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The private-edge Shortest-Paths Tree (SPT) problem

e Each edge e is owned by a selfish
agent

O

e The length t. of edge e is the private type of
agent e

e Agent e incurs a cost of ¢, if edge e is
selected in the SPT (and no cost otherwise) o

e The valuation of agent e w.r.t. to a tree T is:

t. ifec E(T)

velle:T) =0 it e ¢ E(T)

\

Note: v, represents a cost incurred by agent e!
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This models the multicast protocol

MOMQO O O

Each edge is traversed by a single (copy of the) message.

Ve(te, T) = <

(

\

te ifee E(T)
0 ifed E(T)

We want to minimize the time needed to deliver the message
from s to each node: T" must be a SPT.
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The private-edge Shortest-Paths Tree (SPT) problem

Goal:
o Let F be the set of all spanning trees of G rooted at s

e We want to design a truthful mechanism that minimizes
the following quantity w.r.t T € F:

= dr(s,v)= Y te-|lell,
veV ecE(T)

where dr(s,v) is the distance between s and v in T" and
|el| is the number of source—node paths in T' containing e.

Non-utilitarian problem!

Z te - |le|| # Z te = Zve(tevT)

ecE(T) ecE(T) eck
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e The valuation function of player 7 w.r.t. an outcome o is of
the form:
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where w;(0) € R is the workload function for agent 1.
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e The valuation function of player 7 w.r.t. an outcome o is of

the form: “

where w;(0) € R is the workload function for agent 1.

|

The private-edge SPT problem is
one-parameter!

vi(ti,0) = t; - w;(0),
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Theorem (R.B. Myerson, 1981):

A mechanism M = (g, p) for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):

e Assume that there exists a truthful mechanism M = (g, p)
such that g is non-monotone.

e Thereis a player 2 and a vector r_; of strategies such that
w;(g(r_;,7;)) is not monotonically non-increasing w.r.t. r;.

e [here exists z,y € R such that x < y and
wi(g(r—i, ) <wi(g(r-i,y))
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If t;==x, v(t;,-) increases by A when reporting y instead of .

If t;,=vy, v(t;,-) decreases by A+k when reporting x instead of y.

Let Ap = p;(r_;,y) — pi(r_;, x) be the difference in the
payment received by player ¢ when she reports y instead of z.

We must have Ap < A

7

But simultaneously Ap > A+ k> A (since k£ > 0)
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A one-parameter (OP) mechanism (for a OP problem) is a pair
M = (g,p) such that:

e g is any monotone algorithm (for the underlying OP
problem)

o p;(r)=h;(r—;) + ryw;(r) — /Om w;i(r—q, z)dz

where h;(r_;) is an arbitrary\function independent of r;.

To simplify notation we will write w;(r) in place of w;(g(r)).
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One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):

An one-parameter mechanism (for an OP problem) is
truthful.

Proof:
e We show that the utility of player 7 can only decrease when

she lies.
pi(r) — Tiwi(r) —/ wi(r_z-, z)d,z
0

(This will produce negative utilities)
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Proof (cont.):
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The utility of player ¢ decreases by this area
) (player ¢ has no incentive to lie)
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Proof (cont.):

e When r; = t¢;: Ui(tiag(r—ivti» — _ft

o wi(r—;, 2)dz
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Voluntary participation

With h;(r_;) = 0 the mechanism does not guarantee voluntary
participation.

t;
ui(ti,g(r_i,ti)) — hi(T_Z') —/O ”LUZ'(T_Z', Z)dZ
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Voluntary participation

Solution: Choose h;(r_;)
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Voluntary participation

—+ 00
Solution: Choose h;(r_;) :/ w;(r_;, 2)dz
0

—+ 00
ui(ti, g(r_;,t;)) = / w;(r_;, 2)dz

The utility of player ¢ iIs non-negative

) (player i has incentive to play)




Wrapping up

Truthful One-parameter mechanism that guarantees
voluntary participation (for an OP problem):

M = (g,p)

e ¢ is any monotone algorithm (for the underlying OP
problem)

—+ 00
¢ pi(r) — 7"7;107;(7“) +/ w@-(fr_i,z)dz
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The VCG and the OP mechanisms coincide



