
1

Algorithms for UNRELIABLE
Distributed Systems:

The consensus problem

2

Failures in Distributed Systems

Let us go back to the MPS model; it may undergo the
following malfunctioning, among others:

Link failure: A link fails and remains inactive for some time;

the network may get disconnected

Processor crash (or benign) failure: At some point, a

processor stops forever taking steps; also in this case,
the network may get disconnected

Processor Byzantine (or malicious) failure: during the

execution, a processor changes state arbitrarily and
sends messages with arbitrary content (name dates back
to untrustable Byzantine Generals of Byzantine Empire,
IV–XV century A.D.); also in this case, the network may
get disconnected

3

Normal operating

Non-faulty
links and
nodes 1p

2p

3p

4p5p

a

b

a c

a

b

c a

4

Faulty

link
1p

2p

3p

4p5p

a

b

a c

b

c

a

Messages sent on the failed link

are not delivered (for some time), but
they cannot be corrupted

Link (non-permanent) Failures

5

Faulty

processor

Some of the messages are not sent
(forever)

1p

2p

3p

4p5p

a

a

b
b

Processor (permanent) crash failure

a c

6

Crash failure in a synchronous MPS

1p

2p

3p

4p

5p

Round

 1
1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round

 2

Round

 3
1p

2p

4p

5p

Round

 4
1p

2p

4p

5p

Round

 5

After failure the processor disappears from

the network

3p 3p

7

Processor Byzantine failure

Faulty

processor
1p

2p

3p

4p5p

a

*!§ç#

%&/£

Processor sends arbitrary messages (i.e.,
they could be either correct or corrupted),
plus some messages may be not sent

a

*!§ç#

%&/£

c

8

Failure

1p

2p

3p

4p

5p

Round

 1
1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round

 2

Round

 3
1p

2p

4p

5p

Round

 4
1p

2p

4p

5p

Round

 5

After failure the processor may continue

functioning in the network

3p 3p

Failure

1p

2p

4p

5p

Round

 6

3p

Byzantine failure in a synchronous MPS

9

Consensus Problem
Every processor has an input xєX (notice that in this way
the algorithms running at the processors will depend on
their input), and must decide an output yєY. Assume that
link or node failures can possibly take place in the system.
Then, design an algorithm enjoying the following properties:

Termination: Eventually, every non-faulty processor decides
on a value yєY.

Agreement: All decisions by non-faulty processors must be
the same.

Validity: If all inputs are the same, then the decision of a
non-faulty processor must equal the common input (this
avoids trivial solutions).

In the following, we assume that X=Y=N

10

Agreement

0

1

2 3

3

Start

Everybody has an
initial value

Finish

2

4 4

4

All non-faulty must
decide the same value

4

11

1

1

1 1

1

Start

If everybody starts with the same value,

then non-faulty must decide that value

Finish
2

1

1 1

1

Validity

12

Negative result for link failures

• Although this is the simplest fault a MPS may
face, it may already be enough to prevent
consensus

• More formally, there exist input instances for
which it is impossible to reach consensus in case
of single non-permanent link failures, even in the
synchronous non-anonymous case

• To illustrate this negative result, we present the
very famous problem of the 2 generals

13

Consensus under non-permanent link failures:
the 2 generals problem

There are two generals of the same army
who have encamped a short distance apart.
Their objective is to decide on whether to
capture a hill, which is possible only if they
both attack (i.e., if only one general attacks,
he will be defeated, and so their common
output should be either “not attack” or
“attack”). However, they might have
different opinion about what to do (i.e., their
input). The two generals can only
communicate (synchronously) by sending
messengers, which could be captured (i.e.,
link failure), though. Is it possible for them
to reach a common decision?

1p 2p

Let’s attack

A B

More formally, we are talking about consensus in the following MPS:

14

• First of all, notice that it is needed to exchange messages to
reach consensus (as we said, generals might have different
opinions in mind!)

• Assume the problem can be solved, and let Π be the shortest
protocol (i.e., a solving algorithm with the minimum number of
messages) for a given input configuration.

• Since this protocol is deterministic, for such a fixed input
configuration, there will be a sequence of messages to be
exchanged, which however may not be all successfully delivered,
due to the possible link failure.

• In particular, suppose now that the last message in Π does not
reach the destination (i.e., a link failure takes place). Since Π is
correct independent of link failures, consensus must be reached
in any case. This means, the last message was useless, and then
Π could not be shortest!

Impossibility of consensus under link failures

15

Negative result for processor failures
in asynchronous systems

• It is not hard to see that a processor failure (both
permanent crash and byzantine) is at least as difficult as a
non-permanent link failure, and then also in this case not
for all the input instances it will be possible to solve the
consensus problem

• But even worse, it is not hard to prove that in the
asynchronous case, it is impossible to reach consensus for
any system topology and already for a single crash failure!

• Notice that for the synchronous case it cannot be given a
such general negative result (in the two general problems,
the topology was special, in the sense that the link was a
bridge, i.e., it was needed for the connectivity of the
system)  in search of some positive result, we focus on
the synchronous case and we look at the powerful clique
topology

16

Positive results: Assumption on the communication
model for crash and byzantine failures

1p

2p

3p

4p5p

• Complete undirected graph (this implies non-uniformity)

• Synchronous network, synchronous start: w.l.o.g., we assume
that messages are sent, delivered and read in the very same
round

17

Overview of Consensus Results

f-resilient consensus algorithms (i.e.,
algorithms solving consensus for at
most f faulty processors)

Crash failures Byzantine failures

Number of
rounds

f+1 (tight) 2(f+1)

f+1 (tight)

Total number
of processors

n≥f+1 (tight) n≥4f+1

n≥3f+1 (tight)

Message
complexity

O(n3) O(n3)

O(nO(n)) (exponential)

18

A simple algorithm for fault-free consensus

1. Broadcasts its input to all processors

2. Reads all the incoming messages

3. Decides on the minimum received value

Each processor:

(only one round is needed,
since the graph is complete)

19

0

1

2 3

4

Start

20

0

1

2 3

4

Broadcast values
0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

21

0

0

0 0

0

Decide on minimum

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

22

0

0

0 0

0

Finish

23

This algorithm satisfies the agreement

1

3

5 2

3

Start Finish
1

1

1 1

1

All the processors decide the minimum
exactly over the same set of values

24

This algorithm satisfies the validity condition

1

1

1 1

1

Start Finish
1

1

1 1

1

If everybody starts with the same initial value,

everybody decides on that value (minimum)

25

0

1

2 3

4

Start
fail

The failed processor doesn‟t broadcast

its value to all processors

0

0

Consensus with Crash Failures
The simple algorithm doesn‟t work

26

0

1

2 3

4

Broadcasted values

0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

27

0

0

1 0

1

Decide on minimum

0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

28

0

0

1 0

1

Finish
fail

No agreement!!!

29

An f-resilient to crash failures algorithm

Round 1:

 Broadcast to all (including myself) my value;

 Read all the incoming values;

Round 2 to round f+1:

 Broadcast to all (including myself) any new
 received values (one message for each value):

 Read all the incoming values;

End of round f+1:

 Decide on the minimum value ever received.

Each processor:

30

0

1

2 3

4

Start

Example 1: f=1 failures, f+1 = 2 rounds needed

31

0

1

2 3

4

Round 1

0

0
fail

Example 1: f=1 failures, f+1 = 2 rounds needed

Broadcast all values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

(new values)

32

Example 1: f=1 failures, f+1 = 2 rounds needed

Round 2

Broadcast all new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4
1

2 3

4

0

33

Example 1: f=1 failures, f+1 = 2 rounds needed

Finish

Decide on minimum value

0

0 0

0

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

0

34

0

1

2 3

4

Start

Example 2: f=1 failures, f+1 = 2 rounds needed

35

0

1

2 3

4

Round 1

Example 2: f=1 failures, f+1 = 2 rounds needed

No failures: all values are broadcasted to all

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

36

0

1

2 3

4

Round 2

1,2,3,4 fail

Example 2: f=1 failures, f+1 = 2 rounds needed

No problems: processors “2” and
“4” have already seen 1,2,3 and 4
in the previous round

1,2,3,4

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

37

Example 2: f=1 failures, f+1 = 2 rounds needed

Finish

Decide on minimum value

0

0 0

0

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

0

38

0

1

2 3

4

Start

Example 3: f=2 failures, f+1 = 3 rounds needed

39

0

1

2 3

4

Round 1

0

Failure 1

Broadcast all values to everybody

1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Example 3: f=2 failures, f+1 = 3 rounds needed

40

0

1

2 3

4

Round 2
Failure 1

Broadcast new values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Failure 2

Example 3: f=2 failures, f+1 = 3 rounds needed

0

41

0

1

2 3

4

Round 3
Failure 1

Broadcast new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Failure 2

Example 3: f=2 failures, f+1 = 3 rounds needed

42

0

0

0 3

0

Finish
Failure 1

Decide on the minimum value

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Failure 2

Example 3: f=2 failures, f+1 = 3 rounds needed

43

In general, since there are f failures and f+1 rounds, then

there is at least a round with no new failed processors:

Example:

5 failures,

6 rounds

1 2

No failure

3 4 5 6 Round

44

Lemma: In the algorithm, at the end of the round with no new
failures, all the non-faulty processors know the same set of
values.

Proof: For the sake of contradiction, assume the claim is
false. Let x be a value which is known only to a subset of non-
faulty processors at the end of the round with no failures.
Observe that any such processors cannot have known x for
the first time in a previous round, since otherwise it had
broadcasted x to all. So, the only possibility is that it
received it right in this round, otherwise all the others
should know x as well. But in this round there are no failures,
and so x must be received and known by all, a contradiction.
 QED

Correctness (1/2)

45

Agreement: this holds, since at the end of the round
with no failures, every (non-faulty) processor has the
same knowledge, and this doesn‟t change until the
end of the algorithm (no new values can be
introduced, since we assumed synchronous start) 
eventually, everybody will decide the same value!

Correctness (2/2)

Remark: we don‟t know the exact position of the
free-of-failures round, so we have to let the
algorithm execute for f+1 rounds

Validity: this holds, since the value decided from
each processor is some input value (no corrupted
values are introduced)

46

Performance of Crash Consensus Algorithm

• Number of processors: n > f

• f+1 rounds

• O(n2·k)=O(n3) messages, where k=O(n)
is the number of different inputs.
Indeed, each processor sends O(n)
messages (one for each processor)
containing a given seen value in X

47

A Lower Bound
Any f-resilient consensus algorithm

with crash failures requires at least
f+1 rounds

Theorem:

Proof sketch: Assume by contradiction that f

or less rounds are enough. Clearly,
every algorithm which solves
consensus requires that eventually
non-faulty processors have the very
same knowledge

Worst case scenario:
There is a processor that fails in

each round

48

Round

a

1

before processor pi1
fails, it sends its value a

to only one processor pi2

Worst case scenario

pi1

pi2

49

Round

a

1

Worst case scenario

2

before processor pi2
fails, it sends its value

a to only one processor pi3

pi2

pi3

50

Round 1

Worst case scenario

2

………

a

f 3

Before processor pif fails, it sends its value a
to only one processor pif+1

. Thus, at the end
of round f only one processor knows about a

Pif+1

pif

51

Round 1

Worst case scenario

2

………

f 3

No agreement: Processor pif+1
 has a different

knowledge, i.e., it may decide a, and all other
processors may decide another value, say b>a 
contradiction, f rounds are not enough. QED

a

b

decide

pif+1

52

Consensus with Byzantine Failures

solves consensus for at most f byzantine
processors

f-resilient to byzantine failures consensus
algorithm:

53

Any f-resilient consensus algorithm

with byzantine failures requires

at least f+1 rounds

Theorem:

follows from the crash failure lower bound

Proof:

Lower bound on number of rounds

54

An f-resilient to byzantine failures algorithm

Solves consensus in 2(f+1) rounds for n
processors out of which at most n/4 can be
byzantine, namely f<n/4 (i.e., n≥4f+1)

Assumption: Processors have (distinct) ids in
{1,…,n} (and so the system is non anonymous), and
we denote by pi the processor with id i; this is
common knowledge, i.e., processors cannot cheat
about their ids (namely, pi cannot behave like if it
was pj, ij, even if it is byzantine!)

The King algorithm

55

The King algorithm

There are f+1 phases; each phase has 2
rounds, used to update in each
processor pi a preferred value vi. In
the beginning, the preferred value is
set to the input value

In each phase there is a different king

 There is a king that is non-faulty!

56

The King algorithm Phase k

Round 1, every processor pi:

• Broadcast to all (including myself)
its preferred value vi

• Set vi:=a

• Let a be the majority

 of received values (including vi)
(in case of tie pick an arbitrary value)

57

After receiving vk, if pi selected in Round 1 a
preferred value vi with a majority of less
than n/2+f+1 (this is the so-called strong
majority), then set vi:=vk

The King algorithm Phase k

Round 2, king pk:

Broadcast (to the others) its current
preferred value vk

Round 2, processor pi:

58

The King algorithm

End of Phase f+1:

Each processor decides on its preferred
value

59

Example 1: 6 processors, 1 fault, 2 phases

Faulty

0 1

king 1

king 2 0

1 1

2

p1

p2

p4 p3

p5

p6

60

0 1

0

* 1

2

Phase 1, Round 1

0,2,1,0,0,1

1,2,1,0,0,1

0

1

1 0

0

Everybody broadcasts, and faulty p1 sends
arbitrary values

p1

p2

p4 p3

p5

p6

1,2,1,0,0,1
0,2,1,0,0,1

0,2,1,0,0,1

61

1 0

0

* 1

0

Phase 1, Round 1
Choose the majority

Each (weak) majority is equal to 51
2

3  f
n

 On round 2, everybody will choose the king‟s value

p1

p2

p4 p3

p5

p6

0,2,1,0,0,1

1,2,1,0,0,1

1,2,1,0,0,1
0,2,1,0,0,1

0,2,1,0,0,1

62

Phase 1, Round 2

0 1

0

* 1

3

king 1

 Everybody chooses the king‟s value

p1

p2

p4 p3

p5

p6

1

0

0

The faulty king broadcasts arbitrary values

0

1

0 1

3

63

0 1

0

* 1

3

Phase 2, Round 1

0,3,1,0,0,1

1,3,1,0,0,1

0

1

1 0

0

Everybody broadcasts, and faulty p1
sends arbitrary values

p1

p2

p4 p3

p5

p6

1,3,1,0,0,1
0,3,1,0,0,1

0,3,1,0,0,1

64

1 0

0

* 1

0

Phase 2, Round 1
Choose the majority

51
2

3  f
n

 On round 2, everybody will choose the king‟s value

p1

p2

p4 p3

p5

p6

0,3,1,0,0,1

1,3,1,0,0,1

1,3,1,0,0,1
0,3,1,0,0,1

0,3,1,0,0,1

Each (weak) majority is equal to

65

Phase 2, Round 2

1 0

0

* 1

0

The non-faulty king broadcasts its 0

king 2

0 0

0

0 0
p1

p2

p4 p3

p5

p6

66

Phase 2, Round 2

0 0

0

* 0

0
king 2

 Everybody chooses the king‟s value

 Final decision and agreement on 0

p1

p2

p4 p3

p5

p6 1

1

The non-faulty king broadcasts its 0

0 0

0

0 0

67

Example 2: 6 processors, 1 fault, 2 phases

Faulty
1 1

king 1

king 2 0

1 1

1

p1

p2

p4 p3

p5

p6

68

1 1

0

1 1

*

Phase 1, Round 1

1,0,1,1,0,1

1,1,1,1,0,1

0

1

1 0

2
p1

p2

p4 p3

p5

p6

1,1,1,1,0,1
1,0,1,1,0,1

1,2,1,1,0,1

Everybody broadcasts, and faulty p2 sends
arbitrary values

69

1 1

1

1 1

*

Phase 1, Round 1
Choose the majority

Some majorities are strong (at least 5
votes), others are weak (less than 5 votes)
 On round 2, somebody will choose the king‟s
value, someone else will keep its own value

p1

p2

p4 p3

p5

p6
1,2,1,1,0,1

1,1,1,1,0,1

1,1,1,1,0,1
1,0,1,1,0,1

1,0,1,1,0,1

70

Phase 1, Round 2

1

1 1

1 1

*

king 1

 Some processors switch to the king‟s
value, but they will still selects 1!

p1

p2

p4 p3

p5

p6

1

1

The non-faulty king broadcasts its 1

1

1

1 1

1

71

1 1

1

1 1

*

Phase 2, Round 1

1,2,1,1,1,1

1,1,1,1,1,1

2

1

5 0

0
p1

p2

p4 p3

p5

p6

1,5,1,1,1,1
1,0,1,1,1,1

1,0,1,1,1,1

Everybody broadcasts, and faulty p2 sends
arbitrary values

72

1 1

1

1 1

*

Phase 2, Round 1
Choose the majority

1
2

5  f
n

 On round 2, nobody will choose the king‟s value

p1

p2

p4 p3

p5

p6

1,0,1,1,1,1 1,1,1,1,1,1

1,5,1,1,1,1
1,0,1,1,1,1

1,2,1,1,1,1

Each majority is at least i.e., it‟s strong!

73

Phase 2, Round 2

1 1

1

1 1

*

The faulty king broadcasts arbitrary values,
but nobody changes its preferred value

king 2

0 1

5

4 0
p1

p2

p4 p3

p5

p6

 Final decision and agreement on 1

74

Lemma 1: At the end of a phase  where the
king is non-faulty, every non-faulty processor
decides the same value

Proof: Consider the end of round 1 of phase .

There are two cases:

Correctness of the King algorithm

Case 1: All non-faulty processors have chosen
their preferred value with weak majority (i.e.,
< n/2+f+1 votes) [see phase 2 of Example 1]

Case 2: Some non-faulty processor has chosen
its preferred value with strong majority (i.e.,
 n/2+f+1 votes) [see phase 1 of Example 2]

75

Case 1: All non-faulty processors have
chosen their preferred value at the
end of round 1 of phase  with weak
majority (i.e., < n/2+f+1 votes)

 Every non-faulty processor will adopt

the value broadcasted by the king during
the second round of phase , thus all of
them will decide on the same value

76

Case 2: Suppose a non-faulty processor pi has
chosen its preferred value a at the end of round 1
of phase  with strong majority ( n/2+f+1 votes)

 This implies that at least n/2+1 non-
faulty processors must have broadcasted a
at start of round 1 of phase , and then at
the end of that round, every other non-
faulty processor must have received value
a (including the king) with an absolute
majority of at least n/2+1 votes, and so
such a value becomes preferred in at least
n/2+1 non-faulty processors

77

At end of round 2, there are 2 cases:

1. If a non-faulty processor keeps its own
value, then it decides a

2. Otherwise, if a non-faulty processor
adopts the value of the non-faulty king,
then it decides a as well, since the king
has decided a

Therefore: Every non-faulty processors
decides a

END of PROOF

78

Proof: First of all, notice that the system contains
at most f byzantine processors, and then at least
n-f non-faulty processors. But since f<n/4, it
follows that n-f>n/2+f, since

Lemma 2: Let a be a common value decided by non-
faulty processors at the end of a phase . Then, a
will be preferred until the end.

f
2

n
fn

2

n
2fn

2

n
n2f

2

n
2f

4

n
f 

This means, after , a will always be preferred
with strong majority (i.e., >n/2+f), and so, until the
end of phase f+1, every non-faulty processor will
keep on deciding a. QED

79

Agreement in the King algorithm

Follows from Lemma 1 and 2, observing that
since there are f+1 phases and at most f
failures, there is al least one phase in
which the king is non-faulty (and thus from
Lemma 1 at the end of that phase all non-
faulty processors decide the same, and
from Lemma 2 this decision will be
maintained until the end).

80

f
2

n
fn 

Follows from the fact that if all (non-faulty)
processors have a as input, then in round 1 of phase
1 each non-faulty processor will receive a at least n-
f times, i.e., with strong majority, since as we
observes in Lemma 2:

Validity in the King algorithm

QED

and so in round 2 of phase 1 this will be the
preferred value of all non-faulty processors,
independently of the king‟s broadcasted value.
From Lemma 2, this will be maintained until the
end, and will be exactly the decided output!

81

Performance of King Algorithm

• Number of processors: n > 4f (we will see it

is not tight)

• 2(f+1) rounds (we will see it is not tight)

• Θ(n2·f)=O(n3) messages. Indeed, each non-
faulty node sends n messages in the first
round of each phase, each containing a
given preference value, and each non-faulty
king sends n-1 messages in the second
round of each phase. Notice that we are
not considering the fact that a byzantine
processor could in principle generate an
unbounded number of messages!

82

There is no f-resilient to byzantine

failures algorithm for n processors

when

Theorem:

Proof: First we prove the 3 processors case,

and then the general case

3

n
f 

An Impossibility Result

83

There is no 1-resilient to byzantine
failures algorithm for 3 processors

Lemma:

Proof: Assume by contradiction that there is

a 1-resilient algorithm for 3 processors

The 3 processors case

0p

1p

2p
A(0)

B(1)

C(0)

Input value (either 0 or 1)

Local Algorithm
(notice we admit
non-homogeneity)

84

B(1)
1p

0p
A(1)

2p

byzantine

C(1)

C(0)
C(1)

A first execution

p2 behaves towards p0
(resp., p1) has if it had
input 0 (resp., 1)

85

1
1p

0p
1

2p

(validity condition)

Decision value

byzantine

86

0p
1

1p

2p
C(0)

B(0)

0p

A(0)

A(1)

1
1p

0p
1

2p
A(0)

A second execution

p0 behaves towards p1
(resp., p2) has if it had
input 0 (resp., 1)

byzantine byzantine

87

0p
1

1p

2p
0

0

0p

(validity condition)

1
1p

0p
1

2p

byzantine byzantine

88

0p
1

1p

2p
0

0

0p

1
1p

0p
1

2p

0p

1p

0p 2pA(1) C(0)
B(1) B(0)

B(1)

A third execution
p1 behaves
towards p2
(resp., p0) has
if it had input
0 (resp., 1)

byzantine byzantine

byzantine

89

B(1)
1p

0p

A(1)
2p

C(1)

C(0)

1p

2p
C(0)

B(0)

0p
A(0)

A(1)

0

0 1

1
0p

1p

0p 2pA(1) C(0)
B(1) B(0)

B(1)

The view of p2 (resp., p0) in the third execution is
exactly the same as in the second (resp., the first)
execution, so it must take the same decision as before!

byzantine byzantine

byzantine

90

0p
1

1p

2p
0

0

0p

1
1p

0p
1

2p

0p

1p

0p 2p
0 1

No agreement!!! Contradiction, since the
algorithm was supposed to be 1-resilient

byzantine byzantine

byzantine

91

Therefore:

There is no algorithm that solves

consensus for 3 processors

in which 1 is a byzantine!

92

The n processors case

Assume by contradiction that there

is an f-resilient distributed algorithm A

for n>3 processors for
3

n
f 

We will use A to solve consensus

for 3 processors and 1 byzantine failure

(contradiction)

93

Each processor qi simulates the execution of
algorithm A once restricted to the set Pi of n/3
processors

1q

2q0q

W.l.o.g. let n=3f, and let P=<p0,p1,…,p3f-1> be the n-
processor system. We partition arbitrarily the n
processors in 3 sets P0,P1,P2, each containing n/3
processors; then, given a 3-processor system
Q=<q0,q1,q2>, we associate each qi with Pi

p0,…,pf-1

pf,…,p2f-1

p2f,…,p3f-1

94

1q

2q

byzantine

When a processor in Q fails, then at most
n/3 original processors in the original n-
processor system P are affected

0q
p0,…,pf-1

pf,…,p2f-1

p2f,…,p3f-1

95

1q

2q

fails

But we were assuming that the original
algorithm A tolerates at most f=n/3
failures, so the remaining 2f processors
must agree!

Finish of

algorithm A

k
k k

k k k

k

k

k k
k k

k
all decide k

0q
p0,…,pf-1

pf,…,p2f-1

p2f,…,p3f-1

96

1q

2q

fails

Final decision

k

k

We reached consensus with 1 failure

Impossible!!!

0q

97

There is no f-resilient to byzantine
failures algorithm for n processors in case

Therefore:

3

n
f 

Is there an f-resilient to byzantine
failures algorithm for n processors if
f=(n-1)/3, namely for n=3f+1?

Question:

98

Exponential Tree Algorithm
• This algorithm uses

– n=3f+1 processors (optimal)
– f+1 rounds (optimal)
– exponential number of messages (sub-optimal, the King

algorithm was using only O(n3) msgs)
• Each processor keeps a rooted tree data structure in its

local state
• From a topological point of view, all the trees are

identical: they have height f+1, each root has n children,
the number of children decreases by 1 at each level, and
all the leaves are at the same level

• Values are filled top-down in the tree during the f+1
rounds; more precisely, during round i, level i of the tree
is filled

• At the end of round f+1, the values in the tree are used to
compute bottom-up the decision.

99

Local Tree Data Structure
• Assumption: Similarly to the King algorithm, processors have
(distinct) ids (now in {0,1,…,n-1}), and we denote by pi the
processor with id i; this is common knowledge, i.e., processors
cannot cheat about their ids;

• Each tree node is labeled with a sequence of unique processor
ids in 0,1,…,n-1:

• Root's label is empty sequence  (the root has level 0 and
height f+1);

• Root has n children, labeled 0 through n-1

• Child node of the root (level 1) labeled i has n-1 children,
labeled i:0 through i:n-1 (skipping i:i);

• Node at level d>1 labeled i1:i2:…:id (these indexes are
distinct values in 0,1,…,n-1) has n-d children, labeled
i1:i2:…:id:0 through i1:i2:…:id:n-1 (skipping any index i1,i2,…,id);

• Nodes at level f+1 are leaves with label i1:i2:…:if+1 and have
height 0.

100

Example of Local Tree

The tree when n=4 and f=1:

101

Filling-in the Tree Nodes
• Round 1:

– Initially store your input in the root (level 0)
– send level 0 of your tree (i.e., your input) to all (including

yourself)
– store value x received from pj, j=0,…,n-1, in tree node

labeled j (level 1); use a default value “*” (known to all!) if
necessary (i.e., in case a value is not received or it is
unfeasible)

– node labeled j in the tree associated with pi now contains
what “pj told to pi“ about its input (assuming pi is non-faulty)

• Round 2:
– send level 1 of your tree to all, including yourself (this

means, send n messages to each processor)
– let {x0,…,xn-1} be the set of values that pi receives from pj;

then, pi discards xj, and stores each remaining xk in level-2
node labeled k:j (and use default value “*” if necessary)

– node k:j in the tree associated with pi now contains "pj told
to pi that “pk told to pj that its input was xk”"

As before, n=4 and f=1, and assume that non-
faulty p2 tells to non-faulty p1 that the first
level of its local tree contains {a,b,c,d}; then,
p1 stores in the local tree:

102

Example: filling the Local Tree at round #2

a b d

a b d c

Tree at p2 at the end of round 1 Tree at p1

 The value c is not stored in the tree at p1 since there
is no node with label 2:2

103

Filling-in the Tree Nodes (2)
. . .
• Round d>2:

– send level d-1 of your tree to all, including
yourself (this means, send n(n-1)…(n-(d-2))
messages to each processor, one for each node
on level d-1)

– Let x be the value that pi receives from pj for
node of level d-1 labeled i1:i2:…:id-1, with i1,i2,…,id-1
 j; then, pi stores x in tree node labeled
i1:i2:…:id-1:j (level d), using default value “*” if
necessary

• Continue for f+1 rounds

104

Calculating the Decision

• In round f+1, each processor uses the values
in its tree to compute its final decision
(output)

• Recursively compute the "resolved" value for
the root of the tree, resolve(), based on the
"resolved" values for the other tree nodes:

resolve() =

value in tree node labeled  if it is a

leaf

majority{resolve(') : ' is a child of }

otherwise (use default “*” if tied)

105

Example of Resolving Values

The tree when n=4 and f=1:

0 0 1 0 0 0 1 1 1 1 1 0

0 0 1 1

*
(assuming “*” is the default)

106

Resolved Values are consistent

Lemma 1: If pi and pj are non-faulty, then pi's
resolved value for tree node labeled π=π'j is equal
to what pj stores in its node π„ during the filling-up
of the tree (and so the value stored in π by pi is
the same value which is resolved in π by pi, i.e., the
resolved value is consistent with the stored value).
(Notice this lemma does not hold for the root)

Proof: By induction on the height of the tree node.

• Basis: height=0 (leaf level). Then, pi stores in node
π =π'j what pj sends to it for π‟ in the last round.
By definition, this is the resolved value by pi for π.

107

• Induction: π is not a leaf, i.e., has height h>0;
– By definition, π has at least n-f children, and

since n>3f, this implies n-f>2f, i.e., it has a
majority of non-faulty children (i.e., whose last
digit of the label corresponds to a non-faulty
processor)

– Let πk=π‟jk be a child of π of height h-1 such
that pk is non-faulty.

– Since pj is non-faulty, it correctly reports a
value v stored in its π‟ node; thus, pk stores it in
its π=π‟j node.

– By induction, pi‟s resolved value for πk equals
the value v that pk stored in its π node.

– So, all of π‟s non-faulty children resolve to v in
pi‟s tree, and thus π resolves to v in pi‟s tree.

 END of PROOF

108

Inductive step by a picture

Non-faulty pj

π‟ v

stores v

Non-faulty pk

π=π‟j

v
stores v

Non-faulty pi

π‟jk

v
resolve to v
by ind. hyp.

v …

≥ n-f children,
and the
majority resolve
to v by n>3f, i.e.,
n-f>2f

v
π=π‟j

 resolve to v

Remark: all the non-faulty
processors will resolve the very
same value in π=π'j, namely v

height h+1

height h

height h-1

height h

109

Validity
• Suppose all inputs of (non-faulty) processors are v

• Non-faulty processor pi decides resolve(), which
is the majority among resolve(j), 0 ≤ j ≤ n-1, based
on pi's tree.

• Since by Lemma 1 resolved values are consistent,
if pj is non-faulty, then pi's resolved value for tree
node labeled j, i.e., resolve(j), is equal to what pi
stores in the tree node labeled j, which in turn is
equal to what pj stores in its root, namely pj's
input value, i.e., v.

• Since there is a majority of non-faulty processors,
and their inputs are all equal to v, then pi decides
v.

110

Agreement: Common Nodes and Frontiers

Definition 1: A tree node  is common if all
non-faulty processors compute the same value
of resolve().

To prove agreement, we have now to show
that the root is common

Definition 2: A tree node  has a common
frontier if every path from  to a leaf
contains at least a common node.

111

Lemma 2: If  has a common frontier, then  is
common.
Proof: By induction on the height of :
•Basis (π is a leaf): then, since the only path from π
to a leaf consists solely of π, the common node of
such a path can only be π, and so π is common;
•Induction (π is not a leaf): By contradiction, assume
π has height h and is not common; then:

– Every child π‟ of π has a common frontier (this is not
true, in general, if π would be common);

– Since every child π‟ of π has height h-1 and has a common
frontier, then by the inductive hypothesis, it is common;

– Then, all non-faulty processors resolve the same value for
every child π‟ of π, and thus all non-faulty processors
resolve the same value for π, i.e., π is common.

END of PROOF

112

Agreement: the root has a common frontier

• There are f+2 nodes on any root-leaf path
• The label of each non-root node on a root-leaf path

ends in a distinct processor index: i1,i2,…,if+1
• Since there are at most f faulty processors, at least

one of such nodes has a label ending with a non-faulty
processor index

• This node, say i1:i2:,…,ik-1:ik, by Lemma 1 is common
(more precisely, in all the trees associated with non-
faulty processors, the resolved value in i1:i2:,…,ik-1:ik
equals the value stored by the non-faulty processor pik

in node i1:i2:,…,:ik-1)

Thus, the root has a common frontier, since on any
root-leaf path there is at least a common node, and so
the root is common (by previous lemma)

Therefore, agreement is guaranteed!

113

Complexity
• Exponential tree algorithm uses f+1 rounds, and

n=3f+1 processors are enough to guarantee
correctness (see Lemma 1)

• Exponential number of messages:
– In round 1, each (non-faulty) processor sends n

messages  O(n2) total messages
– In round 2 ≤ d ≤f+1, each of the O(n) (non-faulty)

processors broadcasts to all (i.e., n processors) the
level d-1 of its local tree, which contains n(n-1)(n-2)…(n-
(d-2)) nodes  this means, for round d, a total of

 O(n·n·n(n-1)(n-2)…(n-(d-2)))=O(nd+1) messages
– This means a total of O(n2)+O(n3)+…+ O(nf+2)= O(nf+2)

messages, and since f=O(n), this number is exponential
in n if f is more than a constant relative to n

114

Exercise 1: Show an execution with n=4
processors and f=1 for which the King
algorithm fails.

Exercise 2: Show an execution with n=3
processors and f=1 for which the exp-tree
algorithm fails.

