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The private-edge Shortest-Paths Tree (SPT) problem

te

• The length te of edge e is the private type of
agent e

• Each edge e is owned by a selfish
agent

• The valuation of agent e w.r.t. to a tree T is:

ve(te, T ) =

{
te if e ∈ E(T )

0 if e 6∈ E(T )

• Agent e incurs a cost of te if edge e is
selected in the SPT (and no cost otherwise) e

Note: ve represents a cost incurred by agent e!
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This models the multicast protocol

s

Each edge is traversed by a single (copy of the) message.

ve(te, T ) =

{
te if e ∈ E(T )

0 if e 6∈ E(T )

e

T

We want to minimize the time needed to deliver the message
from s to each node: T must be a SPT.
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• Let F be the set of all spanning trees of G rooted at s
Goal:
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the following quantity w.r.t T ∈ F :

f(t, T ) =
∑
v∈V

dT (s, v) =
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where dT (s, v) is the distance between s and v in T and
‖e‖ is the number of source–node paths in T containing e.
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The private-edge Shortest-Paths Tree (SPT) problem

• Let F be the set of all spanning trees of G rooted at s
Goal:

• We want to design a truthful mechanism that minimizes
the following quantity w.r.t T ∈ F :

f(t, T ) =
∑
v∈V

dT (s, v) =
∑

e∈E(T )

te · ‖e‖,

where dT (s, v) is the distance between s and v in T and
‖e‖ is the number of source–node paths in T containing e.

Note:

f(t, T ) =
∑

e∈E(T )

te · ‖e‖ 6=
∑

e∈E(T )

te =
∑
e∈E

ve(te, T )

Non-utilitarian problem!
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Is the private-edge SPT problem one-parameter?

• The valuation function of player i w.r.t. an outcome o is of
the form:

vi(ti, o) = ti · wi(o),

where wi(o) ∈ R+
0 is the workload function for agent i.

ve(te, T ) =

{
te if e ∈ E(T )

0 if e 6∈ E(T )

we(T ) =

{
1 if e ∈ E(T )

0 if e 6∈ E(T )

where

= te · we(T )
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the form:

vi(ti, o) = ti · wi(o),

where wi(o) ∈ R+
0 is the workload function for agent i.
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⇒

The private-edge SPT problem is
one-parameter!
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Theorem (R.B. Myerson, 1981):
A mechanism M = 〈g, p〉 for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):

• Assume that there exists a truthful mechanism M = 〈g, p〉
such that g is non-monotone.

• There is a player i and a vector r−i of strategies such that
wi(g(r−i, ri)) is not monotonically non-increasing w.r.t. ri.

• There exists x, y ∈ R such that x < y and
wi(g(r−i, x)) < wi(g(r−i, y))
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Proof (cont.):

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

If ti =y, v(ti, ·) decreases by A+k when reporting x instead of y.

Let ∆p = pi(r−i, y)− pi(r−i, x) be the difference in the
payment received by player i when she reports y instead of x.

If ∆p > A then player i has an incentive to lie when ti = x.

(report y: cost increases by A, payment increases by ∆p > A)

If ∆p < A + k then player i has an incentive to lie when ti = y.

(report y: cost decreases by A + k, payment decreases by ∆p < A + k)

We must have ∆p ≤ A

But simultaneously ∆p ≥ A + k > A (since k > 0)
E
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A one-parameter (OP) mechanism (for a OP problem) is a pair
M = 〈g, p〉 such that:

• g is any monotone algorithm (for the underlying OP
problem)

• pi(r) = hi(r−i) + riwi(r)−
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0

wi(r−i, z)dz

where hi(r−i) is an arbitrary function independent of ri.

To simplify notation we will write wi(r) in place of wi(g(r)).
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Proof:

pi(r) = hi(r−i) + riwi(r)−
∫ ri
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she lies.

︸ ︷︷ ︸
does not depend on ri

and can be set to 0

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is
truthful.



One-parameter Mechanisms

Proof:
• We show that the utility of player i can only decrease when

she lies.

pi(r) = riwi(r)−
∫ ri

0

wi(r−i, z)dz

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is
truthful.

(This will produce negative utilities)
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Voluntary participation

ti ri

wi(·)

−

ui(ti, g(r−i, ti)) = hi(r−i)−
∫ ti

0

wi(r−i, z)dz

With hi(r−i) = 0 the mechanism does not guarantee voluntary
participation.

︸ ︷︷ ︸
0



Voluntary participation

ti ri

wi(·)

−

ui(ti, g(r−i, ti)) = hi(r−i)−
∫ ti

0

wi(r−i, z)dz

Solution: Choose hi(r−i) =

∫ +∞

0

wi(r−i, z)dz

+
+



Voluntary participation

ti ri

wi(·)

Solution: Choose hi(r−i) =

∫ +∞

0

wi(r−i, z)dz

ui(ti, g(r−i, ti)) =

∫ +∞

ri

wi(r−i, z)dz

+



Voluntary participation

ti ri

wi(·)

Solution: Choose hi(r−i) =

∫ +∞

0

wi(r−i, z)dz

ui(ti, g(r−i, ti)) =

∫ +∞

ri

wi(r−i, z)dz

+

The utility of player i is non-negative
(player i has incentive to play)



Wrapping up

Truthful One-parameter mechanism that guarantees
voluntary participation (for an OP problem):

M = 〈g, p〉

• g is any monotone algorithm (for the underlying OP
problem)

• pi(r) = riwi(r) +

∫ +∞

ri

wi(r−i, z)dz
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VCG mechanisms: arbitrary valuation functions and types,
but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice
function, but only one-parameter types and workloaded
valuation functions
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VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types,
but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice
function, but only one-parameter types and workloaded
valuation functions

Note: A problem can be both utilitarian and One-parameter⇒

The VCG and the OP mechanisms coincide


