
One-parameter Mechanisms



The private-edge Shortest-Paths Tree (SPT) problem

e1
e2

e3

e4 e6

e5

G = (V,E)
s

a

c d

b



The private-edge Shortest-Paths Tree (SPT) problem

t1=2

t4=3
t5=2

t6=6

t2=4

t3=1

e1
e2

e3

e4 e6

e5

G = (V,E)
s

a

c d

b

ti : length of edge ei



The private-edge Shortest-Paths Tree (SPT) problem

t1=2

t4=3
t5=2

t6=6

t2=4

t3=1

e1
e2

e3

e4 e6

e5

Goal: Design an efficient truthful mechanism to find a
shortest-path tree (SPT) of G rooted at s.

G = (V,E)
s

a

c d

b

ti : length of edge ei



The private-edge Shortest-Paths Tree (SPT) problem

t1=2

t4=3
t5=2

t6=6

t2=4

t3=1

e1
e2

e3

e4 e6

e5

Goal: Design an efficient truthful mechanism to find a
shortest-path tree (SPT) of G rooted at s.

G = (V,E)
s

a

c d

b

ti : length of edge ei



The private-edge Shortest-Paths Tree (SPT) problem

te

• The length te of edge e is the private type of
agent e

• Each edge e is owned by a selfish
agent

e



The private-edge Shortest-Paths Tree (SPT) problem

te

• The length te of edge e is the private type of
agent e

• Each edge e is owned by a selfish
agent

• Agent e incurs a cost of te if edge e is
selected in the SPT (and no cost otherwise) e



The private-edge Shortest-Paths Tree (SPT) problem

te

• The length te of edge e is the private type of
agent e

• Each edge e is owned by a selfish
agent

• The valuation of agent e w.r.t. to a tree T is:

ve(te, T ) =

{
te if e ∈ E(T )

0 if e 6∈ E(T )

• Agent e incurs a cost of te if edge e is
selected in the SPT (and no cost otherwise) e

Note: ve represents a cost incurred by agent e!



This models the multicast protocol

sT



This models the multicast protocol

sT



This models the multicast protocol

s

Each edge is traversed by a single (copy of the) message.

T



This models the multicast protocol

s

Each edge is traversed by a single (copy of the) message.

ve(te, T ) =

{
te if e ∈ E(T )

0 if e 6∈ E(T )

e

T



This models the multicast protocol

s

Each edge is traversed by a single (copy of the) message.

ve(te, T ) =

{
te if e ∈ E(T )

0 if e 6∈ E(T )

e

T

We want to minimize the time needed to deliver the message
from s to each node: T must be a SPT.



The private-edge Shortest-Paths Tree (SPT) problem

• Let F be the set of all spanning trees of G rooted at s
Goal:

• We want to design a truthful mechanism that minimizes
the following quantity w.r.t T ∈ F :

f(t, T ) =
∑
v∈V

dT (s, v) =
∑

e∈E(T )

te · ‖e‖,

where dT (s, v) is the distance between s and v in T and
‖e‖ is the number of source–node paths in T containing e.



The private-edge Shortest-Paths Tree (SPT) problem

• Let F be the set of all spanning trees of G rooted at s
Goal:

• We want to design a truthful mechanism that minimizes
the following quantity w.r.t T ∈ F :

f(t, T ) =
∑
v∈V

dT (s, v) =
∑

e∈E(T )

te · ‖e‖,

where dT (s, v) is the distance between s and v in T and
‖e‖ is the number of source–node paths in T containing e.

Note:

f(t, T ) =
∑

e∈E(T )

te · ‖e‖ 6=
∑

e∈E(T )

te



The private-edge Shortest-Paths Tree (SPT) problem

• Let F be the set of all spanning trees of G rooted at s
Goal:

• We want to design a truthful mechanism that minimizes
the following quantity w.r.t T ∈ F :

f(t, T ) =
∑
v∈V

dT (s, v) =
∑

e∈E(T )

te · ‖e‖,

where dT (s, v) is the distance between s and v in T and
‖e‖ is the number of source–node paths in T containing e.

Note:

f(t, T ) =
∑

e∈E(T )

te · ‖e‖ 6=
∑

e∈E(T )

te =
∑
e∈E

ve(te, T )



The private-edge Shortest-Paths Tree (SPT) problem

• Let F be the set of all spanning trees of G rooted at s
Goal:

• We want to design a truthful mechanism that minimizes
the following quantity w.r.t T ∈ F :

f(t, T ) =
∑
v∈V

dT (s, v) =
∑

e∈E(T )

te · ‖e‖,

where dT (s, v) is the distance between s and v in T and
‖e‖ is the number of source–node paths in T containing e.

Note:

f(t, T ) =
∑

e∈E(T )

te · ‖e‖ 6=
∑

e∈E(T )

te =
∑
e∈E

ve(te, T )

Non-utilitarian problem!



One-parameter Mechanism Design Problems

• The private type of each player i is a single parameter
ti ∈ R.

A mechanism design problem is one-parameter if:



One-parameter Mechanism Design Problems

• The private type of each player i is a single parameter
ti ∈ R.

• The valuation function of player i w.r.t. an outcome o is of
the form:

vi(ti, o) = ti · wi(o),

where wi(o) ∈ R+
0 is the workload function for agent i.

A mechanism design problem is one-parameter if:



Is the private-edge SPT problem one-parameter?

• The private type of each player i is a single parameter
ti ∈ R.



Is the private-edge SPT problem one-parameter?

• The private type of each player i is a single parameter
ti ∈ R.

The type owned by each player is a
single (positive) real number

te=2

e



Is the private-edge SPT problem one-parameter?

• The valuation function of player i w.r.t. an outcome o is of
the form:

vi(ti, o) = ti · wi(o),

where wi(o) ∈ R+
0 is the workload function for agent i.



Is the private-edge SPT problem one-parameter?

• The valuation function of player i w.r.t. an outcome o is of
the form:

vi(ti, o) = ti · wi(o),

where wi(o) ∈ R+
0 is the workload function for agent i.

ve(te, T ) =

{
te if e ∈ E(T )

0 if e 6∈ E(T )
= te · we(T )



Is the private-edge SPT problem one-parameter?

• The valuation function of player i w.r.t. an outcome o is of
the form:

vi(ti, o) = ti · wi(o),

where wi(o) ∈ R+
0 is the workload function for agent i.

ve(te, T ) =

{
te if e ∈ E(T )

0 if e 6∈ E(T )

we(T ) =

{
1 if e ∈ E(T )

0 if e 6∈ E(T )

where

= te · we(T )



• The private type of each player i is a single parameter
ti ∈ R.

• The valuation function of player i w.r.t. an outcome o is of
the form:

vi(ti, o) = ti · wi(o),

where wi(o) ∈ R+
0 is the workload function for agent i.

The private-edge SPT problem is one-parameter!



• The private type of each player i is a single parameter
ti ∈ R.

• The valuation function of player i w.r.t. an outcome o is of
the form:

vi(ti, o) = ti · wi(o),

where wi(o) ∈ R+
0 is the workload function for agent i.

The private-edge SPT problem is one-parameter!

⇒

The private-edge SPT problem is
one-parameter!



A necessary condition for designing OP truthful
mechanisms

Definition: An algorithm g for a minimization OP problem is
monotone if, ∀ player i, and ∀r−i = (r1, . . . , ri−1, ri+1, rN ) it
holds that:

wi(g(r−i, ri)) is non-increasing w.r.t. ri.



A necessary condition for designing OP truthful
mechanisms

Definition: An algorithm g for a minimization OP problem is
monotone if, ∀ player i, and ∀r−i = (r1, . . . , ri−1, ri+1, rN ) it
holds that:

wi(g(r−i, ri)) is non-increasing w.r.t. ri.

ri

wi(g(r−i, ri))



A necessary condition for designing OP truthful
mechanisms

Definition: An algorithm g for a minimization OP problem is
monotone if, ∀ player i, and ∀r−i = (r1, . . . , ri−1, ri+1, rN ) it
holds that:

wi(g(r−i, ri)) is non-increasing w.r.t. ri.

Theorem (R.B. Myerson, 1981):
A mechanism M = 〈g, p〉 for a minimization OP problem is
truthful only if g is monotone.

ri

wi(g(r−i, ri))



Theorem (R.B. Myerson, 1981):
A mechanism M = 〈g, p〉 for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):



Theorem (R.B. Myerson, 1981):
A mechanism M = 〈g, p〉 for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):

• Assume that there exists a truthful mechanism M = 〈g, p〉
such that g is non-monotone.



Theorem (R.B. Myerson, 1981):
A mechanism M = 〈g, p〉 for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):

• Assume that there exists a truthful mechanism M = 〈g, p〉
such that g is non-monotone.

• There is a player i and a vector r−i of strategies such that
wi(g(r−i, ri)) is not monotonically non-increasing w.r.t. ri.



Theorem (R.B. Myerson, 1981):
A mechanism M = 〈g, p〉 for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):

• Assume that there exists a truthful mechanism M = 〈g, p〉
such that g is non-monotone.

• There is a player i and a vector r−i of strategies such that
wi(g(r−i, ri)) is not monotonically non-increasing w.r.t. ri.

• There exists x, y ∈ R such that x < y and
wi(g(r−i, x)) < wi(g(r−i, y))



Proof (cont.):

x y

wi(g(r−i, x))

wi(g(r−i, y))

Consider ti = x:



Proof (cont.):

x y

If ri = x, v(ti, o) = x · wi(g(r−i, x))

wi(g(r−i, x))

wi(g(r−i, y))

Consider ti = x:



Proof (cont.):

x y

If ri = x, v(ti, o) = x · wi(g(r−i, x))

wi(g(r−i, x))

wi(g(r−i, y))

Consider ti = x:

If ri = y, v(ti, o) = x · wi(g(r−i, y))



Proof (cont.):

x y

A > 0

If ri = x, v(ti, o) = x · wi(g(r−i, x))

wi(g(r−i, x))

wi(g(r−i, y))

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

Consider ti = x:

If ri = y, v(ti, o) = x · wi(g(r−i, y))



Proof (cont.):

x y

wi(g(r−i, x))

wi(g(r−i, y))

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

Consider ti = y:

A > 0



Proof (cont.):

x y

wi(g(r−i, x))

wi(g(r−i, y))

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

Consider ti = y:

If ri = y, v(ti, o) = y · wi(g(r−i, y))

A > 0



Proof (cont.):

x y

wi(g(r−i, x))

wi(g(r−i, y))

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

If ri = x, v(ti, o) = y · wi(g(r−i, x))

Consider ti = y:

If ri = y, v(ti, o) = y · wi(g(r−i, y))

A > 0



Proof (cont.):

x y

k > 0

wi(g(r−i, x))

wi(g(r−i, y))

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

If ti =y, v(ti, ·) decreases by A+k when reporting x instead of y.

If ri = x, v(ti, o) = y · wi(g(r−i, x))

Consider ti = y:

If ri = y, v(ti, o) = y · wi(g(r−i, y))

A > 0



Proof (cont.):

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

If ti =y, v(ti, ·) decreases by A+k when reporting x instead of y.

Let ∆p = pi(r−i, y)− pi(r−i, x) be the difference in the
payment received by player i when she reports y instead of x.



Proof (cont.):

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

If ti =y, v(ti, ·) decreases by A+k when reporting x instead of y.

Let ∆p = pi(r−i, y)− pi(r−i, x) be the difference in the
payment received by player i when she reports y instead of x.

If ∆p > A then player i has an incentive to lie when ti = x.

(report y: cost increases by A, payment increases by ∆p > A)



Proof (cont.):

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

If ti =y, v(ti, ·) decreases by A+k when reporting x instead of y.

Let ∆p = pi(r−i, y)− pi(r−i, x) be the difference in the
payment received by player i when she reports y instead of x.

If ∆p > A then player i has an incentive to lie when ti = x.

(report y: cost increases by A, payment increases by ∆p > A)

We must have ∆p ≤ A



Proof (cont.):

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

If ti =y, v(ti, ·) decreases by A+k when reporting x instead of y.

Let ∆p = pi(r−i, y)− pi(r−i, x) be the difference in the
payment received by player i when she reports y instead of x.

If ∆p > A then player i has an incentive to lie when ti = x.

(report y: cost increases by A, payment increases by ∆p > A)

If ∆p < A + k then player i has an incentive to lie when ti = y.

(report y: cost decreases by A + k, payment decreases by ∆p < A + k)

We must have ∆p ≤ A



Proof (cont.):

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

If ti =y, v(ti, ·) decreases by A+k when reporting x instead of y.

Let ∆p = pi(r−i, y)− pi(r−i, x) be the difference in the
payment received by player i when she reports y instead of x.

If ∆p > A then player i has an incentive to lie when ti = x.

(report y: cost increases by A, payment increases by ∆p > A)

If ∆p < A + k then player i has an incentive to lie when ti = y.

(report y: cost decreases by A + k, payment decreases by ∆p < A + k)

We must have ∆p ≤ A

But simultaneously ∆p ≥ A + k > A (since k > 0)



Proof (cont.):

If ti =x, v(ti, ·) increases by A when reporting y instead of x.

If ti =y, v(ti, ·) decreases by A+k when reporting x instead of y.

Let ∆p = pi(r−i, y)− pi(r−i, x) be the difference in the
payment received by player i when she reports y instead of x.

If ∆p > A then player i has an incentive to lie when ti = x.

(report y: cost increases by A, payment increases by ∆p > A)

If ∆p < A + k then player i has an incentive to lie when ti = y.

(report y: cost decreases by A + k, payment decreases by ∆p < A + k)

We must have ∆p ≤ A

But simultaneously ∆p ≥ A + k > A (since k > 0)
E



One-parameter Mechanisms

A one-parameter (OP) mechanism (for a OP problem) is a pair
M = 〈g, p〉 such that:

• g is any monotone algorithm (for the underlying OP
problem)

• pi(r) = hi(r−i) + riwi(r)−
∫ ri

0

wi(r−i, z)dz

where hi(r−i) is an arbitrary function independent of ri.



One-parameter Mechanisms

A one-parameter (OP) mechanism (for a OP problem) is a pair
M = 〈g, p〉 such that:

• g is any monotone algorithm (for the underlying OP
problem)

• pi(r) = hi(r−i) + riwi(r)−
∫ ri

0

wi(r−i, z)dz

where hi(r−i) is an arbitrary function independent of ri.

To simplify notation we will write wi(r) in place of wi(g(r)).



One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is
truthful.



One-parameter Mechanisms

Proof:

pi(r) = hi(r−i) + riwi(r)−
∫ ri

0

wi(r−i, z)dz

• We show that the utility of player i can only decrease when
she lies.

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is
truthful.



One-parameter Mechanisms

Proof:

pi(r) = hi(r−i) + riwi(r)−
∫ ri

0

wi(r−i, z)dz

• We show that the utility of player i can only decrease when
she lies.

︸ ︷︷ ︸
does not depend on ri

and can be set to 0

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is
truthful.



One-parameter Mechanisms

Proof:
• We show that the utility of player i can only decrease when

she lies.

pi(r) = riwi(r)−
∫ ri

0

wi(r−i, z)dz

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is
truthful.

(This will produce negative utilities)



• When ri = ti:

ui(ti, g(r−i, ti)) = pi(r−i, ti)− vi(ti, g(r−i, ti))

Proof (cont.):



• When ri = ti:

ui(ti, g(r−i, ti)) = tiwi(r−i, ti)−
∫ ri

0

wi(r−i, z)dz − tiwi(r−i, ti)

Proof (cont.):



• When ri = ti:

ui(ti, g(r−i, ti)) = −
∫ ti

0

wi(r−i, z)dz

Proof (cont.):



• When ri = ti:

ti ri

wi(·)

ui(ti, g(r−i, ti)) = −
∫ ti

0

wi(r−i, z)dz

Proof (cont.):



• When ri = ti:

ti ri

wi(·)

−

ui(ti, g(r−i, ti)) = −
∫ ti

0

wi(r−i, z)dz

Proof (cont.):



• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri > ti:

ui(ti, g(r−i, ti)) = pi(r−i, ri)− vi(ti, g(r−i, ri))

Proof (cont.):



• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri > ti:

ui(ti, g(r−i, ti)) = riwi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz − tiwi(r−i, ri)

Proof (cont.):



• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri > ti:

ui(ti, g(r−i, ti)) = (ri − ti)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

Proof (cont.):



• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri > ti:

ti ri

ui(ti, g(r−i, ti)) = (ri − ti)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

Proof (cont.):

wi(·)



• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri > ti:

ti ri

ui(ti, g(r−i, ti)) = (ri − ti)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

Proof (cont.):

−−

wi(·)



• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri > ti:

ti ri

ui(ti, g(r−i, ti)) = (ri − ti)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

Proof (cont.):

−
+

−

wi(·)

wi(g(r−i, ri))



• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri > ti:

ti ri

ui(ti, g(r−i, ti)) = (ri − ti)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

Proof (cont.):

−

wi(·)

wi(g(r−i, ri))



• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri > ti:

ti ri

ui(ti, g(r−i, ti)) = (ri − ti)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

Proof (cont.):

−

wi(·)

wi(g(r−i, ri))



• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri > ti:

ti ri

ui(ti, g(r−i, ti)) = (ri − ti)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

Proof (cont.):

The utility of player i decreases by this area

−

wi(·)

wi(g(r−i, ri))

(player i has no incentive to lie)



Proof (cont.):

• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri < ti:

ui(ti, g(r−i, ri)) = pi(r−i, ri)− vi(ti, g(r−i, ri))



Proof (cont.):

• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri < ti:

ui(ti, g(r−i, ti)) = riwi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz − tiwi(r−i, ri)



Proof (cont.):

• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri < ti:

ui(ti, g(r−i, ti)) = −(ti − ri)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz



Proof (cont.):

• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri < ti:

ui(ti, g(r−i, ti)) = −(ti − ri)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

ti

wi(·)

ri



Proof (cont.):

• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri < ti:

ui(ti, g(r−i, ti)) = −(ti − ri)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

ti

wi(·)

ri

−



Proof (cont.):

• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri < ti:

ui(ti, g(r−i, ti)) = −(ti − ri)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

ti

wi(·)

ri

−−

wi(g(r−i, ri))



Proof (cont.):

• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri < ti:

ui(ti, g(r−i, ti)) = −(ti − ri)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

ti

wi(·)

ri

−−

wi(g(r−i, ri))



Proof (cont.):

• When ri = ti: ui(ti, g(r−i, ti)) = −
∫ ti
0

wi(r−i, z)dz

• When ri < ti:

ui(ti, g(r−i, ti)) = −(ti − ri)wi(r−i, ri)−
∫ ri

0

wi(r−i, z)dz

ti

wi(·)

ri

−−

The utility of player i decreases by this area
(player i has no incentive to lie)

wi(g(r−i, ri))



Voluntary participation

ti ri

wi(·)

−

ui(ti, g(r−i, ti)) = hi(r−i)−
∫ ti

0

wi(r−i, z)dz

With hi(r−i) = 0 the mechanism does not guarantee voluntary
participation.

︸ ︷︷ ︸
0



Voluntary participation

ti ri

wi(·)

−

ui(ti, g(r−i, ti)) = hi(r−i)−
∫ ti

0

wi(r−i, z)dz

Solution: Choose hi(r−i) =

∫ +∞

0

wi(r−i, z)dz

+
+



Voluntary participation

ti ri

wi(·)

Solution: Choose hi(r−i) =

∫ +∞

0

wi(r−i, z)dz

ui(ti, g(r−i, ti)) =

∫ +∞

ri

wi(r−i, z)dz

+



Voluntary participation

ti ri

wi(·)

Solution: Choose hi(r−i) =

∫ +∞

0

wi(r−i, z)dz

ui(ti, g(r−i, ti)) =

∫ +∞

ri

wi(r−i, z)dz

+

The utility of player i is non-negative
(player i has incentive to play)



Wrapping up

Truthful One-parameter mechanism that guarantees
voluntary participation (for an OP problem):

M = 〈g, p〉

• g is any monotone algorithm (for the underlying OP
problem)

• pi(r) = riwi(r) +

∫ +∞

ri

wi(r−i, z)dz



VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types,
but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice
function, but only one-parameter types and workloaded
valuation functions



VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types,
but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice
function, but only one-parameter types and workloaded
valuation functions

Note: A problem can be both utilitarian and One-parameter



VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types,
but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice
function, but only one-parameter types and workloaded
valuation functions

Note: A problem can be both utilitarian and One-parameter⇒

The VCG and the OP mechanisms coincide


