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Goals

● Understand the basic cryptographic tools of 
Blockchains.

● Give an overview of how Blockhains are built 
using these tools.

● Bitcoin blockchain as an example. 



  

The Distributed Ledger Problem

Maintain a distributed ledger containing a 
sequence of economic transactions

Every node can add transactions to the ledger.
All agents agree on the ledger contents.
No central authority.



  

The Bitcoin Network
A distributed peer-to-peer overlay network

 

Every node executes the Bitcoin protocol.



  

Bitcoin
● A digital cryptocurrency and payment system
● Invented in 2008/2009 by Satoshi Nakamoto
● Currently ≈ 19 200 000 BTC
● Bitcoin generation is on a schedule and will 

converge to 21 000 000 BTC



  

2008



  

Currently 1 BTC ≈ 16 800$ ≈ 15 800€
[ https://coincap.io/assets/bitcoin ] 

1 Satoshi = 10-8 BTC =  0.000 000 01 BTC

https://coincap.io/assets/bitcoin


  

Acquiring Bitcoins
● Receiving a payment for a good/service
● Exchanging with other currencies
● Mining



  

Some Basic Ingredients



  

Hash Functions

A function H : {0,1}* → {0,1} ℓ

● Deterministic: same input  same ⇒
output.

● Uniform: Hashes are evenly 
distributed in {0,1}ℓ

Example: H(m) = m mod 2ℓ

0010101
0100100
1101010
01011....

H

H(m)

Hash (or Digest)
(ℓ bits)

Input (or message)
(any length)

m



  

Hash Functions

Example: H(x) = x mod 2ℓ,   ℓ=2
00000

00001

00010

00011

00100

00101

00

01

10

11

⋮

Collision: H(00001) = H(00101) = 01



  

One-way functions
Function f : {0,1}* → {0,1}*  that is:

● Easy to compute 
f  FP∈ : Given m, h=f(m) can be computed by a 
deterministic polynomial-time algorithm.

● Hard to invert:
–  ∀ c>0 and sufficiently large message m,  ∄

randomized polynomial-time algorithm A(f(m)) that 
computes x such that f(x)=f(m) with a success 
probability of at least |m|-c.

m f(m)

Easy

Hard



  

Do one-way functions exist?

We don’t know!
Major open problem in computer science.

FP = FNP  ⇒  One way functions ∄

∃ One way functions  FP ≠ FNP ⇒ ⇔ P ≠ NP.

Informally: is it true that every problem whose solution can 
be efficiently verified can also be efficiently solved?
Millennium prize problem ($1,000,000 from Clay Institute)



  

One-Way Functions: Candidates

Factoring:
Given two primes p,q: easy to compute x=pq
Hard to factor x into p and q.

Discrete logarithm:
Given k and p, easy to compute x=2k mod p.
Hard to find k from x and p.

Elliptic Curves:
Point multiplication is easy
to compute and hard to invert.



  

Hash Functions (Attacks)

Preimage attack:
  given h, find m such that H(m) = h.

Second preimage attack:
  given m1, find m2≠ m1 such that H(m1) = H(m2).

Birthday attack: 
  find m1 and m2≠ m1 such that H(m1) = H(m2).



  

Cryptographic Hash Functions
Collisions are unavoidable.
Next best thing: collisions are hard to find.

Cryptographic Hash Function H:
● Is a one-way function: avoids pre-image attacks.
● Resistant to second pre-image attacks.
● Collision resistant; avoids birthday attacks.
● A small change to the input produces a big 

change in the output.
● Resistant to other attacks (e.g., length extension).



  

Very Informally: H looks “random’’.



  

Famous Cryptographic Hash Functions

● MD4 Birthday attack (μs), Preimage attack

● MD5 Birthday attack (s), Preimage attack (theoretical)

● SHA0 Birthday attack (< 1hour)

● SHA1 Birthday attack (110 years on GPU)

● SHA2: SHA-256,SHA-384, SHA-512
● SHA3: Keccak

...



  

Digital Signatures

0010101
0100100
1101010
01011....

Signing Algorithm

0010101
0100100
1101010
01011.…

0101110
1110110

0101110
1110110

0010101
0100100
1101010
01011.…

0101110
1110110

Verification Algorithm

m

signature

s

m ○ s



  

Digital Signatures

A mathematical scheme that signs a message 
to guarantee:

● Authentication: Bob knows Alice sent the 
message 

● Non-repudiation: Alice cannot deny having 
sent the message

● Integrity: The message was not altered in 
transit



  

Public and Private Keys
Three ingredients (algorithms):

● Key generation: generates a pair (pk,sk) of 
public and private (secret) keys.

● Signing: Given a message m and a private key 
sk produces a digital signature s.

● Signature Verification: Given m, s, and pk, 
verifies that the signature s matches m has been 
produced using  sk associated with pk.

...

...

+ →

+ + →



  

The Distributed Ledger Problem

Maintain a distributed ledger containing a 
sequence of economic transactions

Every node can add transactions to the ledger.
All agents agree on the ledger contents.
No central authority.



  

Solving the Ledger Problem with a 
trusted central authority

Each node owns a public/private key pair
The public key of the central authority is known to 
all nodes of the network

The central authority knows the public key of all 
other nodes



  

Solving the Ledger Problem with a 
trusted central authority

Nodes send their transactions to the authority
The authority publishes and updates the ledger
All identities are checked through digital signatures



  

The Distributed Ledger Problem
Maintain a distributed ledger containing a 
sequence of economic transactions

Every node can add transactions to the ledger.
All agents agree on the ledger contents.
No central authority.



  

The Bitcoin Architecture



  

Bitcoin Address



  

Bitcoin Address
→ 1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy

Bitcoins are “owned” by an address (a public key).

They can be spent by whoever controls the corresponding private key.



  

Bitcoin Wallet

1J7mdg5rbQyUHENYdx
39WVWK7fsLpEoXZy

1F1tAaz5x1HUXrCNLbt
MDqcw6o5GNn4xqX

⋮

⋮⋮ ⋮



  

Bitcoin Wallet Types

Non-Deterministic 
(Random)

Deterministic 
(Seeded)



  

Mnemonic Seed



  

Transactions
Transactions transfer Bitcoins between addresses.

INPUT(s) OUTPUT(s)

1J7mdg5rbQyUHENYdx39WVWK7fsLpEoXZy 1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX

0.0005 BTC



  

Transactions
Alice must prove that her input address owns the 
funds (no double spending).
She does so by referencing an unspent output in 
a previous transaction. 

INPUT(s) OUTPUT(s)

 
0.0006 BTC

0.0005 BTC

SPENT



  

Multiple Inputs/Outputs
A transaction might contain multiple inputs and/or 
outputs.

0.0003 BTC

0.0002 BTC

   
 



  

No Change
Outputs are either unspent or completely spent.
If the input is amount is too large, change can be 
collected by adding an additional output.

0.0003 BTC

0.0002 BTC

   
 



  

Transaction Fees
If an input is not completely spent, the difference 
between inputs and outputs is an implicit 
transaction fee.

Each transaction should have a non-zero 
transaction fee.



  



  



  

Digital Signatures
The following transaction must be rejected by the 
network.

INPUT(s) OUTPUT(s)

 

0.0006 BTC

0.0005 BTC



  

Digital Signatures to the Rescue
Alice provides the public key corresponding to the 
input address and signs the transaction with her 
private key.
INPUT(s) OUTPUT(s)

 

0.0006 BTC

0.0005 BTC



  

Blocks
Transaction are grouped into Blocks

Transaction 1 Transaction 2

Transaction 3 Transaction 4

Transaction 5

Transaction n...

HASH(BODY)HEADER

BODY

...



  

Blockchain
Blocks are linked together to form a chain.

Each block stores the hash of the parent block header.

...

HASH(HEADER(B99))HASH(HEADER(B98))

Block 0
(Hardcoded)

Block 98 Block 99 Block 100



  

Blockchain Forks
It is possible for two blocks to extend the blockchain

Each block stores the hash of the parent block header.

HASH(HEADER(B99))

Block 99 Block 100

  



  

Blockchain Forks
Ties are broken in favor of the longest chain.

Shorter branches are ignored.

HASH(HEADER(B99))

Block 99 Block 100

 

    

Block 101 Block 102

IGNORED



  

Blockchain Forks
An attacker can only rewrite history if he controls more 
than half* of the computational power of the network.

  

 

*some attacks only require about ¼ of the total computational power.



  

Proof of Work
 Creating a new block requires significant amount of 

work (computational effort).

Malicious peers who want to modify past blocks have to 
work harder than honest peers who want append blocks.

A block B is only accepted by the network iff
 HASH(HEADER(B))  ≤ TARGET

TARGET dynamically updates so that the average time 
to find a valid block is around 10 minutes



  

Mining
Mining is the process through which new blocks are 

created.

Mempool: set of transaction that do not belong to any 
block.
Miners select a (sub)set of mempool transactions, check 
for their validity, and add them to the body of the new 
block.

BODY

Transaction

Transaction

Transaction

Transaction

Transaction



  

Mining
Miners generate the header for the new block, and they 

compute the header’s hash until
HASH(Header) ≤ TARGET 

Transaction 1 Transaction 2

Transaction 3 ...

HASH(BODY)...Parent Hash Nonce

A Nonce field ensures that the header hash changes.



  

Mining
Miners get to add one additional “coinbase” transaction 

with no inputs.
The output(s) is usually an address owned by the miner.
The amount is the sum of a block subsidy and of the 

transaction fees. 

Transaction 1 Transaction 2

Transaction 3 ...

HASH(BODY)...Parent Hash Nonce

Coinbase Transaction



  

Mining
Block subsidy: only depends on the block number (i.e., 
length of the block-chain up to the first block). This is how 

new bitcoins are created.
 Transaction fees: the sum of the transaction fees of the 

selected transactions. 

Transaction 1 Transaction 2

Transaction 3 ...

HASH(BODY)...Parent Hash Nonce

Coinbase Transaction (New Bitcoins + Fees)

This is the miner’s reward for “solving” a block.



  

Mining (Selecting the Transactions)
Each block has a maximum “capacity” of 1MB.

Transaction have varying lengths in bytes (depending 
on the number of inputs/outputs) and different fees.

Selecting the a set of transactions to include while 
maximizing the miner’s revenue is a special case of the
Knapsack Problem, a well known NP-Hard problem.

The reference miner implementation greedly selects 
transactions to add (in order of fee/transaction size).



  



  

The Body Hash (Merkle Trees)
HASH(BODY)Parent Hash Nonce

TA TB TC TD TE TF TG TH TI TJ TK TL TM TN TO TP

BODY

HEADER



  

The Bitcoin Network

 



  

Node Types
Full Nodes: have a local copy of the entire 
blockchain. Can directly verify transactions. 
Can send/receive bitcoins.

Lightweight (SPV) nodes: No local copy of 
the blockchain. Can indirectly verify 
transactions. Can send/receive bitcons.

Miners: work to extend the blockchain, mint 
bitcoins, and get rewarded.
 



  

SPV Nodes

...

HASH(HEADER(B99))HASH(HEADER(B98))

Block 0
(Hardcoded)

Block 98 Block 99 Block 100

● SPV Nodes only download  block headers (80B/block).

● Complete knowledge of which blocks are in the blockchain

● No knowledge on what the block contents (transactions) are.



  

Proof of Inclusion
HASH(BODY)Parent Hash Nonce

TA TB TC TD TE TF TG TH TI TJ TK TL TM TN TO TP

BODY

HEADER


