
Università degli Studi dell‟Aquila
Academic Year 2016/2017

Course: Distributed Systems (6 CFU, integrated within the
NEDAS curriculum with „‟Web Algorithms‟‟ (6 CFU), by Prof.
Michele Flammini)
Instructor: Prof. Guido Proietti

Schedule: Tuesday: 14.30 – 16.15 – Room A1.2
 Thursday: 14.30 – 16.15 – Room A1.1
Questions?: Tuesday 16.30 - 18.30 (or send an email
 to guido.proietti@univaq.it)

Slides plus other infos:
 http://www.di.univaq.it/~proietti/didattica.html

Distributed Systems (DS)
In the old days: a number of workstations over a LAN

Today
Collaborative Computing Systems

 Military command and control
 Online strategy games
 Massive computation

Distributed Real-time Systems

 Process Control
 Navigation systems, Airline Traffic Monitoring (ATM)

Mobile Ad hoc Networks
 Rescue Operations, emergency operations, robotics

Wireless Sensor Networks
 Habitat monitoring, intelligent farming

Social Networks

Grid and Cloud computing

…

And then, the mother of all DS: the Internet

Two main ingredients in the course:
Distributed Systems + Algorithms

Distributed system (DS): Broadly speaking, we refer to a set of
autonomous computational devices (say, processors) performing
multiple operations/tasks simultaneously, and which influence
reciprocally either by taking actions or by exchanging messages
(using an underlying wired/wireless communication network)

We will be concerned with the computational aspects of a DS. We will

analyze a DS depending on the behaviour of its processors:
– Obedient: always cooperate honestly with the system
 Classic field of distributed computing
– Adversarial: may operate against the system
 Classic field of fault-tolerance in DS

The emerging field of game-theoretic aspects of DS,
where processors behave strategically in order to
maximize her personal welfare will be studied next year in
the class of Autonomous Networks

Two main ingredients in the course:
Distributed Systems + Algorithms (2)

Algorithm (informal definition): effective method,
expressed as a finite list of well-defined instructions, for
solving a given problem (e.g., calculating a function,
implementing a goal, reaching a benefit, etc.)

The actions performed by each processor in a DS are

dictated by a local algorithm, and the global behavior of a
DS is given by the „‟composition‟‟ (i.e., interaction) of
these local algorithms

We will analyze these distributed algorithms in (almost)

every respect: existence, correctness, finiteness,
efficiency (computational complexity), effectiveness,
robustness (w.r.t. to a given fault-tolerance concept), etc.

Course structure
FIRST PART: Algorithms for COOPERATIVE DS

1. Leader Election
2. Minimum spanning tree
3. Maximal independent set

SECOND PART: Algorithms for UNRELIABLE DS
1. Benign failures: consensus problem
2. Byzantine failures: consensus problem
3. Failure monitoring

THIRD PART: CONCURRENT DS: Mutual exclusion
FOURTH PART (to be confirmed): SEMINARS: each student or group of

students will read a paper and present it in the classroom
Mid-term Written Examination (week 7-11 of November): 10 multiple-choice

tests, plus an open-answer question
Final Oral Examination: this will be concerned with either the whole program or

just the second part of it, depending on the outcome of the mid-term exam.
There will be fixed a total of 6 dates, namely:

• 3 in January-February
• 2 in June-July
• 1 in September

For those enrolled in the NEDAS curriculum, there will be a single final grade as
a result of the grades obtained in this course and in the „‟Web Algorithms‟‟
course; the corresponding exams can be done separately, but they must be
sustained within the same calendar year

Cooperative DS:
Message Passing System

A Formal Model

The System
 Topology: a network (connected undirected graph)

 Processors (nodes)

 Communication channels (edges)

 Degree of Synchrony: asynchronous versus synchronous
(universal clock)

 Degree of Symmetry: anonymous (processors are
indistinguishable) versus non-anonymous: this is a very tricky
point, which refers to whether a processor has a distinct ID
which can be used during a computation; as we will see, there
is a drastic difference in the powerful of a DS, depending on
this assumption

 Degree of Uniformity: uniform (number of processors is
unknown) versus non-uniform

Local versus distributed algorithm
Local algorithm: the algorithm associated with each single

processor
Distributed algorithm: the “composition” (i.e., interaction) of

local algorithms

General assumption: local algorithms are all the same (so-
called homogenous setting), otherwise we could force the DS
to behave as we want by just mapping different algorithms to
different processors, which is unfeasible in reality!

Notation
 n processors: p0, p1, … , pn-1.
 Each processor has a consistent knowledge

of its neighbors, numbered from 1 to r
 Depending on the context, a processor (or

more precisely, its algorithm) may make use
of global information about the network, e.g.,
the size, the topology, etc.

 Communication of each processor takes place
only through message exchanges, using
buffers associated with each neighbor, say
OUT_BUFFERi and IN_BUFFERi, for each
neighbor i=1,…,r.

 Qi: the state set for pi, containing a
distinguished initial state; each state
describes the internal status of the
processor and the status of the buffers

Configuration and events

System configuration: A vector

 [q0,q1,…,qn-1] where qiQi is the state of pi

Events: Computation events (internal
computations plus sending of messages),
and message delivering (receipt of
messages) events

Execution

C0 1 C1 2 C2 3 … where
C0 : The initial configuration

Ci : A configuration

i : An event

Asynchronous Systems

No upper bound on delivering times

Admissible execution: each message
sent is eventually delivered

Synchronous Systems
 Each processor has a (universal)

clock, and computation takes place
in rounds.

 At each round each processor:
1. Reads the incoming messages buffer

2. Makes some internal computations

3. Sends messages which will be read in
the next round.

Message Complexity

We will assume that each message can
be arbitrarily long

According to this model, to establish
the efficiency of an algorithm we will
only count the total number of
messages sent during any admissible
execution of the algorithm (in other
words, the number of message delivery
events), regardless of their size

Time Complexity

We will assume that each processor
has unlimited computational power

According to this model, to establish
the efficiency of a synchronous
algorithm, we will simply count the
number of rounds until termination.

Asynchronous systems: the time
complexity is not really meaningful,
since processors do not have a
consistent notion of time

• Example: Distributed Depth-First Search
visit of a graph
– Visiting a (connected) graph G=(V,E) means to explore

all the nodes and edges of the graph

– General overview of a sequential algorithm:
– Begin at some source vertex, r0

– when reaching any vertex v

» if v has an unvisited neighbor, then visit it and proceed
further from it

» otherwise, return to parent(v)

– when we reach the parent of some vertex v such that
parent(v) = NULL, then we terminate since v = r0

– DFS defines a tree, with r0 as the root, which spans all
vertices in the graph

– sequential time complexity = Θ(|E|+|V|) (we use Θ notation
because every execution of the algorithm costs exactly
|E|+|V|, in an asymptotic sense)

DFS: an example (1/2)

DFS: an example (2/2)

Distributed DFS: an asynchronous algorithm

– Distributed version (token-based): the token traverses

the graph in a depth-first manner using the algorithm
described above

1. Start exploration (visit) at a waking-up node (root) r (who

wakes-up r? Good question, we will see…)
2. When v is visited for the first time:

2.1 Inform all of its neighbors that it has been visited:
2.2 Wait for acknowledgment from all neighbors:
 (we will see steps 2.1 and 2.2 are useful in the synchronous case)
2.3 Select an unvisited neighbor node and pass the token to it; if no

unvisited neighbor node exists, then pass the token back to the
parent node

– Message complexity is Θ(|E|) (optimal, because of the

trivial lower bound of (|E|) induced by the fact that
every node must know the status of each of its
neighbors – this requires at least a message for each
graph edge)

Distributed DFS (cont‟d.)
Time complexity analysis (synchronous DS)

– Through steps 2.1 and 2.2, we ensure that vertices visited for the
first time know which of their neighbors have been visited; this
way, each node knows which of its neighbors is still unexplored

– Number of rounds for steps 2.1 and 2.2:

1. inform all neighbors of v that v has been visited;

2. get Ack messages from those neighbors;

3. restart DFS process

 constant number of rounds (i.e., 3) for each new discovered node

– |V| nodes are discovered time complexity = Θ(|V|)

Homework: What does it happen to the algorithm‟s complexity if we do
not inform the neighbors about having been visited?

