A recipe for a Distributed Ledger:
Proof-of-Work, Blockchains, and Bitcoins

Goals

* Understand the basic cryptographic tools of
Blockchains.

e Glve an overview of how Blockhains are built
using these tools.

* Bitcoin blockchain as an example.

The Distributed Ledger Problem

Maintain a distributed ledger containing a
seguence of economic transactions

7N
\)
"

|

\] 2

Every node can add transactions to the ledger.

[
-
[

f
@
|
— '//
L ye
N [
/" * ~
—_ '/ V

All agents agree on the ledger contents.
No central authority.

The Bitcoin Network

A distributed peer-to-peer overlay network

Every node executes the Bitcoin protocol.

Bitcoin
A digital cryptocurrency and payment system
* Invented in 2008/2009 by Satoshi Nakamoto

e Currently = 19200000 BTC

* Bitcoin generation iIs on a schedule and will
converge to 21000000 BTC

bitcoin

Bitcoin: A Peer-to-Peer Electronic Cash System

2008

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power 1s controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The

Currently 1 BTC = 16 800$ = 15800€

| https://coincap.io/assets/bitcoin |

/0000.00
60000.00
50000.00

000,00

30800.00

10000.00

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

1 Satoshi = 10°BTC = 0.00000001 BTC

https://coincap.io/assets/bitcoin

Acquiring Bitcoins

* Receiving a payment for a good/service
* Exchanging with other currencies

* Mining

| T — :
Il ‘ - Helpline Tel. 0800 11 44 77

| 1 Billtty
- ﬂ Blllf%gkets Ra”TiCkl . ‘

20.01.2018

:::::::::

Some Basic Ingredients

Hash Functions

A function H : {0,1}* - {0,1}8

* Deterministic: same input = same
output.

* Uniform: Hashes are evenly
distributed in {0,1}"

Example: H(m) = m mod 2"

0100100

Input (or message)
(any length)

0010101

1101010
01011....

|

H

-

H(m)

Hash (or Digest)
(¢ bits)

Hash Functions

Example: H(x) = x mod 2¢, {=2

00000 |
&)
)) OO
00001
&)
00010 | ol
&)
T 00011 10
&)
o 00100 | 11
00101
&)

Collision: H(00001) = H(00101) =01

One-way functions

Function f: {0,1}* - {0,1}* that is:
 Easy to compute

f € FP: Given m, h=f(m) can be computed by a
deterministic polynomial-time algorithm.

e Hard to invert:

- v ¢>0 and sufficiently large message m, 4
randomized polynomial-time algorithm A(f(m)) that
computes x such that f(x)=f(m) with a success

probability of at least |m|™.
Easy

m /\

f(m)

Do one-way functions exist?

We don’t know!
Major open problem in computer science.

FP = FNP = A One way functions
3 One way functions = FP # FNP < P # NP.

Informally: is it true that every problem whose solution can
be efficiently verified can also be efficiently solved?

Millennium prize problem ($1,000,000 from Clay Institute)

One-Way Functions: Candidates

Factoring:

Given two primes p,q. easy to compute Xx=pqQ
Hard to factor x into p and g.

Discrete logarithm:

Given k and p, easy to compute x=2% mod o}
Hard to find k from x and p.

Point multiplication Is easy ‘ L
to compute and hard to invert.

Elliptic Curves: | f\\/
"\

Hash Functions (Attacks)

Preimage attack:
given h, find m such that H(m) = h.

Second preimage attack:
given m,, find m_#m_ such that H(m,) = H(m.).

Birthday attack:
find m, and m,#Zm_such that H(m) = H(m.,).

Cryptographic Hash Functions

Collisions are unavoidable.
Next best thing: collisions are hard to find.

Cryptographic Hash Function H:

* |s a one-way function: avoids pre-image attacks.
* Resistant to second pre-image attacks.
 Collision resistant; avoids birthday attacks.

* A small change to the input produces a big
change in the output.

* Resistant to other attacks (e.g., length extension).

Very Informally: H looks “random”.

Input

Fox

cryptographic
hash
function

Digest

DFCD
696C

3454
24D9

BBEA
7009

7884
Ch99

7514
2D17

The red fox
jumps over
the blue dog

cryptographic
hash
function

0086
ACCT

46BB
6CD1

FB7D
90B1

CBE2
EEGE

823C
3ABC

The red fox
jumps ouer
the blue dog

cryptographic
hash
function

8FD38
76B1

7558
7T9R9

7851
oDAd

4F32
AEFE

D1Cé
4819

The red fox
jumps oevr
the blue dog

cryptographic
hash
function

FCD3
D401

TFDB
COA9

BAF2
TD9A

C6FF
46AF

915F
FE45

The red fox
jumps oer
the blue dog

cryptographic
hash
function

S8ACH
1799

D682
D88

D5h88
BCFS

4cC75h
92B9

4BF4
6ABC

Famous Cryptographic Hash Functions

* MD4 Birthday attack (us), Preimage attack

* MD5 Birthday attack (s), Preimage attack (theoretical)
 SHA®D Birthday attack (< 1hour)

* SHAZX Birthday attack (110 years on GPU)

* SHA2: SHA-256,5HA-384, SHA-512
 SHA3: Keccak

Digital Signatures

0100100
1101010

01011....

|

0010101

., 1101010

Signing Algorithm

MmOosS

0100100

01011....

0010101

0101110

signature

0100100
1101010
01011....

1110

0010101

0101134

Verification Algorithm

Digital Signatures

A mathematical scheme that sighs a message
to guarantee:

 Authentication: Bob knows Alice sent the
message

* Non-repudiation: Alice cannot deny having
sent the message

* Integrity: The message was not altered in
transit

Public and Private Keys

Three ingredients (algorithms):
 Key generation: generates a pair (pk,sk) of

public and private (secret) keys. ’ ’

* Signing: Given a message m and a private key
sk produces a digital signature s. - ’

e J

* Signature Verification: Given m, s, and pk,
verifies that the signature s matches m has been
produced using sk associated with pk.

The Diswilsated Ledger Problem

Maintain a JiSts#eat®d ledger containing a
seguence of economic transactions

< /> @ @

Every node can add transactions to the ledger.
All agents agree on the ledger contents.

"N CERTraterstOnTy,

Solving the Ledger Problem with a
trusted central authority

Each node owns a public/private key pair 4 ; ’
The public key of the central authority is known to
all nodes of the network :

The central authority knows the pulic key of all
other nodes

Solving the Ledger Problem with a
trusted central authority

@

Nodes send their transactions to the authority <«—-
The authority publishes and updates the ledger —»

All identities are checked through digital signatures

The Distributed Ledger Problem

Maintain a distributed ledger containing a
seguence of economic transactions

e

- N
\) P
@
\ / \\\"
AN]
Q /\ Y
. p \\‘
< _

{0
-
- 4
I yo
N [
I
7)

N\
.

<Z

TN
(/

|

Every node can add transactions to the ledger.

All agents agree on the ledger contents.

No central authority.

The Bitcoin Architecture

Bitcoin Address

Public Key to Bitcoin Address

Public Key

r N\
SHA256
“Double Hash”
< or
HASH160

RIPEMD160

" o

Public Key Hash
(20 bytes/160 bits)

Base58Check Encode
with 0x00 version prefix

\-(-‘.

Bitcoin Address
(Base58Check Encoded Public Key Hash)

Bitcoin Address

ﬁ — 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy :? [

[m] 3ot [m] ‘

. || | 4 rl. "

ol

n :'I-
. P

Clfehs-

Bitcoins are “owned” by an address (a public key). ﬁ ’

=
||
They can be spent by whoever controls the corresponding private key.

Bitcoin Wallet

---\

1J7mdg5rbQyUHENYdx
39WVWK7fsLpEoXZy '

1F1tAaz5x1HUXrCNLDbt l
MDqcw605GNn4xgX

-----J

Bitcoin Wallet Types

Non-Deterministic Deterministic
(Random) (Seeded)

Mnemonic Seed

Transactions

Transactions transfer Bitcoins between addresses.

0.0005 BTC

1J7mdg5rbQYUHENYdX39WVWK7fsLpEoXZy 1IMz7153HMuxXTuR2R1t78mGSdzaAtNbBWX

Transactions

Alice must prove that her input address owns the
funds (no double spending).

She does so by referencing an unspent output in
a previous transaction.

INPUT(S) OUTPUT(s)

0.0006 BTC

-I/"| [0.0005 BTC
61 ~—

Multiple Inputs/Outputs

A transaction might contain multiple inputs and/or
outputs.

0.0003 BTC

PR L d
R
¢
P
\f
\I/‘ [
)|

e

) \
0.0002 BTC ? [?}
) e

No Change

Outputs are either unspent or completely spent.

If the Input Is amount Is too large, change can be
collected by adding an additional output.

0.0003 BTC I
&y‘) \ [
0.0002 BTC ‘

Transaction Fees

If an input is not completely spent, the difference
between inputs and outputs is an implicit
transaction fee.

Each transaction should have a non-zero
transaction fee.

Inputs

Input
Input
Input 3
Input 4

M)

Total Inputs:

Transaction as Double-Entry Bookkeeping

Value

0.10 BTC
0.20 BIC
0.10 BIC
0.15 BIC

0.55BTC

Inputs 0.55BTC
Outputs 0.50BTC

* Qutputs
. Output 1

- OQutput 2
- Qutput 3

+ Total Outputs:

Difference 0.05 BIC (implied transaction fee)

Value

0.10 BIC
0.20 BIC
0.20 BTC

0.50 BTC

Transaction 7957a35fe64f80d234d76d83a2a8f1a0d8149a41d81de548f0a65a8a999f6f18

INPUTS From OUTPUTS To
om e aacions e et DA s DI0MBC e
Transaction Fees: 0.0005 BTC
Transaction 0627052b6f28912f2703066a912ea577f2ce4dadeda5a5fhd8a57286¢345¢2f2
L I_NI_’U_TS_ F_roln ____________ OUTPUTS To
:7957a35fe64f80(ﬁl3ltcgﬁd83a2a8ﬂa0d8149a41d8[1) d%504350a86%%3a999f6ﬂa o: -_59?9_11}_{*5_3_95553_516_5 _s_ '_'_'_'_'0_ 6_1_5_6 P'T_E_('SP'E@'

(change) 0.0845 BTC (unspent)
0.0005 BTC

Transaction 2bbac8bb3a57a2363407ac8¢16a67015ed2e88a4388af58cf90299e0744d3de4
__________________________ OUTPUTS To

:0627{}52b6f2891[2;137t’){}3066a912ea577f2ce4da4caa(;5&8;b§1(8)aSB7T2C86C345c2f2 0 : Output #0 Gopesh’s Address 0.0100 BTC (unspent)

CTTTTTTTTTTTTTTTTTTTTTTTTTT - Output #1 Bob”s Address (change) 0.0845 BTC (unspent)

Transaction Fees: 0.0005 BTC

Digital Signatures

The following transaction must be rejected by the
network.

INPUT(S) OUTPUT(s)

0.0006 BTC

0.0005 BTC

Digital Signatures to the Rescue

Alice provides the public key corresponding to the
iInput address and signs the transaction with her
private key.

INPUT(s) OUTPUT(s)

HEADER

BODY

Blocks

Transaction are grouped into Blocks

HASH(BODY)

)

Transaction 1 Transaction 2

Transaction 3

Transaction 4

Transaction 5

Transaction n

Blockchain

Blocks are linked together to form a chain.
Each block stores the hash of the parent block header.

HASH(HEADER(B,,)) HASH(HEADER(B,,))

l"‘.~‘ R
AW

Block O Block 98 Block 99 Block 100
(Hardcoded)

Blockchain Forks

It is possible for two blocks to extend the blockchain
Each block stores the hash of the parent block header.

HASH(HEADER(B,,)) h
W %

Block 99 Block 100

Blockchain Forks

Ties are broken in favor of the longest chain.
Shorter branches are ignored.

HASH(H EADER(BQQ)) él
-
O
I \

IV

Block 99 Block 100

Block 101 Block 102

Blockchain Forks

An attacker can only rewrite history if he controls more
than half* of the computational power of the network.

*some attacks only require about ¥ of the total computational power.

Proof of Work

Creating a new block requires significant amount of
work (computational effort).

Malicious peers who want to modify past blocks have to
work harder than honest peers who want append blocks.

A block B is only accepted by the network iff
HASH(HEADER(B)) < TARGET

TARGET dynamically updates so that the average time
to find a valid block is around 10 minutes

Mining
Mining Is the process through which new blocks are
created.

Mempool: set of transaction that do not belong to any
block.

Miners select a (sub)set of mempool transactions, check
for their validity, and add them to the body of the new
block.

Transaction

Transaction .

Transaction
Transaction - BODY

Transaction

Mining
Miners generate the header for the new block, and they
compute the header’s hash until

HASH(Header) < TARGET

Parent Hash ans Nonce HASH(BODY)

}

Transaction 1 Transaction 2

Transaction 3

A Nonce field ensures that the header hash changes.

Mining
Miners get to add one additional “coinbase” transaction
with no Inputs.

The output(s) is usually an address owned by the miner.

The amount is the sum of a block subsidy and of the
transaction fees.

Parent Hash " Nonce HASH(BODY)

Coinbase Transaction

Transaction 1 Transaction 2

Transaction 3

Mining
Block subsidy: only depends on the block number (i.e.,

length of the block-chain up to the first block). This is how
new bitcoins are created.

Transaction fees: the sum of the transaction fees of the
selected transactions.

Parent Hash " Nonce HASH(BODY)

Coinbase Transaction (New Bitcoins + Fees)

Transaction 1 Transaction 2

Transaction 3

This Is the miner’s reward for “solving” a block.

Mining (Selecting the Transactions)

Each block has a maximum “capacity” of 1MB.

Transaction have varying lengths in bytes (depending
on the number of inputs/outputs) and different fees.

Selecting the a set of transactions to include while
maximizing the miner’s revenue Is a special case of the

Knapsack Problem, a well known NP-Hard problem.

The reference miner implementation greedly selects
transactions to add (in order of fee/transaction size).

The Body Hash (Merkle Trees)

HEADER Parent Hash Nonce HASH(BODY)

Root J
HABCDEFGHIJKLMNOP

‘/)\—

HABCDEFGH HJKLMNOP

HjKL HMNOP

H) kL N m

H| Hy 1 He 1L HC [Hm L] HN L] Ho || Hp

ST S N S S N VA S N S S A S S

TA 1B TCc Tb TE TF TG TH TI 3 TK Tb T™ TN TO TP

BODY

The Bitcoin Network

Node Types

«~» Full Nodes: have a local copy of the entire
“ Dblockchain. Can directly verify transactions.
Can send/receive bitcoins.

~ Lightweight (SPV) nodes: No local copy of
~ the blockchain. Can indirectly verify
transactions. Can send/recelve bitcons.

Miners: work to extend the blockchain, mint
bitcoins, and get rewarded.

SPV Nodes

* SPV Nodes only download block headers (80B/block).
* Complete knowledge of which blocks are in the blockchain

* No knowledge on what the block contents (transactions) are.

HASH(HEADER(B,,)) HASH(HEADER(B,,))

't".~‘ "
A ﬂ ﬂ

Block O Block 98 Block 99 Block 100
(Hardcoded)

Proof of Inclusion

H EAD E R Parent Hash Nonce HASH(BODY)
v Root 1 J
HABCDEFGHIJKLMNOP .
------- il Qi — — — = =
HABCDEFGH 1 HJKLMNOP |

HABCD HEFGH

W bl [e W
3) -

TA 1B TCc Tb TE TF TG TH TI TJ . L. T TN TO TP

BODY

