Algorithms for Concurrent Distributed Systems: The Mutual Exclusion problem

Concurrent Distributed Systems

Changes to the model from the MPS:

- MPS basically models a distributed system in which processors needs to coordinate to perform a widesystem goal (e.g., electing their leader)
- Now, we turn our attention to concurrent systems, where the processors run in parallel but without necessarily cooperating (for instance, they might just be a set of laptops in a LAN)

Shared Memory System (SMS)

Changes to the model from the MPS:

- No cooperation \Rightarrow no communication channels between processors and no inbuf and outbuf state components
- Processors notificate their status via a set of shared variables, instead of passing messages \Rightarrow no any communication graph!
- Each shared variable has a type, defining a set of operations that can be performed atomically (i.e., instantaneously, without interferences)

Shared Memory

Types of Shared Variables

1. Read/Write
2. Read-Modify-Write
3. Test \& Set
4. Compare-and-swap

We will focus on the Read/Write type (the simplest one to be realized)

Read/Write Variables

Read(v) return(v);

Write(v,a)
$v:=a ;$

In one atomic step a processor can:

- read the variable, or
- write the variable
... but not both!
\Rightarrow between a read and a write operation by a given processor, some other processor could make other operations on the variable!

An example

Simultaneous writes

Simultaneous writes are scheduled: Possibility 1

Simultaneous writes are scheduled: Possibility 2

\Rightarrow the surviving value is arbitrary!

Simultaneous writes are scheduled: In general:

Simultaneous reads and writes are also scheduled

Simultaneous Reads: no problem!

Computation Step in the Shared Memory Model

- When processor p_{i} takes a step:
- p_{i} 's state in the old configuration specifies which shared variable is to be accessed and with which operation
- operation is done: shared variable's value in the new configuration (possibly) changes according to the operation
- p_{i} 's state in the new configuration changes according to its old state and the result of the operation

The mutual exclusion (mutex) problem

- The main challenge in managing concurrent systems is coordinating access to resources that are shared among processes
- Assumptions on the SMS (similarly to the MPS):
- Non-anonymous (ids are in [0..n-1])
- Non-uniform
- Asynchronous

Mutex code sections

- Each processor's code is divided into four sections:

- entry: synchronize with others to ensure mutually exclusive access to the ...
- critical: use some resource; when done, enter the...
- exit: clean up; when done, enter the...
- remainder: not interested in using the resource

Mutex Algorithms

- A mutual exclusion algorithm specifies code for entry and exit sections to ensure:
- mutual exclusion: at most one processor is within the critical section at any time, and
- some kind of liveness condition, i.e., a guarantee on the use of the critical section (under the general assumption that no processor stays in its critical section forever). There are three commonly considered ones:

Mutex Liveness Conditions

- no deadlock: if a processor is in its entry section at some time, then later some (i.e., maybe another) processor is in its critical section (notice that a processor can be starved/locked in this situation)
- no lockout: if a processor is in its entry section at some time, then later the same processor is in its critical section (but maybe it will be surpassed an unbounded number of times by other processors)
- bounded waiting: no lockout + while a processor is in its entry section, any other processor can enter the critical section no more than a bounded number of times.
These conditions are increasingly strong: bounded waiting
\Rightarrow no lockout \Rightarrow no deadlock

Complexity Measure for Mutex

- Main complexity measure of interes \dagger for shared memory mutex algorithms is amount of shared space needed.
- Space complexity is affected by:
- how powerful is the type of the shared variables (recall we only focus on Read/Write type)
- how strong is the liveness condition to be satisfied (no deadlock/no lockout/bounded waiting)

Mutex Results Using R/W

Liveness Condition	upper bound	lower bound
no deadlock	n booleans	
no lockout	$3(n-1)$ booleans (for $\left.n=2^{k}\right)$ (tournament algorithm)	
bounded waiting	n booleans + n unbounded integers (bakery algorithm)	

The Bakery Algorithm (L. Lamport, 1974)

- Guaranteeing:
- Mutual exclusion
- Bounded waiting
- Using $2 n$ shared read/write variables
- booleans choosing[i]: initially false, written by p_{i} and read by others
- (unbounded) integers Number[i]: initially 0 , written by p_{i} and read by others

Bakery Algorithm

Code for entry section of p_{i} :

BA Provides Mutual Exclusion

Lemma 1: If p_{i} is in the critical section (CS), then Number $[i]>0$. Proof: Trivial.
Lemma 2: If p_{i} is in the CS and Number $[k] \neq 0(k \neq i)$, then (Number $[k], k$) > (Number $[i], i)$.
Proof: Observe that a chosen number changes only after exiting from the CS, and that a number is $\neq 0$ iff the corresponding processor is either in the entry (bakery) section or in the CS. Now, since p_{i} is in the $C S$, it passed the second wait statement for $\mathrm{j}=\mathrm{k}$.

There are two cases:
time
> p_{i} 's most recent read of Number[k] (second semaphore)
p_{i} in $C S$ and
Number $[k] \neq 0$

Case 1: returns 0
Case 2: returns (Number[k],k)>(Number[i],i)

Case 1

p_{i} 's first
p_{i} 's second
semaphore for $j=k$
semaphore for $j=k$
time
> p_{i}^{\prime} 's most recent read of Choosing[k]. returns false. So p_{k} is not in the middle of choosing number.
p_{i} 's most recent write to Number[i]
p_{i} in CS and Number $[k] \neq 0$ of Number[k] returns 0 . So p_{k} is either in the remainder section or choosing number.

So p_{k} chooses its number in this interval, sees p_{i} 's number, and then chooses a larger one (i.e., Number[k] > (Number[i]): so, it will never enter in CS before than p_{i}, which means that its number does not change all over the time p_{i} is in the $C S$, and so the claim is true

Case 2

p_{i} 's most recent
read of Number[k] returns (Number[k],k)>(Number[i],i).
So p_{k} has already
taken its number.
So p_{k} chooses Number[$\left.k\right] \geqslant$ Number $[i]$ in this interval, and does not change it until p_{i} exits from the $C S$, since it cannot surpass p_{i}. Indeed, p_{k} will be stopped by p_{i} either in the first wait statement (in case p_{k} finished its choice before than p_{i} and p_{i} is still choosing its number - in this case, Number[k]=Number[i]), or in the second one (since (Number[i],i) <(Number[k],k)). Thus, it will remain (Number[i],i)< (Number[k],k) until p_{i} finishes its $C S$, and the claim follows.

Mutual Exclusion for BA

- Mutual Exclusion: Suppose p_{i} and p_{k} are simultaneously in CS, $i \neq k$.
- By Lemma 1, both have number >0.
- Since Number $[k]$, Number $[i] \neq 0$, by Lemma 2
- (Number $[\mathrm{k}], \mathrm{k})>$ (Number $[\mathrm{i}], \mathrm{i})$ and
- (Number[i],i) > (Number[k],k)

No Lockout for BA

- Assume in contradiction there is a starved processor.
- Starved processors are stuck at the semaphores, not while choosing a number.
- Starved processors can be stuck only at the second semaphore, since sooner or later the Choosing variable of each processor will become false
- Let p_{i} be a starved processor with smallest (Number[i],i).
- Any processor entering entry section after that p_{i} chose its number, will choose a larger number, and therefore cannot surpass p_{i}
- Every processor with a smaller ticket eventually enters CS (not starved) and exits, setting its number to 0 . So, in the future, its number will be either 0 or larger than Number [i]
- Thus p_{i} cannot be stuck at the second semaphore forever by another processor.

What about bounded waiting?

YES: It is easy to see that any processor in the entry section can be surpassed at most once by any other processor (and so in total it can be surpassed at most $n-1$ times).

Space Complexity of BA

- Number of shared variables is $2 n$
- Choosing variables are booleans
- Number variables are unbounded: as long as the CS is occupied and some processor enters the entry section, the ticket number increases
- Is it possible for an algorithm to use less shared space?

Bounded-space 2-Processor

Mutex Algorithm with no deadlock

- Start with a bounded-variables algorithm for 2 processors with no deadlock, then extend to no lockout, then extend to n processors.
- Use 2 binary shared read/write variables (intuition: if p_{i} wants to enter into the CS, then it sets $w[i]$ to 1):
$w[0]$: initially 0 , written by p_{0} and read by p_{1}
w[1]: initially 0 , written by p_{1} and read by p_{0}
Asymmetric (or non-homogenous) code: p_{0} always has priority over p_{1}

Bounded-space 2-Processor Mutex Algorithm with no deadlock

Code for p_{0} 's entry section:

$$
\begin{array}{ll}
1 & \cdot \\
2 & \cdot \\
3 & W[0] \\
4 & \cdot \\
5 & \cdot \\
6
\end{array} \rightarrow \text { wait until } W[1]=0
$$

Semaphore
Code for p_{0} 's exit section:

$$
\begin{array}{lll}
7 & \cdot \\
8 & W[0] & :=0
\end{array}
$$

Bounded-space 2-Processor Murex Algorithm with no deadlock

Code for p_{1} 's entry section:

Semaphore
Code for p_{1} 's exit section:

$$
7
$$

$$
8 W[1]:=0
$$

$$
\begin{aligned}
& 1 \text { w[1] := } 0 \\
& 2 \text { wait until w[0] = 0 } \\
& \text { w[1] := } 1 \\
& \text { if (W[0] = 1) then goo Line } 1
\end{aligned}
$$

Analysis

- Satisfies mutual exclusion: processors use w variables to make sure of this (a processor enters only when its own w variable is set to 1 and the other w variable is seen to be 0 ; notice that when p_{1} is in the CS and p_{0} is waiting at Line 5 in the entry, then both $w[0]$ and $w[1]$ are equal to 1 , while if p_{0} is in the $C S$ and p_{1} is waiting at Line 2 in the entry, then $w[0]=1$, while $w[1]=0$)
- Satisfies no-deadlock: if po wants to enter, it cannot be locked by p_{1} (since p_{1} will be forced to set $w[1]:=0$)
- But unfair w.r.t. p_{1} (it can remain locked, if p_{0} sets $w[0]$ to 1 continuously between line 3 and 5 of p_{1} execution)
\Rightarrow Fix it by having the processors alternate in having the priority

Bounded-space 2-Processor

 Mutex Algorithm with no lockoutUses 3 binary shared read/write variables and is symmetric:

- W [0]: initially 0 , written by p_{0} and read by p_{1}
- $W[1]$: initially 0, written by p_{1} and read by p_{0}
- Priority: initially 0, written and read by both

Bounded-space 2-Processor Mutex Algorithm with no lockout

Code for pi's entry section:

Semaphores

Code for pis exit section:

$$
\begin{array}{ll}
7 & \text { Priority }:=1-i \\
8 & \text { W[i] }:=0
\end{array}
$$

Analysis: ME

Mutual Exclusion:

- Suppose in contradiction p_{0} and p_{1} are simultaneously in CS.
- W.l.o.g., assume p_{1} last write of $w[1]$ before entering CS happens not later than p_{0} last write of $w[0]$ before entering CS
time

Analysis: No-Deadlock

- Useful for showing no-lockout.
- If one processor ever stays in the remainder section forever, the other one cannot be starved.
- Ex: If p_{1} enters remainder forever, then p_{0} will keep seeing w[1] $=0$.
- So any deadlock would starve both processors in the entry section

Analysis: No-Deadlock

- Suppose in contradiction there is deadlock, and w.l.o.g., suppose Priority gets stuck at 0 after both processors are stuck in their entry sections (indeed Priority cannot be changed within the entry section):
time
> p_{0} and p_{1} stuck in entry Priority=0
p_{0} not stuck in Line 2, skips Line 5, stuck in Line 6 with $w[0]=1$ waiting for W[1] to be 0
p_{1} sent back in Line 5, stuck at Line 2 with W[1]=0, waiting
p_{0} sees
$\mathrm{W}[1]=0$, enters CS for $W[0]$ to be 0

Analysis: No-Lockout

- Suppose in contradiction p_{0} is starved.
- Since there is no deadlock, p_{1} enters CS infinitely often.
- The first time p_{1} executes Line 7 in exit section after p_{0} is stuck in entry, Priority gets stuck at 0 (only p_{0} can set Priority to 1)
time

p_{0} stuck in entry

p_{1} at Line 7:
Priority=0 forever after

p_{0} not stuck in Line 2, skips
Line 5, stuck at Line 6 with
$\mathrm{W}[0]=1$, waiting for $W[1]$ to be 0
p_{1} enters entry, gets stuck at Line 2 with w[1]=0, waiting for w[0] to be 0: p_{0} sees $\mathrm{w}[1]=0$, and enters CS

Bounded Waiting?

- NO: A processor, even if having priority, might be surpassed repeatedly (in principle, an unbounded number of times) when it is in between Line 2 and 3.

Bounded-space n-Processor

Mutex Algorithm with no lockout

- Can we get a bounded-space no-lockout mutex algorithm for $n>2$ processors?
- Yes! For the sake of simplicity, assume that $n=2^{k}$, for some $k>1$.
- Based on the notion of a tournament tree: complete binary tree with n-1 nodes
- tree is conceptual only! does not represent message passing channels
- A copy of the 2-processor algorithm is associated with each tree node
- includes separate copies of the 3 shared variables

Tournament Tree

We label the tree nodes from top to down and from left to right, from 1 to $n-1$; it is not hard to see that, by construction, processor $p_{i,}, i=0, \ldots, n-1$, remains associated with node labelled $2^{k-1}+\lfloor i / 2\rfloor$, where $k=\log n$ (recall that $n=2^{k}$). Notice that, in general, if $n \neq 2^{k}$, then we complete the tree by adding "dummy" leaves

Tournament Tree Mutex Algorithm

- Each processor begins entry section at the associated leaf (2 processors per leaf)
- A processor proceeds to next level in the tree by winning the 2-processor competition for current tree node:
- on left side, plays role of p_{0}
- on right side, plays role of p_{1}
- When a processor wins the 2-processor algorithm associated with the tree root, it enters CS.

The code

$$
\begin{aligned}
& \text { procedure Node(} v \text { : integer; side: 0..1) } \\
& \mathrm{L}: \quad \text { want }{ }_{\text {side }}^{v}:=0 \\
& \text { wait until }\left(\text { want }_{1-\text { side }}^{v}=0 \text { or } \text { priority }^{v}=\text { side }\right) \\
& \text { want }_{\text {side }}^{v}:=1 \\
& \text { if }\left(\text { priority }^{v}=1-\text { side }\right) \text { then } \\
& \text { if }\left(w a n t_{1-\text { side }}^{v}=1\right) \text { then goto } \mathrm{L} \\
& \text { else wait until }\left(\text { want }_{1-\text { side }}^{v}=0\right) \\
& \text { if }(v=1) \text { then } \quad /^{*} \text { at the root }{ }^{* /} \\
& \text { 〈Critical Section〉 } \\
& \text { Exit } \\
& \text { else } \operatorname{Node}(\lfloor v / 2\rfloor, v \bmod 2) \\
& \text { 〈Critical Section〉 }
\end{aligned}
$$

More on TT Algorithm

- Code is recursive
- p_{i} begins at tree node $2^{k-1}+\lfloor i / 2\rfloor$, playing role of $p_{i \bmod 2}$, where $k=\log n$.
- After winning at node v, "critical section" for node v is
- entry code for all nodes on path from $\lfloor v / 2\rfloor$ to root
- real critical section
- Finally, executes exit code for all nodes on path from root to v (in each of these nodes, gives priority to the other side and sets its want variable to 0)

Analysis

- Correctness: based on correctness of 2processor algorithm and tournament structure:
- Mutual exclusion for TT algorithm follows from ME for 2-processors algorithm at tree root.
- No-lockout for tournament algorithm follows from no-lockout for the 2-processor algorithms at all nodes of tree
- Space Complexity: 3(n-1) boolean read/write shared variables.
- Bounded Waiting? No, as for the 2processor algorithm.

Homework

Consider the mutex problem on a synchronous DS of 8 processors (with ids in 0..7). Show an execution of the tournament tree algorithm by assuming the following:

1. Initially, all the want and priority variables are equal to 0 ;
2. The system is totally synchronous, i.e., lines of code are executed simultaneously by all processors;
3. Throughout the entry section, a processor ends up a round either if it wins the competition (and possibly it enters the CS), or if it executes 7 lines of codes:
4. If a node enters the CS at round k, then it exits at round k+1;
5. Throughout the exit section, a processor ends up a round after having executed the exit code for a node of the tree;
6. $p_{0}, p_{1}, p_{3}, p_{5}$ and p_{6} decide to enter the CS in round 1 , while the remaining processors decide to enter the CS in round 2.

Hints: 16 rounds until the last processor completes the exit section; entering sequence is $p_{0}, p_{5}, p_{3}, p_{6}, p_{1}, p_{4}, p_{2}, p_{7}$

