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Network monitoring: 
detecting node failures 
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Monitoring failures in (communication) DS 

• A major activity in DS consists of monitoring 
whether all the system components work properly 

• To our scopes, we will concentrate our attention 
on DS which can be modelled by means of a MPS, 
thus embracing all those real-life applications 
which make use of an underlying communication 
graph G=(V,E) 

• Here, we have to monitor nodes and links 
(mal)functioning, through the use of a set of 
sentinel nodes, which will periodically return to a 
network administrator a certain set of 
information about their neighborhood 



Example: locating a burglar 
This could be your nice apartment  
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Problem: suppose that you want to protect it against intrusions, and that 
you decide to install an Intruder Detection System (IDS)  guarding the 
apartment, based on video surveillance.  

… and so you decide to put 2 cameras in rooms b and c (it 
is easy to see that in this way all the rooms are guarded) 



Example: locating a burglar (2) 
Suppose now that you leave the apartment and a 
burglar enters in ; your IDS detects it and 
remotely inform you about that… 
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Question: can you call the police and tell them precisely in 
which room the burglar is located? This depends on the 
information returned by the IDS… 

 

 

 

 

 



Example: locating a burglar (3) 
Luckily enough, you installed an IDS consisting of advanced 
cameras, each of which can return the name of the room 
from which the intrusion comes: 
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In this case, cameras in rooms b and c will both tell to you 
"room f", and so the burglar will be exactly located  

 

 

 

 

 



Example: locating a burglar (4) 
On the other hand, assume that you had installed an IDS 
guarding the apartment consisting of basic cameras, which 
are only able to send an alarm bit after they detect an 
intrusion in a guarded room; so, both b and c reports an alarm 
bit… 
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…but now the question is: where is the burglar? Either in 
room b, c, or f??? The IDS does not work properly here, 
since we do not know in which room the burglar is! 

 

 

 

 

 



Example: locating a burglar (5) 
However, if you had installed 4 basic cameras guarding the 
apartment as in the picture, the situation gets back to be 
safe: 
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Now cameras b and c send an alarm bit, but a and d do not, and 
so you can infer the burglar is in room f… can you see why? 

 

 

 

 

 

Because each room has a distinct set of guarding cameras! 
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Transposition to network monitoring 
• While in the previous example, the IDS monitors the apartment for 

threats from the outside, a network monitoring system (NMS) 
monitors the network for problems caused by crashed servers 
(nodes), or network connection disruptions (edges). 

• A NMS has to monitor continuously the network, and has to report 
immediately a malfunctioning: in a MPS, this means that we need 
synchronicity among processors. 

• In a NMS, the status of nodes and edges is monitored through the 
use of sentinel nodes, which periodically exchange messages with 
adjacent nodes (for instance, a reciprocal status request every k 
rounds), and then report some kind of information to the network 
administrator. 

• Which type of information a sentinel node is able to report to the 
network administrator? This depends on the underlying network 
infrastructure, along with the monitoring software. For instance, in a 
wireless network, a sentinel node could not be able to precisely 
establish which of its neighbors is not replying to a ping, and so it 
can only return an alarm bit to the administrator! 



Formalizing the node-monitoring problem 

• Input: A graph G = (V,E) modeling a MPS, and a query 
model Q, namely a formal description of the entire 
process through which a sentinel node x reports its piece 
of information to the network administrator (i.e., (1) 
which nodes are queried by x, and (2) which type of 
information x can return to the system as a result of the 
queries);   

• Goal: Compute a minimum-size subset of sentinel nodes 
SV allowing to monitor G with respect to the 
simultaneous failure of at most k nodes in G, i.e., such 
that the composition of the information reported by the 
nodes in S to the network administrator is sufficient to 
identify the precise set of crashed nodes, for any such 
set of size at most k.  
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Again on the query model 

• In the burglar example, the query model is the following:  
1. each sentinel (i.e., camera) monitors its adjacent nodes only;  

2. in the first scenario (advanced cameras) a sentinel node returns 
the name of an adjacent affected node, while in the second case 
(basic cameras) it just returns the information that an adjacent 
node has been affected 

• This is exactly what the definition of a query model is 
about: the set of information that a sentinel node x is able 
to return. 

• Observe that the larger is the set of returned 
information, the stronger is the query model, and the 
sparser is the set of sentinels that we need to monitor the 
graph! 
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Network monitoring and dominance in graphs 

• The simplest possible query models are those in which 
each sentinel node communicates with its neighbors only, 
and thus a sentinel node can report a set of information 
about its neighborhood  the monitoring problem in this 
case is naturally related with the concept of dominance in 
graphs, i.e., with the activity of selecting a set of nodes 
(dominators) in a graph in order to have all the nodes of 
the graph within distance at most 1 from at least a 
dominator 

• These query models are then further refined on the basis 
of the type of messages that sentinel nodes exchange with 
their neighbors and with the network administrator 
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Dominating Set 

Given a graph G=(V,E), a dominating set of G 
is a set of nodes D such that every node of 
G is at distance at most 1 from D 

|D|=4 x 

y z 

x dominates 
{x,y,z} 
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Minimum Dominating Set (MDS): 

This is a dominating set of minimum size  

|D*|=3 x 

y z 
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In a query model in which a sentinel node: 
1. Sends a ping to each adjacent node and waits for a reply; 
2. Sends to the network administrator the id of the set of 

adjacent nodes which did not reply; 

a MDS D* of a graph G=(V,E) defines a minimum-size set of 
processors which can monitor the correct functioning of all 
the nodes in V\D*, since every node in G is pinged by at 
least one node in D* (notice that if a node x in D* fails, the 
network administrator is not able to understand whether –
besides x- some of the nodes dominated by x have failed or 
not; thus, an MDS is not enough to monitor the entire 
graph, but only the nodes in V\D*. On the other hand, if we 
are guaranteed that at most a single node in G can fail, then 
a MDS is enough to monitor the entire graph!) 

Network monitoring and MDS 
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A special type of Dominating Set:  

the Identifying Code (IC) 
This is a dominating set D in which every node v is 
dominated by a distinct set of nodes in D (this is called the 
identifying set of v)  

x 

y z 
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{a,c} {c,d,g} 

{d,g} 

{c,x,d} 

{c} 

{x} 

{d} 
{g} 

A Minimum IC (MIC) is an IC of smallest 
cardinality. 
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In a query model in which a sentinel node: 
1. Sends a ping to each adjacent node and waits for a reply; 
2. Sends to the network administrator an alarm bit (0 if all the 

adjacent replied, 1 otherwise); 

a MIC C* of a graph G=(V,E) defines a minimum-size set of 
processors which can monitor the failure of at most one 
node in V\C*, since every node in G is pinged by a distinct 
set of nodes in C* (notice that if a node x in C* fails, the 
network administrator is not able to understand whether –
besides x- some of the nodes dominated by x have failed or 
not; so again, if we are guaranteed that at most a single 
node in G can fail, then a MIC is enough to monitor the 
entire graph!)  

Network monitoring and MIC 
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Our problems 
• We will study the monitoring problem for single node 

failures (i.e., node crashes) w.r.t. the two following two  
query models: 
1. Sentinels are able to return the id of the adjacent failed node  

we will search a MDS of the network (MDS problem) 
2. Sentinels are only able to return an alarm bit about the 

neighborhood (i.e., a warning that an adjacent node has failed)  
we will search a MIC of the network (MIC problem) 

• Main questions: Are MDS and MIC problems easy or NP-
hard? If so, can we provide efficient (distributed) 
approximation algorithms to solve them? 

• We will show that MDS and MIC problems are NP-hard, 
and that they are both not approximable within o(ln n); 
we will also provide an Θ(ln n)-approximation distributed 
algorithm for MDS and MIC (only a sketch) 

 
 

 



Reminder: being NP-hard 
• A decision problem P  is NP-hard iff one can reduce in 

polynomial time any NP-complete problem P’ to it, i.e., there 
exists a polynomial-time algorithm that maps an instance of P’ 
to an instance of P, and such that the YES-instances of P’ will 
be mapped to the YES-instances of P, and vice-versa (this is 
a.k.a. Karp reduction, denoted by P’ ≤K P) 

• Of course, if we could solve an NP-hard problem in polynomial 
time, then P=NP 

• Notice that MDS and MIC are optimization problems, since we 
search for solutions of minimum size, and so they are not 
encompassed by the above NP-hardness definition 

• However, it is easy to provide a decision version of an 
optimization problem, without affecting its intrinsic complexity: 
it suffices to add a threshold value to the input, and then asking 
whether a solution either above or below that threshold does 
actually exist 
  In the following, we will assume that the class NP-hard 
contains both decision and optimization problems 



The class NP-hard: a picture 
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Recap: the MDS and the MIC problems 

• MDS: Given a graph G=(V,E), find a dominating set of G 
(i.e., is a set of nodes D  V such that every node of G is 
at distance at most 1 from D) of minimum size  a MDS 
is useful to monitor node failures when sentinel nodes are 
able to report the ID of an adjacent failing node 

• MIC: Given a graph G=(V,E), find an identifying code of G 
(i.e., is a set of nodes D  V such that every node v of G 
is at distance at most 1 from a univocal set of nodes Dv  
D) of minimum size  a MIC is useful to monitor node 
failures when sentinel nodes are able to only report an 
alarm bit that an adjacent node failed 

• Clearly, |MDS| ≤ |MIC|, but are we able to find a MDS or 
MIC in polynomial time, or at least a good approximation 
of them? 

 34 



Reminder: optimization problems and approximability 

• An optimization problem A is a quadruple (I, F, c, g), where 
• I is a set of instances; 
• given an instance x ∈ I, F(x) is the set of feasible solutions; 
• given a feasible solution y ∈ F(x), c(y) denotes the cost of y, which is 

usually a positive real; 
• g is the goal function, and is either min or max. 
• The goal is then to find for some instance x an optimal solution, that is, a 

feasible solution y with 
c(y) = g {c(y') | y' ∈ F(x)}.  

• For NP-hard optimization problems, unfortunately we do not know 
polynomial-time solving algorithms, thus we resort to approximation 
algorithms: Given a minimization (resp., maximization) problem A, let 
OPTA(x) denote the cost of an optimal solution for A w.r.t. the 
instance x; then, we say that A is ρ-approximable, with ρ≥1 (resp., ρ≤1), 
if there exists a polynomial-time algorithm for A which for any 
instance x ∈ I returns a feasible solution whose measure is at most 
(resp., at least) ρ∙OPTA(x).  

• Moreover, we say that A is ρ-inapproximable, if under some reasonable 
assumptions (typically, PNP), A is not ρ-approximable 



(In)Approximability of MDS 

• Unfortunately, MDS is NP-hard, and even worse, 
it cannot be approximated (in polynomial time) 
within (1-ε) ln n,  for any ε > 0, unless NP  
DTIME(nlog log n) (i.e., unless NP has deterministic 
algorithms operating in slightly super-polynomial 
time – this is just a bit more believable to 
happen than P=NP). 

• On the positive side, there exists an easy  
greedy heuristic for MDS providing a (tight) 
Θ(ln n) approximation ratio. 
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Centralized MDS Greedy Algorithm (1/4) 
 

Greedy Algorithm (GA): For any node v of the given 
graph G, define its span to be the number of non-
dominated nodes in {v} U N(v). Then, start with 
empty dominating set D, and at each step add to 
D node v with maximum span, until all nodes are 
dominated. 

Theorem: The GA is H(+1)-approximating, where  

is the degree of G, and H(k) = 1+1/2+1/3+…+1/k ≤ 
1+ln k, i.e., the GA is (1+ln (+1))-approximating, or 
(1+ln n)-approximating. 
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Centralized MDS Greedy Algorithm (2/4) 

Proof: We prove the theorem by using amortized analysis. We call 
black the nodes in D, grey the nodes which are dominated 
(neighbors of nodes in D), and white all the non-dominated nodes. 
Each time we choose a new node of the dominating set (each 
greedy step), we have a cost of 1, (since one node is added to the 
solution), but instead of assigning the whole cost to the node we 
have chosen, we distribute the cost equally among all newly 
dominated nodes.  

Now, assume that we know a MDS D*. By definition, to each node 
which is not in D*, we can assign a neighbor from D*. By assigning 
each node to exactly one node of D*, the graph is decomposed 
into stars, each having a dominator (node in D*) as center, and 
non-dominators as leaves. Clearly, the cost of a MDS is 1 for each 
such star, or, in other words, each node of a star of k+1 nodes 
centered at vD* and of degree k (i.e., with k leaves) will cost 
1/(k+1). But what the cost of such a star will be in the solution 
found by the GA?  
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Centralized MDS Greedy Algorithm (3/4) 
• Let us look at a single star with center v in D*. Assume that in the current 

step of the GA, v is not black (i.e., it is either white or grey), and let w(v) be 
the number of current white nodes in the star of v in D*. First of all, notice 
that span(v)w(v), since w(v) considers only a subset of nodes adjacent to v.  

 

• If the GA selects in this step a node v’, some of these white nodes may 
become grey, so they will get charged a cost of 1/span(v’) (observe this can 
happen iff v and v’ are at distance at most 2 in G).  

 

• By the greedy condition of the algorithm, span(v’)  span(v)  w(v), since 
otherwise the algorithm could rather have chosen v for D instead of v’. 
Therefore, a white node of v becoming grey/black in the current step is 
charged by at most 1/w(v).  

 

• Notice that after becoming grey/black, nodes do not get charged any more. 
Notice also that the cost that will be charged in the future to the 
remaining (if any) white nodes in the star of v will be larger, since w(v) is 
non-increasing w.r.t. the steps of the GA.  
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Centralized MDS Greedy Algorithm (4/4) 
As a consequence, in the worst case (i.e., to maximize the cost charged to 
the star of v), no two nodes in the star of v become grey/black at the same 
step of the GA. Thus, in the worst case, denoting by k≤δ(v) the degree of 
the star of v in D*, the first node gets charged by at most 1/(k+1), the 
second node gets charged by at most 1/k, and so on. Thus, the total 
amortized cost of a star for the GA is at most 

 

1/(k+1) +1/k +… +1/2+1 = H(k+1) ≤ H(δ(v)+1) ≤ H(+1) ≤ 1 + ln (+1) 

 

against a cost of 1 for the optimum.    ■ 
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Distributing (synchronously) the GA (1/2) 

• Synchronous, non-anonymous, uniform MPS 

• Proceed in phases, initially no node is in D 

• Each phase has 3 steps: 
1. each node calculates its current span, by 

testing adjacent nodes (2 rounds); 

2. each node sends (span, ID) to all nodes within 
distance 2 (2 rounds); 

3. each node joins the dominating set D iff its 
(span, ID) is lexicographically higher than all 
others within distance 2 (1 round to notify 
neighbors) 
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Distributing (synchronously) the GA (2/2) 
• It can be easily proven that the distributed algorithm has the same 

approximation ratio as the greedy algorithm: indeed, the analysis of 
the GA only involves nodes which are at distance at most 2 in G, as we 
have observed in the proof, which is exactly the tested neighborhood 
of the distributed algorithm 

• However, the algorithm can be quite slow, since it can take O(|D|) 
phases to terminate, where D is the returned dominated set. Look for 
instance at the following  caterpillar graph (path of decreasing 
degrees) of n nodes: 

 

 

 
 Nodes along the "backbone" (of length (n)) add themselves to D 

sequentially from left to right  (n) phases (and rounds) are 
needed! 

 Via randomization, the greedy algorithm can be modified so as to 
terminate w.h.p. in O(log  log n) rounds, with an expected O(log )-
approximation ratio. 

 

 



Special cases 
• If the graph has maximum degree Δ=O(1), then the 

greedy approximation algorithm finds an O(log Δ)=O(1)-
approximation of a MDS. 

• For special (but still prominent, from an application point 
of view) cases, such as unit disk graphs (UDG) and planar 
graphs (PG), the problem admits a (centralized) 
polynomial-time approximation scheme (PTAS), where: 
1. A UDG is the intersection graph of a set of unit circles in the 

Euclidean plane; they are often used to model wireless networks. 

2. A PG is a graph that can be drawn in such a way that no edges 
“cross” each other; they are often used to model transportation 
networks, but also communication networks. 

3. A PTAS is an algorithm which takes an instance of a minimization 
(resp., maximization) problem, and a parameter ε > 0,  and in 
polynomial time (for fixed ε, e.g., in time O(n1/ε)), produces a 
solution that is within a factor 1+ε (resp., 1–ε) from the optimal. 
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A unit disk graph 
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Some planar graphs 
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(In)approximability of MIC 

• Concerning the MIC problem, the situation is very 
similar to MDS. 

• More precisely, MIC is NP-hard and cannot be 
approximated within (1-ε) ln n,  for any ε > 0, unless 
NP  DTIME(nlog log n). 

• On the positive side, there exists a sequential (1+ln 
n)-approximation algorithm for MIC. 

• Moreover, the distributed GA for the MDS problem 
can be easily modified to solve the MIC problem in a 
distributed setting (it will essentially explore the 3-
neighborood of a node instead of its 2-
neighborood), and it will run in O(|IC|), where IC is 
the returned identifying code.  46 



Assignment 
1. Provide a message complexity analysis of the 

distributed GA for the MDS problem 

2. Run the greedy algorithm for the MDS problem 
on the following graph (the optimum is given by 
red nodes), and compute the apx ratio 
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