One-parameter Mechanisms

$$G = (V, E)$$

Goal: Design an efficient *truthful mechanism* to find a shortest-path tree (SPT) of G rooted at s.

Goal: Design an efficient *truthful mechanism* to find a shortest-path tree (SPT) of G rooted at s.

- Each edge *e* is owned by a selfish agent
- The *length* t_e of edge e is the *private type* of agent e

- Each edge *e* is owned by a selfish agent
- The length t_e of edge e is the private type of agent e
- Agent e incurs a cost of t_e if edge e is selected in the SPT (and no cost otherwise)

e

- Each edge *e* is owned by a selfish agent
- The length t_e of edge e is the private type of agent e
- Agent e incurs a cost of t_e if edge e is selected in the SPT (and no cost otherwise)
- The valuation of agent e w.r.t. to a tree T is:

$$v_e(t_e, T) = \begin{cases} t_e & \text{if } e \in E(T) \\ 0 & \text{if } e \notin E(T) \end{cases}$$

Note: v_e represents a **cost** incurred by agent e!

Each edge is traversed by a single (copy of the) message.

Each edge is traversed by a single (copy of the) message.

$$v_e(t_e, T) = \begin{cases} t_e & \text{if } e \in E(T) \\ 0 & \text{if } e \notin E(T) \end{cases}$$

Each edge is traversed by a single (copy of the) message.

$$v_e(t_e, T) = \begin{cases} t_e & \text{if } e \in E(T) \\ 0 & \text{if } e \notin E(T) \end{cases}$$

We want to minimize the time needed to deliver the message from s to each node: T must be a SPT.

Goal:

- $\bullet\,$ Let ${\mathcal F}$ be the set of all spanning trees of G rooted at s
- We want to design a truthful mechanism that **minimizes** the following quantity w.r.t $T \in \mathcal{F}$:

$$f(t,T) = \sum_{v \in V} d_T(s,v) = \sum_{e \in E(T)} t_e \cdot ||e||,$$

where $d_T(s, v)$ is the distance between s and v in T and ||e|| is the number of source-node paths in T containing e.

Goal:

- $\bullet\,$ Let ${\mathcal F}$ be the set of all spanning trees of G rooted at s
- We want to design a truthful mechanism that **minimizes** the following quantity w.r.t $T \in \mathcal{F}$:

$$f(t,T) = \sum_{v \in V} d_T(s,v) = \sum_{e \in E(T)} t_e \cdot ||e||,$$

where $d_T(s, v)$ is the distance between s and v in T and ||e|| is the number of source-node paths in T containing e.

Note:

$$f(t,T) = \sum_{e \in E(T)} t_e \cdot ||e|| \neq \sum_{e \in E(T)} t_e$$

Goal:

- $\bullet\,$ Let ${\mathcal F}$ be the set of all spanning trees of G rooted at s
- We want to design a truthful mechanism that **minimizes** the following quantity w.r.t $T \in \mathcal{F}$:

$$f(t,T) = \sum_{v \in V} d_T(s,v) = \sum_{e \in E(T)} t_e \cdot ||e||,$$

where $d_T(s, v)$ is the distance between s and v in T and ||e|| is the number of source-node paths in T containing e.

Note:

$$f(t,T) = \sum_{e \in E(T)} t_e \cdot ||e|| \neq \sum_{e \in E(T)} t_e = \sum_{e \in E} v_e(t_e,T)$$

Goal:

- $\bullet\,$ Let ${\mathcal F}$ be the set of all spanning trees of G rooted at s
- We want to design a truthful mechanism that **minimizes** the following quantity w.r.t $T \in \mathcal{F}$:

$$f(t,T) = \sum_{v \in V} d_T(s,v) = \sum_{e \in E(T)} t_e \cdot ||e||,$$

where $d_T(s, v)$ is the distance between s and v in T and ||e|| is the number of source-node paths in T containing e.

Note:

Non-utilitarian problem!

$$f(t,T) = \sum_{e \in E(T)} t_e \cdot ||e|| \neq \sum_{e \in E(T)} t_e = \sum_{e \in E} v_e(t_e,T)$$

One-parameter Mechanism Design Problems

A mechanism design problem is *one-parameter* if:

 The private type of each player *i* is a single parameter *t_i* ∈ ℝ.

One-parameter Mechanism Design Problems

A mechanism design problem is *one-parameter* if:

- The private type of each player i is a single parameter $t_i \in \mathbb{R}$.
- The valuation function of player *i* w.r.t. an outcome *o* is of the form:

$$v_i(t_i, o) = t_i \cdot w_i(o),$$

where $w_i(o) \in \mathbb{R}_0^+$ is the *workload function* for agent *i*.

 The private type of each player *i* is a single parameter *t_i* ∈ ℝ.

The private type of each player *i* is a single parameter
t_i ∈ ℝ.

The type owned by each player is a single (positive) real number

• The valuation function of player *i* w.r.t. an outcome *o* is of the form:

$$v_i(t_i, o) = t_i \cdot w_i(o),$$

where $w_i(o) \in \mathbb{R}_0^+$ is the *workload function* for agent *i*.

• The valuation function of player *i* w.r.t. an outcome *o* is of the form:

$$v_i(t_i, o) = t_i \cdot w_i(o),$$

where $w_i(o) \in \mathbb{R}_0^+$ is the *workload function* for agent *i*.

$$v_e(t_e, T) = \begin{cases} t_e & \text{if } e \in E(T) \\ 0 & \text{if } e \notin E(T) \end{cases} = t_e \cdot w_e(T)$$

• The valuation function of player *i* w.r.t. an outcome *o* is of the form:

$$v_i(t_i, o) = t_i \cdot w_i(o),$$

where $w_i(o) \in \mathbb{R}_0^+$ is the *workload function* for agent *i*.

$$v_e(t_e, T) = \begin{cases} t_e & \text{if } e \in E(T) \\ 0 & \text{if } e \notin E(T) \end{cases} = t_e \cdot w_e(T)$$

where

$$w_e(T) = \begin{cases} 1 & \text{if } e \in E(T) \\ 0 & \text{if } e \notin E(T) \end{cases}$$

The private-edge SPT problem is one-parameter!

 The private type of each player *i* is a single parameter *t_i* ∈ ℝ.

• The valuation function of player *i* w.r.t. an outcome *o* is of the form:

$$v_i(t_i, o) = t_i \cdot w_i(o),$$

where $w_i(o) \in \mathbb{R}_0^+$ is the *workload function* for agent *i*.

The private-edge SPT problem is one-parameter!

 The private type of each player *i* is a single parameter *t_i* ∈ ℝ.

• The valuation function of player *i* w.r.t. an outcome *o* is of the form:

$$v_i(t_i, o) = t_i \cdot w_i(o),$$

where $w_i(o) \in \mathbb{R}_0^+$ is the *workload function* for agent *i*.

The private-edge SPT problem is one-parameter!

A necessary condition for designing OP truthful mechanisms

Definition: An algorithm g for a minimization OP problem is monotone if, \forall player i, and $\forall r_{-i} = (r_1, \ldots, r_{i-1}, r_{i+1}, r_N)$ it holds that:

 $w_i(g(r_{-i}, r_i))$ is non-increasing w.r.t. r_i .

A necessary condition for designing OP truthful mechanisms

Definition: An algorithm g for a minimization OP problem is *monotone* if, \forall player i, and $\forall r_{-i} = (r_1, \ldots, r_{i-1}, r_{i+1}, r_N)$ it holds that:

A necessary condition for designing OP truthful mechanisms

Definition: An algorithm g for a minimization OP problem is monotone if, \forall player i, and $\forall r_{-i} = (r_1, \ldots, r_{i-1}, r_{i+1}, r_N)$ it holds that:

Theorem (R.B. Myerson, 1981): A mechanism $M = \langle g, p \rangle$ for a minimization OP problem is

truthful **only if** g is monotone.

Theorem (R.B. Myerson, 1981):

A mechanism $M = \langle g, p \rangle$ for a minimization OP problem is truthful **only if** g is monotone.

Proof (by contradiction):

Theorem (R.B. Myerson, 1981): A mechanism $M = \langle g, p \rangle$ for a minimization OP problem is truthful only if g is monotone.

Proof (by contradiction):

• Assume that there exists a truthful mechanism $M=\langle g,p\rangle$ such that g is non-monotone.

Theorem (R.B. Myerson, 1981): A mechanism $M = \langle g, p \rangle$ for a minimization OP problem is truthful only if g is monotone.

Proof (by contradiction):

- Assume that there exists a truthful mechanism $M = \langle g, p \rangle$ such that g is non-monotone.
- There is a player i and a vector r_{-i} of strategies such that $w_i(g(r_{-i}, r_i))$ is not monotonically non-increasing w.r.t. r_i .

Theorem (R.B. Myerson, 1981): A mechanism $M = \langle g, p \rangle$ for a minimization OP problem is truthful only if g is monotone.

Proof (by contradiction):

- Assume that there exists a truthful mechanism $M=\langle g,p\rangle$ such that g is non-monotone.
- There is a player i and a vector r_{-i} of strategies such that $w_i(g(r_{-i}, r_i))$ is not monotonically non-increasing w.r.t. r_i .
- There exists $x, y \in \mathbb{R}$ such that x < y and $w_i(g(r_{-i}, x)) < w_i(g(r_{-i}, y))$

Proof (cont.): Consider $t_i = x$:

Proof (cont.): Consider $t_i = y$:

If $t_i = y$, $v(t_i, \cdot)$ decreases by A + k when reporting x instead of y.

If $t_i = x$, $v(t_i, \cdot)$ <u>increases</u> by A when reporting y instead of x. If $t_i = y$, $v(t_i, \cdot)$ <u>decreases</u> by A+k when reporting x instead of y.

Let $\Delta p = p_i(r_{-i}, y) - p_i(r_{-i}, x)$ be the difference in the payment received by player *i* when she reports *y* instead of *x*.

If $t_i = x$, $v(t_i, \cdot)$ <u>increases</u> by A when reporting y instead of x. If $t_i = y$, $v(t_i, \cdot)$ <u>decreases</u> by A + k when reporting x instead of y.

Let $\Delta p = p_i(r_{-i}, y) - p_i(r_{-i}, x)$ be the difference in the payment received by player *i* when she reports *y* instead of *x*.

If $\Delta p > A$ then player *i* has an incentive to lie when $t_i = x$. (report *y*: cost increases by *A*, payment increases by $\Delta p > A$)

If $t_i = x$, $v(t_i, \cdot)$ <u>increases</u> by A when reporting y instead of x. If $t_i = y$, $v(t_i, \cdot)$ <u>decreases</u> by A+k when reporting x instead of y.

Let $\Delta p = p_i(r_{-i}, y) - p_i(r_{-i}, x)$ be the difference in the payment received by player *i* when she reports *y* instead of *x*.

We must have $\Delta p \leq A$

If $t_i = x$, $v(t_i, \cdot)$ <u>increases</u> by A when reporting y instead of x. If $t_i = y$, $v(t_i, \cdot)$ <u>decreases</u> by A+k when reporting x instead of y.

Let $\Delta p = p_i(r_{-i}, y) - p_i(r_{-i}, x)$ be the difference in the payment received by player *i* when she reports *y* instead of *x*.

We must have $\Delta p \leq A$

If $\Delta p < A + k$ then player *i* has an incentive to lie when $t_i = y$. (report *y*: cost decreases by A + k, payment decreases by $\Delta p < A + k$)

If $t_i = x$, $v(t_i, \cdot)$ <u>increases</u> by A when reporting y instead of x. If $t_i = y$, $v(t_i, \cdot)$ <u>decreases</u> by A+k when reporting x instead of y.

Let $\Delta p = p_i(r_{-i}, y) - p_i(r_{-i}, x)$ be the difference in the payment received by player *i* when she reports *y* instead of *x*.

We must have $\Delta p \leq A$

But simultaneously $\Delta p \ge A + k > A$ (since k > 0)

If $t_i = x$, $v(t_i, \cdot)$ <u>increases</u> by A when reporting y instead of x. If $t_i = y$, $v(t_i, \cdot)$ <u>decreases</u> by A+k when reporting x instead of y.

Let $\Delta p = p_i(r_{-i}, y) - p_i(r_{-i}, x)$ be the difference in the payment received by player *i* when she reports *y* instead of *x*.

A one-parameter (OP) mechanism (for a OP problem) is a pair $M = \langle g, p \rangle$ such that:

• g is any monotone algorithm (for the underlying OP problem)

•
$$p_i(r) = h_i(r_{-i}) + r_i w_i(r) - \int_0^{r_i} w_i(r_{-i}, z) dz$$

where $h_i(r_{-i})$ is an arbitrary function *independent of* r_i .

A one-parameter (OP) mechanism (for a OP problem) is a pair $M=\langle g,p\rangle$ such that:

• g is any monotone algorithm (for the underlying OP problem)

•
$$p_i(r) = h_i(r_{-i}) + r_i w_i(r) - \int_0^{r_i} w_i(r_{-i}, z) dz$$

where $h_i(r_{-i})$ is an arbitrary function *independent of* r_i .

To simplify notation we will write $w_i(r)$ in place of $w_i(g(r))$.

Theorem (R.B. Myerson, 1981): An one-parameter mechanism (for an OP problem) is truthful.

Theorem (R.B. Myerson, 1981): An one-parameter mechanism (for an OP problem) is truthful.

Proof:

• We show that the utility of player *i* can only decrease when she lies.

$$p_i(r) = h_i(r_{-i}) + r_i w_i(r) - \int_0^{r_i} w_i(r_{-i}, z) dz$$

Theorem (R.B. Myerson, 1981): An one-parameter mechanism (for an OP problem) is truthful.

Proof:

• We show that the utility of player *i* can only decrease when she lies.

$$p_i(r) = \underbrace{h_i(r_{-i})}_{i} + r_i w_i(r) - \int_0^{r_i} w_i(r_{-i}, z) dz$$

does not depend on r_i
and can be set to 0

Theorem (R.B. Myerson, 1981): An one-parameter mechanism (for an OP problem) is truthful.

Proof:

• We show that the utility of player *i* can only decrease when she lies.

$$p_i(r) = r_i w_i(r) - \int_0^{r_i} w_i(r_{-i}, z) dz$$

(This will produce negative utilities)

$$u_i(t_i, g(r_{-i}, t_i)) = p_i(r_{-i}, t_i) - v_i(t_i, g(r_{-i}, t_i))$$

• When
$$r_i = t_i$$
:

$$u_i(t_i, g(r_{-i}, t_i)) = t_i w_i(r_{-i}, t_i) - \int_0^{r_i} w_i(r_{-i}, z) dz - t_i w_i(r_{-i}, t_i)$$

$$u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$$

$$u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$$

$$u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i > t_i$:

 $u_i(t_i, g(r_{-i}, t_i)) = p_i(r_{-i}, r_i) - v_i(t_i, g(r_{-i}, r_i))$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i > t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = r_i w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z) dz - t_i w_i(r_{-i}, r_i)$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i > t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = (r_i - t_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i > t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = (r_i - t_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i > t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = (r_i - t_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i > t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = (r_i - t_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i > t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = (r_i - t_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i > t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = (r_i - t_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i > t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = (r_i - t_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i < t_i$:

 $u_i(t_i, g(r_{-i}, r_i)) = p_i(r_{-i}, r_i) - v_i(t_i, g(r_{-i}, r_i))$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i < t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = r_i w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z) dz - t_i w_i(r_{-i}, r_i)$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i < t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = -(t_i - r_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i < t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = -(t_i - r_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i < t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = -(t_i - r_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

Proof (cont.):

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i < t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = -(t_i - r_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

Proof (cont.):

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i < t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = -(t_i - r_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

Proof (cont.):

- When $r_i = t_i$: $u_i(t_i, g(r_{-i}, t_i)) = -\int_0^{t_i} w_i(r_{-i}, z) dz$
- When $r_i < t_i$:

$$u_i(t_i, g(r_{-i}, t_i)) = -(t_i - r_i)w_i(r_{-i}, r_i) - \int_0^{r_i} w_i(r_{-i}, z)dz$$

With $h_i(r_{-i}) = 0$ the mechanism does not guarantee voluntary participation.

$$u_{i}(t_{i},g(r_{-i},t_{i})) = \underbrace{h_{i}(r_{-i})}_{0} - \underbrace{\int_{0}^{t_{i}} w_{i}(r_{-i},z)dz}_{0}$$

$$w_{i}(\cdot)$$

 r_i

 t_i

Solution: Choose $h_i(r_{-i}) = \int_0^{+\infty} w_i(r_{-i}, z) dz$

$$u_i(t_i, g(r_{-i}, t_i)) = h_i(r_{-i}) - \int_0^{t_i} w_i(r_{-i}, z) dz$$

Solution: Choose $h_i(r_{-i}) = \int_0^{+\infty} w_i(r_{-i}, z) dz$

$$u_i(t_i, g(r_{-i}, t_i)) = \int_{r_i}^{+\infty} w_i(r_{-i}, z) dz$$

Solution: Choose $h_i(r_{-i}) = \int_0^{+\infty} w_i(r_{-i}, z) dz$

$$u_i(t_i, g(r_{-i}, t_i)) = \int_{r_i}^{+\infty} w_i(r_{-i}, z) dz$$

Wrapping up

Truthful One-parameter mechanism that guarantees voluntary participation (for an OP problem):

$$M = \langle g, p \rangle$$

• g is any monotone algorithm (for the underlying OP problem)

•
$$p_i(r) = r_i w_i(r) + \int_{r_i}^{+\infty} w_i(r_{-i}, z) dz$$

VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types, but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice function, but only one-parameter types and workloaded valuation functions

VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types, but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice function, but only one-parameter types and workloaded valuation functions

Note: A problem can be both utilitarian and One-parameter

VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types, but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice function, but only one-parameter types and workloaded valuation functions

Note: A problem can be both utilitarian and One-parameter

The VCG and the OP mechanisms coincide