can be computed in O(m + n log n)
Time.



Time complexity of MMG

+

Proof: Compute S;(s) and S;(z) in O(m + n log n) time. Then,
use a Fibonacci heap to maintain H (observe that W (e;) can be
computed in O(|W,(e)|) time), on which the following
operations are executed:

= A single make_heap

= hinsert
= g=0O(n) find_min ‘ O(m + n log n)
= O(n) delete total time

= O(m) decrease_key

In a Fibonacci heap, the amortized cost of a delete is O(log n),
the amortized cost of a decrease_key is O(1), while insert,
find_min, and make_heap cost O(1), so

[ ]




Plugging-in the MMG algorithm into the
i VCG-mechanism

Corollary

There exists a VCG-mechanism for the private-
edge SP problem running in O(m + n log n) time.
Proof.

Running time for the mechanism's algorithm: O(m +
n log n) (Dijkstra).

Running time for computing the payments: O(m + n
log n), by applying MMG to compute all the
distances d;_.(s,z). =



