One-parameter Mechanisms

The private-edge Shortest-Paths Tree (SPT) problem

$$
G=(V, E)
$$

The private-edge Shortest-Paths Tree (SPT) problem

The private-edge Shortest-Paths Tree (SPT) problem

Goal: Design an efficient truthful mechanism to find a shortest-path tree (SPT) of G rooted at s.

The private-edge Shortest-Paths Tree (SPT) problem

Goal: Design an efficient truthful mechanism to find a shortest-path tree (SPT) of G rooted at s.

The private-edge Shortest-Paths Tree (SPT) problem

- Each edge e is owned by a selfish agent

- The length t_{e} of edge e is the private type of agent e

The private-edge Shortest-Paths Tree (SPT) problem

- Each edge e is owned by a selfish agent

- The length t_{e} of edge e is the private type of agent e
- Agent e incurs a cost of t_{e} if edge e is selected in the SPT (and no cost otherwise)

The private-edge Shortest-Paths Tree (SPT) problem

- Each edge e is owned by a selfish agent

- The length t_{e} of edge e is the private type of agent e
- Agent e incurs a cost of t_{e} if edge e is selected in the SPT (and no cost otherwise)

- The valuation of agent e w.r.t. to a tree T is:

$$
v_{e}\left(t_{e}, T\right)= \begin{cases}t_{e} & \text { if } e \in E(T) \\ 0 & \text { if } e \notin E(T)\end{cases}
$$

Note: v_{e} represents a cost incurred by agent e !

This models the multicast protocol

This models the multicast protocol

This models the multicast protocol

Each edge is traversed by a single (copy of the) message.

This models the multicast protocol

Each edge is traversed by a single (copy of the) message.

$$
v_{e}\left(t_{e}, T\right)= \begin{cases}t_{e} & \text { if } e \in E(T) \\ 0 & \text { if } e \notin E(T)\end{cases}
$$

This models the multicast protocol

Each edge is traversed by a single (copy of the) message.

$$
v_{e}\left(t_{e}, T\right)= \begin{cases}t_{e} & \text { if } e \in E(T) \\ 0 & \text { if } e \notin E(T)\end{cases}
$$

We want to minimize the time needed to deliver the message from s to each node: T must be a SPT.

The private-edge Shortest-Paths Tree (SPT) problem

Goal:

- Let \mathcal{F} be the set of all spanning trees of G rooted at s
- We want to design a truthful mechanism that minimizes the following quantity w.r.t $T \in \mathcal{F}$:

$$
f(t, T)=\sum_{v \in V} d_{T}(s, v)=\sum_{e \in E(T)} t_{e} \cdot\|e\|,
$$

where $d_{T}(s, v)$ is the distance between s and v in T and $\|e\|$ is the number of source-node paths in T containing e.

The private-edge Shortest-Paths Tree (SPT) problem

Goal:

- Let \mathcal{F} be the set of all spanning trees of G rooted at s
- We want to design a truthful mechanism that minimizes the following quantity w.r.t $T \in \mathcal{F}$:

$$
f(t, T)=\sum_{v \in V} d_{T}(s, v)=\sum_{e \in E(T)} t_{e} \cdot\|e\|,
$$

where $d_{T}(s, v)$ is the distance between s and v in T and $\|e\|$ is the number of source-node paths in T containing e.

Note:

$$
f(t, T)=\sum_{e \in E(T)} t_{e} \cdot\|e\| \neq \sum_{e \in E(T)} t_{e}
$$

The private-edge Shortest-Paths Tree (SPT) problem

Goal:

- Let \mathcal{F} be the set of all spanning trees of G rooted at s
- We want to design a truthful mechanism that minimizes the following quantity w.r.t $T \in \mathcal{F}$:

$$
f(t, T)=\sum_{v \in V} d_{T}(s, v)=\sum_{e \in E(T)} t_{e} \cdot\|e\|,
$$

where $d_{T}(s, v)$ is the distance between s and v in T and $\|e\|$ is the number of source-node paths in T containing e.

Note:

$$
f(t, T)=\sum_{e \in E(T)} t_{e} \cdot\|e\| \neq \sum_{e \in E(T)} t_{e}=\sum_{e \in E} v_{e}\left(t_{e}, T\right)
$$

The private-edge Shortest-Paths Tree (SPT) problem

Goal:

- Let \mathcal{F} be the set of all spanning trees of G rooted at s
- We want to design a truthful mechanism that minimizes the following quantity w.r.t $T \in \mathcal{F}$:

$$
f(t, T)=\sum_{v \in V} d_{T}(s, v)=\sum_{e \in E(T)} t_{e} \cdot\|e\|,
$$

where $d_{T}(s, v)$ is the distance between s and v in T and $\|e\|$ is the number of source-node paths in T containing e.

Note:

Non-utilitarian problem!

$$
f(t, T)=\sum_{e \in E(T)} t_{e} \cdot\|e\| \neq \sum_{e \in E(T)} t_{e}=\sum_{e \in E} v_{e}\left(t_{e}, T\right)
$$

One-parameter Mechanism Design Problems

A mechanism design problem is one-parameter if:

- The private type of each player i is a single parameter $t_{i} \in \mathbb{R}$.

One-parameter Mechanism Design Problems

A mechanism design problem is one-parameter if:

- The private type of each player i is a single parameter $t_{i} \in \mathbb{R}$.
- The valuation function of player i w.r.t. an outcome o is of the form:

$$
v_{i}\left(t_{i}, o\right)=t_{i} \cdot w_{i}(o),
$$

where $w_{i}(o) \in \mathbb{R}_{0}^{+}$is the workload function for agent i.

Is the private-edge SPT problem one-parameter?

- The private type of each player i is a single parameter $t_{i} \in \mathbb{R}$.

Is the private-edge SPT problem one-parameter?

- The private type of each player i is a single parameter $t_{i} \in \mathbb{R}$.

e

Is the private-edge SPT problem one-parameter?

- The valuation function of player i w.r.t. an outcome o is of the form:

$$
v_{i}\left(t_{i}, o\right)=t_{i} \cdot w_{i}(o),
$$

where $w_{i}(o) \in \mathbb{R}_{0}^{+}$is the workload function for agent i.

Is the private-edge SPT problem one-parameter?

- The valuation function of player i w.r.t. an outcome o is of the form:

$$
v_{i}\left(t_{i}, o\right)=t_{i} \cdot w_{i}(o),
$$

where $w_{i}(o) \in \mathbb{R}_{0}^{+}$is the workload function for agent i.

$$
v_{e}\left(t_{e}, T\right)=\left\{\begin{array}{ll}
t_{e} & \text { if } e \in E(T) \\
0 & \text { if } e \notin E(T)
\end{array} \quad=t_{e} \cdot w_{e}(T)\right.
$$

Is the private-edge SPT problem one-parameter?

- The valuation function of player i w.r.t. an outcome o is of the form:

$$
v_{i}\left(t_{i}, o\right)=t_{i} \cdot w_{i}(o),
$$

where $w_{i}(o) \in \mathbb{R}_{0}^{+}$is the workload function for agent i.

$$
v_{e}\left(t_{e}, T\right)=\left\{\begin{array}{ll}
t_{e} & \text { if } e \in E(T) \\
0 & \text { if } e \notin E(T)
\end{array} \quad=t_{e} \cdot w_{e}(T)\right.
$$

where

$$
w_{e}(T)= \begin{cases}1 & \text { if } e \in E(T) \\ 0 & \text { if } e \notin E(T)\end{cases}
$$

The private-edge SPT problem is one-parameter!

- The private type of each player i is a single parameter $t_{i} \in \mathbb{R}$.
- The valuation function of player i w.r.t. an outcome o is of the form:

$$
v_{i}\left(t_{i}, o\right)=t_{i} \cdot w_{i}(o),
$$

where $w_{i}(o) \in \mathbb{R}_{0}^{+}$is the workload function for agent i.

The private-edge SPT problem is one-parameter!

- The private type of each player i is a single parameter $t_{i} \in \mathbb{R}$.
- The valuation function of player i w.r.t. an outcome o is of the form:

$$
v_{i}\left(t_{i}, o\right)=t_{i} \cdot w_{i}(o),
$$

where $w_{i}(o) \in \mathbb{R}_{0}^{+}$is the workload function for agent i.

$$
\sqrt{V}
$$

The private-edge SPT problem is one-parameter!

A necessary condition for designing OP truthful mechanisms

Definition: An algorithm g for a minimization OP problem is monotone if, \forall player i, and $\forall r_{-i}=\left(r_{1}, \ldots, r_{i-1}, r_{i+1}, r_{N}\right)$ it holds that:

$$
w_{i}\left(g\left(r_{-i}, r_{i}\right)\right) \text { is non-increasing w.r.t. } r_{i} \text {. }
$$

A necessary condition for designing OP truthful mechanisms

Definition: An algorithm g for a minimization OP problem is monotone if, \forall player i, and $\forall r_{-i}=\left(r_{1}, \ldots, r_{i-1}, r_{i+1}, r_{N}\right)$ it holds that:

$$
w_{i}\left(g\left(r_{-i}, r_{i}\right)\right) \text { is non-increasing w.r.t. } r_{i} \text {. }
$$

A necessary condition for designing OP truthful mechanisms

Definition: An algorithm g for a minimization OP problem is monotone if, \forall player i, and $\forall r_{-i}=\left(r_{1}, \ldots, r_{i-1}, r_{i+1}, r_{N}\right)$ it holds that:

$$
w_{i}\left(g\left(r_{-i}, r_{i}\right)\right) \text { is non-increasing w.r.t. } r_{i} \text {. }
$$

Theorem (R.B. Myerson, 1981):
A mechanism $M=\langle g, p\rangle$ for a minimization OP problem is truthful only if g is monotone.

Theorem (R.B. Myerson, 1981):
A mechanism $M=\langle g, p\rangle$ for a minimization OP problem is truthful only if g is monotone.

Proof (by contradiction):

Theorem (R.B. Myerson, 1981):
A mechanism $M=\langle g, p\rangle$ for a minimization OP problem is truthful only if g is monotone.

Proof (by contradiction):

- Assume that there exists a truthful mechanism $M=\langle g, p\rangle$ such that g is non-monotone.

A mechanism $M=\langle g, p\rangle$ for a minimization OP problem is truthful only if g is monotone.

Proof (by contradiction):

- Assume that there exists a truthful mechanism $M=\langle g, p\rangle$ such that g is non-monotone.
- There is a player i and a vector r_{-i} of strategies such that $w_{i}\left(g\left(r_{-i}, r_{i}\right)\right)$ is not monotonically non-increasing w.r.t. r_{i}.

A mechanism $M=\langle g, p\rangle$ for a minimization OP problem is truthful only if g is monotone.

Proof (by contradiction):

- Assume that there exists a truthful mechanism $M=\langle g, p\rangle$ such that g is non-monotone.
- There is a player i and a vector r_{-i} of strategies such that $w_{i}\left(g\left(r_{-i}, r_{i}\right)\right)$ is not monotonically non-increasing w.r.t. r_{i}.
- There exists $x, y \in \mathbb{R}$ such that $x<y$ and $w_{i}\left(g\left(r_{-i}, x\right)\right)<w_{i}\left(g\left(r_{-i}, y\right)\right)$

Proof (cont.):
Consider $t_{i}=x$:

Proof (cont.):
Consider $t_{i}=x$:
If $r_{i}=x, v\left(t_{i}, o\right)=x \cdot w_{i}\left(g\left(r_{-i}, x\right)\right)$

Proof (cont.):

Consider $t_{i}=x$:
If $r_{i}=x, v\left(t_{i}, o\right)=x \cdot w_{i}\left(g\left(r_{-i}, x\right)\right)$
If $r_{i}=y, v\left(t_{i}, o\right)=x \cdot w_{i}\left(g\left(r_{-i}, y\right)\right)$

Proof (cont.):
Consider $t_{i}=x$:

$$
\begin{aligned}
& \text { If } r_{i}=x, v\left(t_{i}, o\right)=x \cdot w_{i}\left(g\left(r_{-i}, x\right)\right) \\
& \text { If } r_{i}=y, v\left(t_{i}, o\right)=x \cdot w_{i}\left(g\left(r_{-i}, y\right)\right)
\end{aligned}
$$

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x.

Proof (cont.):

Consider $t_{i}=y$:

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x.

Proof (cont.):

Consider $t_{i}=y$:
If $r_{i}=y, v\left(t_{i}, o\right)=y \cdot w_{i}\left(g\left(r_{-i}, y\right)\right)$

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x.

Proof (cont.):

Consider $t_{i}=y$:
If $r_{i}=y, v\left(t_{i}, o\right)=y \cdot w_{i}\left(g\left(r_{-i}, y\right)\right)$
If $r_{i}=x, v\left(t_{i}, o\right)=y \cdot w_{i}\left(g\left(r_{-i}, x\right)\right)$

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x.

Proof (cont.):
Consider $t_{i}=y$:

$$
\begin{aligned}
& \text { If } r_{i}=y, v\left(t_{i}, o\right)=y \cdot w_{i}\left(g\left(r_{-i}, y\right)\right) \\
& \text { If } r_{i}=x, v\left(t_{i}, o\right)=y \cdot w_{i}\left(g\left(r_{-i}, x\right)\right)
\end{aligned}
$$

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x. If $t_{i}=y, v\left(t_{i}, \cdot\right)$ decreases by $A+k$ when reporting x instead of y.

Proof (cont.):

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x. If $t_{i}=y, v\left(t_{i}, \cdot\right)$ decreases by $A+k$ when reporting x instead of y.

Let $\Delta p=p_{i}\left(r_{-i}, y\right)-p_{i}\left(r_{-i}, x\right)$ be the difference in the payment received by player i when she reports y instead of x.

Proof (cont.):

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x. If $t_{i}=y, v\left(t_{i}, \cdot\right)$ decreases by $A+k$ when reporting x instead of y.

Let $\Delta p=p_{i}\left(r_{-i}, y\right)-p_{i}\left(r_{-i}, x\right)$ be the difference in the payment received by player i when she reports y instead of x.

If $\Delta p>A$ then player i has an incentive to lie when $t_{i}=x$.
(report y : cost increases by A, payment increases by $\Delta p>A$)

Proof (cont.):

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x. If $t_{i}=y, v\left(t_{i}, \cdot\right)$ decreases by $A+k$ when reporting x instead of y.

Let $\Delta p=p_{i}\left(r_{-i}, y\right)-p_{i}\left(r_{-i}, x\right)$ be the difference in the payment received by player i when she reports y instead of x.

We must have $\Delta p \leq A$

Proof (cont.):

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x.
If $t_{i}=y, v\left(t_{i}, \cdot\right)$ decreases by $A+k$ when reporting x instead of y.
Let $\Delta p=p_{i}\left(r_{-i}, y\right)-p_{i}\left(r_{-i}, x\right)$ be the difference in the payment received by player i when she reports y instead of x.

We must have $\Delta p \leq A$

If $\Delta p<A+k$ then player i has an incentive to lie when $t_{i}=y$.
(report y : cost decreases by $A+k$, payment decreases by $\Delta p<A+k$)

Proof (cont.):

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x. If $t_{i}=y, v\left(t_{i}, \cdot\right)$ decreases by $A+k$ when reporting x instead of y.

Let $\Delta p=p_{i}\left(r_{-i}, y\right)-p_{i}\left(r_{-i}, x\right)$ be the difference in the payment received by player i when she reports y instead of x.

We must have $\Delta p \leq A$

But simultaneously $\Delta p \geq A+k>A \quad$ (since $k>0$)

Proof (cont.):

If $t_{i}=x, v\left(t_{i}, \cdot\right)$ increases by A when reporting y instead of x. If $t_{i}=y, v\left(t_{i}, \cdot\right)$ decreases by $A+k$ when reporting x instead of y.

Let $\Delta p=p_{i}\left(r_{-i}, y\right)-p_{i}\left(r_{-i}, x\right)$ be the difference in the payment received by player i when she reports y instead of x.

We must have $\Delta p \leq A$

But simultaneously $\Delta p \geq A+k>A \quad$ (since $k>0$)

One-parameter Mechanisms

A one-parameter (OP) mechanism (for a OP problem) is a pair $M=\langle g, p\rangle$ such that:

- g is any monotone algorithm (for the underlying OP problem)
- $p_{i}(r)=h_{i}\left(r_{-i}\right)+r_{i} w_{i}(r)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z$
where $h_{i}\left(r_{-i}\right)$ is an arbitrary function independent of r_{i}.

One-parameter Mechanisms

A one-parameter (OP) mechanism (for a OP problem) is a pair $M=\langle g, p\rangle$ such that:

- g is any monotone algorithm (for the underlying OP problem)
- $p_{i}(r)=h_{i}\left(r_{-i}\right)+\underline{r_{i} w_{i}(r)}-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z$
where $h_{i}\left(r_{-i}\right)$ is an arbitrary function independent of r_{i}.

To simplify notation we will write $w_{i}(r)$ in place of $w_{i}(g(r))$.

One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is truthful.

One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is truthful.

Proof:

- We show that the utility of player i can only decrease when she lies.

$$
p_{i}(r)=h_{i}\left(r_{-i}\right)+r_{i} w_{i}(r)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is truthful.

Proof:

- We show that the utility of player i can only decrease when she lies.

$$
\begin{aligned}
& p_{i}(r)=\underbrace{h_{i}\left(r_{-i}\right)}+r_{i} w_{i}(r)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z \\
& \text { does not depend on } r_{i} \\
& \text { and can be set to } 0
\end{aligned}
$$

One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):
An one-parameter mechanism (for an OP problem) is truthful.

Proof:

- We show that the utility of player i can only decrease when she lies.

$$
p_{i}(r)=r_{i} w_{i}(r)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

(This will produce negative utilities)

Proof (cont.):

- When $r_{i}=t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=p_{i}\left(r_{-i}, t_{i}\right)-v_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)
$$

Proof (cont.):

- When $r_{i}=t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=t_{i} w_{i}\left(r_{-i}, t_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z-t_{i} w_{i}\left(r_{-i}, t_{i}\right)
$$

Proof (cont.):

- When $r_{i}=t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Proof (cont.):

- When $r_{i}=t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Proof (cont.):

- When $r_{i}=t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\underline{\int_{0}^{t_{i}}} w_{i}\left(r_{-i}, z\right) d z
$$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}>t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=p_{i}\left(r_{-i}, r_{i}\right)-v_{i}\left(t_{i}, g\left(r_{-i}, r_{i}\right)\right)
$$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}>t_{i}$:
$u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=r_{i} w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z-t_{i} w_{i}\left(r_{-i}, r_{i}\right)$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}>t_{i}$:
$u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\left(r_{i}-t_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}>t_{i}$:
$u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\left(r_{i}-t_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}>t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\left(r_{i}-t_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}>t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\left(r_{i}-t_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}>t_{i}$:
$u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\left(r_{i}-t_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}>t_{i}$:
$u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\left(r_{i}-t_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}>t_{i}$:
$u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\left(r_{i}-t_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}<t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, r_{i}\right)\right)=p_{i}\left(r_{-i}, r_{i}\right)-v_{i}\left(t_{i}, g\left(r_{-i}, r_{i}\right)\right)
$$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}<t_{i}$:
$u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=r_{i} w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z-t_{i} w_{i}\left(r_{-i}, r_{i}\right)$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}<t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\left(t_{i}-r_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}<t_{i}$:
$u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\left(t_{i}-r_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}<t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\left(t_{i}-r_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}<t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\left(t_{i}-r_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}<t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\left(t_{i}-r_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Proof (cont.):

- When $r_{i}=t_{i}: u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z$
- When $r_{i}<t_{i}$:

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=-\left(t_{i}-r_{i}\right) w_{i}\left(r_{-i}, r_{i}\right)-\int_{0}^{r_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Voluntary participation

With $h_{i}\left(r_{-i}\right)=0$ the mechanism does not guarantee voluntary participation.

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\underbrace{h_{i}\left(r_{-i}\right)}_{0}-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Voluntary participation

Solution: Choose $h_{i}\left(r_{-i}\right)=\underline{\int_{0}^{+\infty} w_{i}\left(r_{-i}, z\right) d z}$

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=h_{i}\left(r_{-i}\right)-\int_{0}^{t_{i}} w_{i}\left(r_{-i}, z\right) d z
$$

Voluntary participation

Solution: Choose $h_{i}\left(r_{-i}\right)=\int_{0}^{+\infty} w_{i}\left(r_{-i}, z\right) d z$

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\underline{\underline{\int_{r_{i}}^{+\infty}} w_{i}\left(r_{-i}, z\right) d z}
$$

Voluntary participation

Solution: Choose $h_{i}\left(r_{-i}\right)=\int_{0}^{+\infty} w_{i}\left(r_{-i}, z\right) d z$

$$
u_{i}\left(t_{i}, g\left(r_{-i}, t_{i}\right)\right)=\underline{\underline{\int_{r_{i}}^{+\infty}} w_{i}\left(r_{-i}, z\right) d z}
$$

Wrapping up

Truthful One-parameter mechanism that guarantees voluntary participation (for an OP problem):

$$
M=\langle g, p\rangle
$$

- g is any monotone algorithm (for the underlying OP problem)
- $p_{i}(r)=r_{i} w_{i}(r)+\int_{r_{i}}^{+\infty} w_{i}\left(r_{-i}, z\right) d z$

VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types, but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice function, but only one-parameter types and workloaded valuation functions

VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types, but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice function, but only one-parameter types and workloaded valuation functions

Note: A problem can be both utilitarian and One-parameter

VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types, but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice function, but only one-parameter types and workloaded valuation functions

Note: A problem can be both utilitarian and One-parameter

$$
\Downarrow
$$

The VCG and the OP mechanisms coincide

