The Minimum Spanning Tree (MST) problem in graphs with selfish edges

Review

- VCG-mechanism: pair $M=<g, p>$ where
- $g(r)=\arg \max _{y \in X} \sum_{i} v_{i}\left(r_{i}, y\right)$
- $p_{i}(g(r))=-\sum_{j \neq i} v_{j}\left(r_{j}, g\left(r_{-i}\right)\right)+\sum_{j \neq i} v_{j}\left(r_{j}, g(r)\right)$
- VCG-mechanisms are truthful for utilitarian problems
- The classic shortest-path problem on (private-edge) graphs is utilitarian \Rightarrow we showed an efficient $O(m+n \log n)$ time implementation of the corresponding VCG-mechanism:
- $g(r)=$ compute a shortest-path
- $\mathrm{p}_{\mathrm{e}}(\mathrm{g}(\mathrm{r})$) = pays for the marginal utility of e (difference between the length of a replacement shortest path in G-e and the length of a shortest path in G)

Another very well-known problem: the Minimum Spanning Tree problem

- INPUT: an undirected, weighted graph $G=(V, E, w)$, $w(e) \in R^{+}$for any $e \in E$, with n nodes and m edges
OUTPUT: a minimum spanning tree (MST) $T=\left(V, E_{T}\right)$ of G, namely a spanning tree of G having minimum total weight $w(T)=\sum_{e \in E_{\mathrm{T}}} w(e)$
- Recall: T is a spanning tree of G if:
T is a tree
T is a subgraph of G
T contains all the nodes of G
- Fastest centralized algorithm costs $O(m \alpha(m, n))$ time (B. Chazelle, A minimum spanning tree algorithm with InverseAckermann type complexity. J. ACM 47(6): 1028-1047
(2000)), where α is the inverse of the Ackermann function

The Ackermann function

$A(i, j)$ and its inverse $\alpha(m, n)$

Notation: By $a^{b^{c}}$ we mean $a^{\left(b^{c}\right)}$, and not $\left(a^{b}\right)^{c}=a^{b \cdot c}$. For integers $i, j \geq 1$, let us define $A(i, j)$ as:

$$
\begin{array}{ll}
A(1, j)=2^{j} & j \geq 1 ; \\
A(i, 1)=A(i-1,2) & i \geq 2 \\
A(i, j)=A(i-1, A(i, j-1)) & i, j \geq 2
\end{array}
$$

$A(i, j)$ for small values of i and j

The $\alpha(m, n)$ function

For integers $m \geq n \geq 0$, let us define $\alpha(m, n)$ as:

$$
\alpha(m, n)=\min \left\{i \geq 1 \mid A(i,\lfloor m / n\rfloor)>\log _{2} n\right\} .
$$

Properties of $\alpha(m, n)$

1. For fixed $n, \alpha(m, n)$ is monotonically decreasing for increasing m
$\alpha(m, n)=\min \{i>0: A(i, \underbrace{\lfloor m / n\rfloor})>\log _{2} n\}$
growing in m

$$
\begin{aligned}
& \text { 2. } \alpha(n, n) \rightarrow \infty \quad \text { for } n \rightarrow \infty \\
& \begin{aligned}
\alpha(n, n) & =\min \left\{i>0: A(i,\lfloor n / n\rfloor)>\log _{2} n\right\} \\
& =\min \{i>0: A(i, 1)>\underbrace{\left.\log _{2} n\right\}}_{\rightarrow \infty}
\end{aligned}
\end{aligned}
$$

Remark

$\alpha(m, n) \leq 4$ for any practical purposes (i.e., for reasonable values of n)
$\alpha(m, n)=\min \left\{i>0: A(i,\lfloor m / n\rfloor)>\log _{2} n\right\}$
$A(4,\lfloor m / n\rfloor) \geq A(4,1)=A(3,2)$
$=2^{\left.\dot{2}^{2}\right\}^{16}}$
>> $10^{80} \cong$ estimated number of atoms in the universe!
\Rightarrow hence, $\alpha(m, n) \leq 4$ for any $n<2^{1080}$

The private-edge MST problem

- Input: a 2-edge-connected, undirected graph $G=(V, E)$ such that each edge is owned by a distinct selfish agent; we assume that agent's private type $t(e)$ is the positive cost (length) of the edge e she owns, and her valuation function is equal to her type if the edge is selected in the solution, and 0 otherwise.
- Question: design a truthful mechanism in order to find a MST of $G_{+}=(V, E, t)$

VCG mechanism

- The problem is utilitarian (indeed, the cost of a solution is given by the sum of the valuations of the selected edges) \Rightarrow VCG-mechanism $M=\langle g, p\rangle$:
- g : computes a MST $T=\left(\mathrm{V}, \mathrm{E}_{\mathrm{T}}\right)$ of $\mathrm{G}=(\mathrm{V}, \mathrm{E}, r)$
- p_{e} : For any edge $e \in E, p_{e}=-\sum_{j \neq e} v_{j}\left(r_{j}, g\left(r_{-e}\right)\right)+\sum_{j \neq e} v_{j}\left(r_{j}, g(r)\right)$, namely

$$
\begin{array}{ll}
p_{e}=r\left(T_{G-e}\right)-[r(T)-r(e)] \\
e_{e}=0
\end{array} \quad \begin{aligned}
& \text { if } e \in E_{T} \\
& \text { otherwise } .
\end{aligned}
$$

Remark: $u_{e}=p_{e}+v_{e}=p_{e}-t_{e}=p_{e}-r(e)=$ $r\left(T_{G-e}\right)-r(T)+r(\notin)-r(e)$, and since $r\left(T_{G-e}\right) \geq r(T) \Rightarrow u_{e} \geq 0$
\Rightarrow For any $e \in T$ we have to compute T_{G-e}, namely the replacement MST for e (MST in G-e $=\left(V, E \backslash\{e\}, r_{-e}\right)$) Remark: G is 2-edge-connected since otherwise $r\left(T_{G-e}\right)$ might be unbounded \Rightarrow agent owning e might report an unbounded cost!

A trivial solution

1. First, we compute a MST of G
2. Then, $\forall e \in T$ we compute a MST of G-e

Time complexity: we pay $O(m \alpha(m, n))$ for step 1, and $O(m \alpha(m, n))$ for each of the $n-1$ edges of the MST in step 2 $\Rightarrow O(n m \alpha(m, n))$ total time
We will show an efficient solution costing
$O(m \alpha(m, n))$ time!!!

A related problem: MST sensitivity analysis

- Inpu†
- $G=(V, E, w)$ weighted and undirected
- $T=\left(V, E_{T}\right)$ MST of G
- Question
- For any $e \in E_{T}$, how much $w(e)$ can be increased until the minimality of T is affected?
- For any $f \notin T$, how much $w(f)$ can be decreased until the minimality of T is affected? (we will not be concerned with this aspect)
- The first question is exactly what we are looking for to compute the marginal utility (i.e., the payment) of an edge selected in a solution!

An example

The red edge can increase its cost up to 8 before being replaced by the green edge

Computing the sensitivity of a tree edge

$G=(V, E), T$ any spanning tree of G. We define:

- For any non-tree edge $f=(x, y) \in E \backslash E(T)$
- $T(f)$: (unique) simple path in T joining x and y (a.k.a. the fundamental cycle of f w.r.t. T)
- For any tree-edge $e \in E(T)$
- $C(e)=\{f \in E \backslash E(T): e \in T(f)\}$; notice that $C(e)$ contains all the non-tree edges that cross the cut induced by the removal of e from T; we will call them crossing edges (w.r.t. the tree edge e)

Therefore...

- If e is an edge of the MST T, then T remains minimal until $w(e) \leq w(f)$, where f is the cheapest non-tree edge forming a cycle with e in the MST (f is called a swap edge for e); let us call this value up(e)
- More formally, for any $e \in E(T)$
- up $(e)=\min _{f \in C(e)=\{f \in E \backslash E(T): e \in T(f)\}}\{w(f)\}$
- $\operatorname{swap}(e)=\arg \min _{f \in C(e)}\{w(f)\}$

MST sensitivity analysis

$u p(e)=8$

Remark

- Computing all the values up(e) is equivalent to compute a MST of G-e for any edge e in the MST T of G; indeed

$$
w\left(T_{G-e}\right)=w(T)-w(e)+u p(e)
$$

\Rightarrow In the VCG-mechanism, the payment p_{e} of an edge e in the solution is exactly up(e), where now the graph is weighted w.r.t. r

Idea of the efficient algorithm

- From the above observations, it is easy to devise an $O(m n)$ time implementation for the VCGmechanism: just compute a MST T of $G=(V, E, r)$ in $O(m \alpha(m, n))$ time, and then $\forall e \in T$ compute $C(e)$ and up(e) in $O(m)$ time (can you see the details of this step?)
- In the following, we sketch how to boil down the overall complexity to $O(m \alpha(m, n))$ time by checking efficiently all the non-tree edges which form a cycle in T with e

The Transmuter

- Given a graph $G=(V, E, w)$ and a spanning tree T of G, a transmuter $D(G, T)$ is a directed acyclic graph (DAG) representing in a compact way the set of all fundamental cycles of T w.r.t. G, namely $\{T(f)$: f is not in $T\}$
- D will contain:

1. A source node (in-degree=0) s(e) for any edge e in T
2. A sink node (out-degree=0) $\dagger(f)$ for any edge f not in T
3. A certain number of auxiliary nodes of in-degree=2 and out-degree not equal to zero.

- Fundamental property: there is a path in D from $s(e)$ to $t(f)$ iff $e \in T(f)$

1 An example

(a)

How to build a transmuter

- It has been shown that for a graph of n nodes and m edges, a transmuter contains $O(m \alpha(m, n))$ nodes and edges, and can be computed in $O(m \alpha(m, n))$ time:
R. E. Tarjan, Application of path compression on balanced trees, J. ACM 26 (1979) pp 690-715

Topological sorting

- Let $D=(V, A)$ be a directed graph. Then, a topological sorting of D is a numbering $v_{1}, v_{2}, \ldots, v_{n=|v|}$ of the vertices of D s.t. if there exists a directed path from v_{i} to v_{j} in D, then we have $i<j$.
- D has a topological sorting iff is a DAG
- A topological sorting, if any, can be computed in $\mathrm{O}(|\mathrm{V}|+|A|)$ time (homework!).

Computing up(e)

- We start by topologically sorting the transmuter (which is a DAG)
- We label each node in the transmuter with a weight, obtained by processing the transmuter in reverse topological order:
- We label a sink node $t(f)$ with $r(f)$
- We label a non-sink node v with the minimum weight out of all its adjacent successors
- When all the nodes have been labeled, a source node $s(e)$ is labelled with up(e) (and the corresponding swap edge)

An example

(a)

Time complexity for computing up(e)

1. Transmuter build-up: $O(m \alpha(m, n))$ time 2. Computing up(e) values: Topological sorting: $O(m \alpha(m, n))$ time Processing the transmuter: $O(m \alpha(m, n))$ time

Time complexity of the VCG-mechanism

Theorem
There exists a VCG-mechanism for the privateedge MST problem running in $O(m \alpha(m, n))$ time. Proof.
Time complexity of $g: O(m \alpha(m, n))$
Time complexity of p : we compute all the values
up (e) in $O(m \alpha(m, n))$ time.

