One-parameter Mechanisms

The private-edge Shortest-Paths Tree (SPT) problem

G=(V,F)

The private-edge Shortest-Paths Tree (SPT) problem

G = (V,E)

o, Re
) Fl H;!‘ y|
)| -

@ M €5 @ t; - length of edge e;

The private-edge Shortest-Paths Tree (SPT) problem

G = (V,E)

Goal: Design an efficient truthful mechanism to find a
shortest-path tree (SPT) of GG rooted at s.

The private-edge Shortest-Paths Tree (SPT) problem

G = (V,E)

t; : length of edge e;

Goal: Design an efficient truthful mechanism to find a
shortest-path tree (SPT) of GG rooted at s.

The private-edge Shortest-Paths Tree (SPT) problem

e Each edge e is owned by a selfish
agent

O

e The length t. of edge e is the private type of
agent e

The private-edge Shortest-Paths Tree (SPT) problem

e Each edge e is owned by a selfish
agent

O

e The length t. of edge e is the private type of
agent e

e Agent e incurs a cost of ¢, if edge e is
selected in the SPT (and no cost otherwise)

The private-edge Shortest-Paths Tree (SPT) problem

e Each edge e is owned by a selfish
agent

O

e The length t. of edge e is the private type of
agent e

e Agent e incurs a cost of ¢, if edge e is
selected in the SPT (and no cost otherwise) o

e The valuation of agent e w.r.t. to a tree T is:

t. ifec E(T)

velle:T) =0 it e ¢ E(T)

\

Note: v, represents a cost incurred by agent e!

This models the multicast protocol

This models the multicast protocol

This models the multicast protocol

MOMQO O O

Each edge is traversed by a single (copy of the) message.

This models the multicast protocol

MOMQO O O

Each edge is traversed by a single (copy of the) message.

Ve(te, T) = <

(

\

te ifee E(T)
0 ifed E(T)

This models the multicast protocol

MOMQO O O

Each edge is traversed by a single (copy of the) message.

Ve(te, T) = <

(

\

te ifee E(T)
0 ifed E(T)

We want to minimize the time needed to deliver the message
from s to each node: T" must be a SPT.

The private-edge Shortest-Paths Tree (SPT) problem

Goal:
o Let F be the set of all spanning trees of G rooted at s

e We want to design a truthful mechanism that minimizes
the following quantity w.r.t T € F:

= dr(s,v)= Y te-|lell,
veV ecE(T)

where dr(s,v) is the distance between s and v in T" and
|el| is the number of source—node paths in T' containing e.

The private-edge Shortest-Paths Tree (SPT) problem

Goal:
o Let F be the set of all spanning trees of G rooted at s

e We want to design a truthful mechanism that minimizes
the following quantity w.r.t T € F:

= dr(s,v)= Y te-|lell,
veV ecE(T)

where dr(s,v) is the distance between s and v in T" and
|el| is the number of source—node paths in T' containing e.

Note:

D te-llell# > te

ecE(T) ecE(T)

The private-edge Shortest-Paths Tree (SPT) problem

Goal:
o Let F be the set of all spanning trees of G rooted at s

e We want to design a truthful mechanism that minimizes
the following quantity w.r.t T € F:

= dr(s,v)= Y te-|lell,
veV ecE(T)

where dr(s,v) is the distance between s and v in T" and
|el| is the number of source—node paths in T' containing e.

Note:

Z te - |le|| # Z te = Zve(tevT)

ecE(T) ecE(T) eck

The private-edge Shortest-Paths Tree (SPT) problem

Goal:
o Let F be the set of all spanning trees of G rooted at s

e We want to design a truthful mechanism that minimizes
the following quantity w.r.t T € F:

= dr(s,v)= Y te-|lell,
veV ecE(T)

where dr(s,v) is the distance between s and v in T" and
|el| is the number of source—node paths in T' containing e.

Non-utilitarian problem!

Z te - |le|| # Z te = Zve(tevT)

ecE(T) ecE(T) eck

One-parameter Mechanism Design Problems

A mechanism design problem is one-parameter if:

e The private type of each player ¢ is a single parameter
t; € R.

One-parameter Mechanism Design Problems

A mechanism design problem is one-parameter if:

e The private type of each player ¢ is a single parameter
t; € R.

e The valuation function of player 7 w.r.t. an outcome o is of

the form:
vi(li,0) = t; - w;(0),

where w;(0) € Ry is the workload function for agent i.

Is the private-edge SPT problem one-parameter?

e The private type of each player ¢ is a single parameter
t; € R.

Is the private-edge SPT problem one-parameter?

e The private type of each player ¢ is a single parameter
t; € R.

The type owned by each player is a
single (positive) real number

v

Is the private-edge SPT problem one-parameter?

e The valuation function of player 7 w.r.t. an outcome o is of
the form:
vi(ti,0) = t; - w;(0),

where w;(0) € R is the workload function for agent 1.

Is the private-edge SPT problem one-parameter?

e The valuation function of player 7 w.r.t. an outcome o is of
the form:
vi(ti,0) = t; - w;(0),

where w;(0) € R is the workload function for agent 1.
t. ifeec E(T)

Ue(te,T) = 0 £ o Q/ E(T) = 1, - ’LUG(T)

\

Is the private-edge SPT problem one-parameter?

e The valuation function of player 7 w.r.t. an outcome o is of
the form:
vi(ti,0) = t; - w;(0),

where w;(0) € R is the workload function for agent 1.

t. ifeec E(T)

Ue(tey T) — <\O £ o g E(T) = 1, - we(T)
where
(1 ifee B(T)
well) =30 i e ¢ B(T)

\ “ |

The private-edge SPT problem is one-parameter!

e T[he private type of each player 7 is a single parameter

t; € R. “

e The valuation function of player 7 w.r.t. an outcome o is of

the form: “

where w;(0) € R is the workload function for agent 1.

vi(ti,0) = t; - w;(0),

The private-edge SPT problem is one-parameter!

e T[he private type of each player 7 is a single parameter

t; € R. “

e The valuation function of player 7 w.r.t. an outcome o is of

the form: “

where w;(0) € R is the workload function for agent 1.

|

The private-edge SPT problem is
one-parameter!

vi(ti,0) = t; - w;(0),

A necessary condition for designing OP truthful
mechanisms

Definition: An algorithm g for a minimization OP problem is
monotone if, ¥V player ¢, and Vr_; = (r1,...,7ri_1,721,7N) it
holds that:

w;(g(r_;,r;)) is non-increasing w.r.t. r;.

A necessary condition for designing OP truthful
mechanisms

Definition: An algorithm g for a minimization OP problem is
monotone if, ¥V player ¢, and Vr_; = (r1,...,7ri_1,721,7N) it
holds that:

w;(g(r_;,r;)) is non-increasing w.r.t. r;.

wi(g(r—i, 7))

A necessary condition for designing OP truthful
mechanisms

Definition: An algorithm g for a minimization OP problem is
monotone if, ¥V player ¢, and Vr_; = (r1,...,7ri_1,721,7N) it
holds that:

w;(g(r_;,r;)) is non-increasing w.r.t. r;.

wi(9(r—i; i)

Theorem (R.B. Myerson, 1981):

A mechanism M = (g, p) for a minimization OP problem is
truthful only if g is monotone.

Theorem (R.B. Myerson, 1981):

A mechanism M = (g, p) for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):

Theorem (R.B. Myerson, 1981):

A mechanism M = (g, p) for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):

e Assume that there exists a truthful mechanism M = (g, p)
such that g i1s non-monotone.

Theorem (R.B. Myerson, 1981):

A mechanism M = (g, p) for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):

e Assume that there exists a truthful mechanism M = (g, p)
such that g is non-monotone.

e Thereis a player 2 and a vector r_; of strategies such that
w;(g(r_;,7;)) is not monotonically non-increasing w.r.t. r;.

Theorem (R.B. Myerson, 1981):

A mechanism M = (g, p) for a minimization OP problem is
truthful only if g is monotone.

Proof (by contradiction):

e Assume that there exists a truthful mechanism M = (g, p)
such that g is non-monotone.

e Thereis a player 2 and a vector r_; of strategies such that
w;(g(r_;,7;)) is not monotonically non-increasing w.r.t. r;.

e [here exists z,y € R such that x < y and
wi(g(r—i,) <wi(g(r-i,y))

Proof (cont.):

Consider t; = x:

w;i(g(r—i,y))

wi(g(r—i,x))

Proof (cont.):

Consider t; = x:

If r; =, v(t;,0) = x - w;(g(r_;,x))

w;i(g(r—i,y))

wi(g(r—i,x))

Proof (cont.):

Consider t; = x:
If r; =, v(t;,0) = x - w;(g(r_;,x))

If 7, =y, v(t;,0) = - wi(g(r_s,y))

w;i(g(r—i,y))

Proof (cont.):

Consider t; = x:

If r; =, v(t;,0) = x - w;(g(r_;,x))

| ri =Y, U(tz’;O) — & wi(g(r—’ivy))

>

L Y
If t;==x, v(t;,-) increases by A when reporting y instead of .

Proof (cont.):
Consider t; = y:

w; (9(r—i,Y))

wi(g(r—i,x))

>

L Y
If t;==x, v(t;,-) increases by A when reporting y instead of .

Proof (cont.):
Consider t; = y:

It r; =y, v(t;,0) =y - wi(g(r—i,y))

w; (9(r—i,Y))

wi(g(r—i,x))

>

L Y
If t;==x, v(t;,-) increases by A when reporting y instead of .

Proof (cont.):
Consider t; = y:

(g(r—s,9))

Y- Wy
Y- wi(g(r—’iv £C))

If r; =y, v(t;, 0)

If r; = x, v(t;,0)

w; (9(r—i,Y))

wi(g(r—i,x))

>

L Y
If t;==x, v(t;,-) increases by A when reporting y instead of .

Proof (cont.):
Consider t; = y:

(g(r—s,9))

Y- Wy
Y- wi(g(r—’iv ZC))

If r; =y, v(t;, 0)

If r; = x, v(t;,0)

w; (9(r—i,Y))

wi(g(r—i,x))

>

L Y
If t;==x, v(t;,-) increases by A when reporting y instead of .

If t;=vy, v(t;,-) decreases by A+k when reporting x instead of .

Proof (cont.):

If t;==x, v(t;,-) increases by A when reporting y instead of .

If t;,=vy, v(t;,-) decreases by A+k when reporting x instead of y.

Let Ap = p;(r_;,y) — pi(r_;, x) be the difference in the
payment received by player ¢ when she reports y instead of z.

Proof (cont.):

If t;==x, v(t;,-) increases by A when reporting y instead of .

If t;,=vy, v(t;,-) decreases by A+k when reporting x instead of y.

Let Ap = p;(r_;,y) — pi(r_;, x) be the difference in the
payment received by player ¢ when she reports y instead of z.

If Ap > A then player ¢ has an incentive to lie when t; = x.

(report y: cost increases by A, payment increases by Ap > A)

Proof (cont.):

If t;==x, v(t;,-) increases by A when reporting y instead of .

If t;,=vy, v(t;,-) decreases by A+k when reporting x instead of y.

Let Ap = p;(r_;,y) — pi(r_;, x) be the difference in the
payment received by player ¢ when she reports y instead of z.

We must have Ap < A

Proof (cont.):

If t;==x, v(t;,-) increases by A when reporting y instead of .

If t;,=vy, v(t;,-) decreases by A+k when reporting x instead of y.

Let Ap = p;(r_;,y) — pi(r_;, x) be the difference in the
payment received by player ¢ when she reports y instead of z.

We must have Ap < A

If Ap < A+ k then player 7 has an incentive to lie when ¢; = y.

(report y: cost decreases by A + k, payment decreases by Ap < A + k)

Proof (cont.):

If t;==x, v(t;,-) increases by A when reporting y instead of .

If t;,=vy, v(t;,-) decreases by A+k when reporting x instead of y.

Let Ap = p;(r_;,y) — pi(r_;, x) be the difference in the
payment received by player ¢ when she reports y instead of z.

We must have Ap < A

But simultaneously Ap > A+ k> A (since k£ > 0)

Proof (cont.):

If t;==x, v(t;,-) increases by A when reporting y instead of .

If t;,=vy, v(t;,-) decreases by A+k when reporting x instead of y.

Let Ap = p;(r_;,y) — pi(r_;, x) be the difference in the
payment received by player ¢ when she reports y instead of z.

We must have Ap < A

7

But simultaneously Ap > A+ k> A (since k£ > 0)

One-parameter Mechanisms

A one-parameter (OP) mechanism (for a OP problem) is a pair
M = (g,p) such that:

e g is any monotone algorithm (for the underlying OP
problem)

o p;(r)=h;(r—;) + ryw;(r) — /Om w;i(r—q, z)dz

where h;(r_;) is an arbitrary function independent of r;.

One-parameter Mechanisms

A one-parameter (OP) mechanism (for a OP problem) is a pair
M = (g,p) such that:

e g is any monotone algorithm (for the underlying OP
problem)

o p;(r)=h;(r—;) + ryw;(r) — /Om w;i(r—q, z)dz

where h;(r_;) is an arbitrary\function independent of r;.

To simplify notation we will write w;(r) in place of w;(g(r)).

One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):

An one-parameter mechanism (for an OP problem) is
truthful.

One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):

An one-parameter mechanism (for an OP problem) is
truthful.

Proof:
e We show that the utility of player 7 can only decrease when

she lies.

One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):

An one-parameter mechanism (for an OP problem) is
truthful.

Proof:
e We show that the utility of player 7 can only decrease when

she lies.

pi(r) = hi(r—s) + rawi(r) — / wi(r_s, 2)dz
N—— 0
does not depend on r;

and can be set to 0

One-parameter Mechanisms

Theorem (R.B. Myerson, 1981):

An one-parameter mechanism (for an OP problem) is
truthful.

Proof:
e We show that the utility of player 7 can only decrease when

she lies.
pi(r) — Tiwi(r) —/ wi(r_z-, z)d,z
0

(This will produce negative utilities)

Proof (cont.):

e When r; = ¢;:

ui(ti, g(’f'_z', t@)) — pi("“—z', tz) — vi(t% g(r—i7 tl))

Proof (cont.):

e When r; = ¢;:

r;
wi(ti, g(r—i, t;)) = tiwi(r—iati)_/ wi(r—;, 2)dz — tyw; (r—;, t;)
0

Proof (cont.):

e When r; = ¢;:

12
ui (ti, g(r_i, t;)) = —/ w; (14, 2)dz
0

Proof (cont.):

e When r; = ¢;:

12
ui (ti, g(r_i, t;)) = —/ w; (14, 2)dz
0

Proof (cont.):

e When r; = ¢;:

i
ui (ti, g(r_i, t;)) = —/ w; (14, 2)dz
0

_

Proof (cont.):

o When T, = tz U,Z(tz,g(r—z;tz)) - ft

o wi(r—;, 2)dz

e When r; > t;:

wi(ts, g(r—i, ti)) = pi(r—s, i) — vi(ts, g(r—s, 7))

Proof (cont.):

e \When r; = U;: Uz’(tiag(r—i?ti)) — _ft

o wi(r—;, 2)dz

e When r; > t;:

ri
ui(t’ia g(r—ia tz)) — Tiw’i(r—’ia Ti)_/ w’i(r—’b Z)dZ — tiwi(r—% 7“@)
0

Proof (cont.):

e \When r; = U;: Uz’(tiag(r—i?ti)) — _ft

o wi(r—;, 2)dz

e When r; > t;:
wi(ti, g(r—i,t;)) = (1i — ti)wz‘("“—z',ri)—/ w;i(r—q, 2)dz
0

Proof (cont.):

e \When r; = U;: Uz’(tiag(r—%ti)) — _ft

o wi(r—;, 2)dz

e When r; > t;:
wi(ti, g(r—i,t;)) = (1i — ti)wi("“—z',ﬁ;)—/ w;i(r—q, 2)dz
0

Proof (cont.):

e \When r; = U;: Uz‘(tiag(r—i?ti)) — _ft

o wi(r—;, z)dz

e When r; > t;:
wi(ti, g(r—i,t;)) = (1i — ti)wi("“—z',ﬁ;)—/ w;(r—;, 2)dz
0

Proof (cont.):

e \When r; = U;: Uz‘(tiag(r—i?ti)) — _ft

o wi(r—;, z)dz

e When r; > t;:
wi(ti, g(r—i,t;)) = (1i — ti)wi("“—z',ﬁ;)—/ w;(r—;, 2)dz
0

wi(g(r—i, 7))

Proof (cont.):

e \When r; = U;: Uz‘(tiag(r—i?ti)) — _ft

o wi(r—;, 2)dz

e When r; > t;:
wi(ti, g(r—i,t;)) = (1i — ti)wi("“—z',ﬁ;)—/ w;(r—;, 2)dz
0

wi(g(r—i, 7))

Proof (cont.):

e When r; = t;: u;(t;,g(r_;,t;)) = — f(f w;(1_4,2)dz
e When r; > t;:
wi(ti, g(r—i, t;)) = (rq — tz’)wi(r—iari)_/ w;i(r—q, 2)dz
0

NN
VR
N——"

=
~
N——"
N—"

w; (g(r—;,

Proof (cont.):

o When r; = t;: u;(t;,g(r_;,t;)) = — f(f w;(r_;, 2)dz

e When r; > t;:
wi(ti, g(r—i, t;)) = (rq — ti)wi(r—iari)_/ w;i(r—q, 2)dz
0

The utility of player ¢ decreases by this area
) (player ¢ has no incentive to lie)

wi(g(r—i,7s))

Proof (cont.):

o When T, = tz U,Z(tz,g(r—z;tz)) - ft

o wi(r—;, 2)dz

e When r; < t;:

wi(ts, g(r—i,mi)) = pi(r—i,ms) — vi(ts, g(r—s, 7))

Proof (cont.):

e \When r; = U;: Uz’(tiag(r—i?ti)) — _ft

o wi(r—;, 2)dz

e When r; < t;:

ri
ui(t’ia g(r—ia tz)) — Tiw’i(r—’ia Ti)_/ w’i(r—’b Z)dZ — tiwi(r—% 7“@)
0

Proof (cont.):

e \When r; = U;: Uz’(tiag(r—i?ti)) — _ft

o wi(r—;, 2)dz

e When r; < t;:
wi(ti, g(r—i, t;)) = —(t; — Ti)wz‘(r—z’,"“z')—/ w;i(r—q, 2)dz
0

Proof (cont.):

e \When r; = U;: Uz’(tiag(r—%ti)) — _ft

o wi(r—;, 2)dz

e When r; < t;:
wi(ti, g(r—i ti)) = —(t; — Ti)wz’(r—z’arz’)_/ w;(r—s, 2)dz
0

Proof (cont.):

e \When r; = U;: Uz’(tiag(r—%ti)) — _ft

o wi(r—;, 2)dz

e When r; < t;:
wi(ti, g(r—i ti)) = —(t; — Ti)wz’(r—z’arz’)_/ w;(r—s, 2)dz
0

Proof (cont.):

e \When r; = U;: Uz‘(tiag(r—i?ti)) — _ft

o wi(r—;, z)dz

e When r; < t;:
wi(ti, g(r—i ti)) = —(t; — Ti)wz’(r—z’arz’)_/ w;(r—s, 2)dz
0

Proof (cont.):

e When r; = t;: u;(t;,g(r_;,t;)) = — f(f w;(1_4,2)dz
e When r; < t;:
wi(ti, g(r—i, t;)) = —(t; — Ti)wi(r—iyri)_/ w;i(r—q, 2)dz
0

.
/N
N———"

.

Proof (cont.):

e When r; = t¢;: Ui(tiag(r—ivti» — _ft

o wi(r—;, 2)dz

e When r; < t;:
wi(ti, g(r—i, t;)) = —(t; — Ti)wi(r—iyri)_/ w;i(r—q, 2)dz
0

The utility of player 7 decreases by this area
: / (player i has no incentive to lie)

S~
.

Voluntary participation

With h;(r_;) = 0 the mechanism does not guarantee voluntary
participation.

t;
ui(ti,g(r_i,ti)) — hi(T_Z') —/O ”LUZ'(T_Z', Z)dZ

.
/N
N———"

e U \ W W WO\ W V. WA WA V. W W0
~.
~

Voluntary participation

Solution: Choose h;(r_;)

.
/N
N———"

J

—+ 00
w; (14, 2)dz

S T L W W W W W W W\ W W W0 O
S

Voluntary participation

—+ 00
Solution: Choose h;(r_;) :/ w;(r_;, 2)dz
0

Voluntary participation

—+ 00
Solution: Choose h;(r_;) :/ w;(r_;, 2)dz
0

—+ 00
ui(ti, g(r_;,t;)) = / w;(r_;, 2)dz

The utility of player ¢ iIs non-negative

) (player i has incentive to play)

Wrapping up

Truthful One-parameter mechanism that guarantees
voluntary participation (for an OP problem):

M = (g,p)

e ¢ is any monotone algorithm (for the underlying OP
problem)

—+ 00
¢ pi(r) — 7"7;107;(7“) +/ w@-(fr_i,z)dz

VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types,
but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice
function, but only one-parameter types and workloaded
valuation functions

VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types,
but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice

function, but only one-parameter types and workloaded
valuation functions

Note: A problem can be both utilitarian and One-parameter

VCG vs One-parameter

VCG mechanisms: arbitrary valuation functions and types,
but only utilitarian problems

One-parameter mechanisms: arbitrary social-choice

function, but only one-parameter types and workloaded
valuation functions

Note: A problem can be both utilitarian and One-parameter

|

The VCG and the OP mechanisms coincide

