Luby's Maximal Independent Set Algorithm

Independent Sets

Definition: An independent set of a graph $G=(V, E)$ is a set $\mathcal{I} \subseteq V$ such that $\forall(u, v) \in E, u \notin \mathcal{I}$ or $v \notin \mathcal{I}$ (or both).

Independent Sets

Definition: An independent set of a graph $G=(V, E)$ is a set $\mathcal{I} \subseteq V$ such that $\forall(u, v) \in E, u \notin \mathcal{I}$ or $v \notin \mathcal{I}$ (or both).

Definition: A independent set \mathcal{I} of a graph $G=(V, E)$ is maximal if there is no independent set \mathcal{I}^{\prime} of G with $\mathcal{I}^{\prime} \supset \mathcal{I}$.

Independent Sets

A Maximal Independent Set is not necessarily a Maximum Independent Set.

Definition: An independent set of a graph $G=(V, E)$ is a set $\mathcal{I} \subseteq V$ such that $\forall(u, v) \in E, u \notin \mathcal{I}$ or $v \notin \mathcal{I}$ (or both).

Definition: A independent set \mathcal{I} of a graph $G=(V, E)$ is maximal if there is no independent set \mathcal{I}^{\prime} of G with $\mathcal{I}^{\prime} \supset \mathcal{I}$.

Luby's Algoritm

- A distributed algorithm to compute a Maximal Independent Set (MIS)
- Runs in time $O(\log d \cdot \log n)$ with high probability (w.h.p.), where d is the maximum degree of G.
- Asymptotically better than the algorithm of the previous lecture (which required $O(d \log n)$ time, w.h.p.).

Luby's Algoritm

Let $d(v)$ be the degree of vertex v in G.
The algorithm works in phases

- Intially $G_{0}=G$

Luby's Algoritm

Let $d(v)$ be the degree of vertex v in G.
The algorithm works in phases

- Intially $G_{0}=G$

At the generic phase $k \ldots$

- Each node v in G_{k} elects itself with probability $p(v)=\frac{1}{2 d(v)}$.

Luby's Algoritm

Let $d(v)$ be the degree of vertex v in G.
The algorithm works in phases

- Intially $G_{0}=G$

At the generic phase $k \ldots$

- Each node v in G_{k} elects itself with probability $p(v)=\frac{1}{2 d(v)}$.
- Elected nodes are candidates to join an independent set \mathcal{I}_{k} of G_{k}.

Luby's Algoritm

Let $d(v)$ be the degree of vertex v in G.
The algorithm works in phases

- Intially $G_{0}=G$

At the generic phase $k \ldots$

- Each node v in G_{k} elects itself with probability $p(v)=\frac{1}{2 d(v)}$.
- Elected nodes are candidates to join an independent set \mathcal{I}_{k} of G_{k}.
- Find \mathcal{I}_{k}.
- G_{k+1} is obtained by deleting the vertices in \mathcal{I}_{k} and their neighbors $N\left(\mathcal{I}_{k}\right)$ from G_{k}

Luby's Algoritm

Let $d(v)$ be the degree of vertex v in G.
The algorithm works in phases

- Intially $G_{0}=G$

At the generic phase $k \ldots$

- Each node v in G_{k} elects itself with probability $p(v)=\frac{1}{2 d(v)}$.
- Elected nodes are candidates to join an independent set \mathcal{I}_{k} of G_{k}.
- Find \mathcal{I}_{k}.
- G_{k+1} is obtained by deleting the vertices in \mathcal{I}_{k} and their neighbors $N\left(\mathcal{I}_{k}\right)$ from G_{k}

Stop when $G_{k+1}=\emptyset$

Luby's Algoritm

Let $d(v)$ be the degree of vertex v in G.
The algorithm works in phases

$d(v)=3$

- Intially $G_{0}=G$

At the generic phase $k \ldots$

If v is a singleton, v always elects itself.

- Each node v in G_{k} elects itself with probability $p(v)=\frac{1}{2 d(v)}$.
- Elected nodes are candidates to join an independent set \mathcal{I}_{k} of G_{k}.
- Find \mathcal{I}_{k}.
- G_{k+1} is obtained by deleting the vertices in \mathcal{I}_{k} and their neighbors $N\left(\mathcal{I}_{k}\right)$ from G_{k}

Stop when $G_{k+1}=\emptyset$

Luby's Algoritm: Finding \mathcal{I}_{k}

If two neighbors are elected simultaneously, the node with higher degree wins (remains in \mathcal{I}_{k}).

Luby's Algoritm: Finding \mathcal{I}_{k}

\Downarrow

$$
d(v)>d(u)
$$

If two neighbors are elected simultaneously, the node with higher degree wins (remains in \mathcal{I}_{k}).

Luby's Algoritm: Finding \mathcal{I}_{k}

If both nodes have the same degree, choose using an arbitrary tie-breaking scheme (e.g., by vertex ID).

Luby's Algoritm: Finding \mathcal{I}_{k}

$$
d(v)=d(u)
$$

If both nodes have the same degree, choose using an arbitrary tie-breaking scheme (e.g., by vertex ID).

Luby's Algoritm

Previous rules are used to remove "problematic" nodes from the candidate nodes.

Luby's Algoritm

Previous rules are used to remove "problematic" nodes from the candidate nodes.

Luby's Algoritm

Previous rules are used to remove "problematic" nodes from the candidate nodes.

The remaning nodes form the independent set \mathcal{I}_{k}

Analysis

Consider a generic phase k
A good event H_{v} for node v is the following:
At least one neighbor of v enters \mathcal{I}_{k} (i.e., $\mathcal{I}_{k} \cap N(v) \neq \emptyset$)

Analysis

Consider a generic phase k
A good event H_{v} for node v is the following:
At least one neighbor of v enters \mathcal{I}_{k} (i.e., $\mathcal{I}_{k} \cap N(v) \neq \emptyset$)

If H_{v} happens, then $v \in N\left(I_{k}\right) \Longrightarrow v$ does not belong to G_{k+1}.

Analysis

Consider a generic phase k
A good event H_{v} for node v is the following:
At least one neighbor of v enters \mathcal{I}_{k} (i.e., $\mathcal{I}_{k} \cap N(v) \neq \emptyset$)

If H_{v} happens, then $v \in N\left(I_{k}\right) \Longrightarrow v$ does not belong to G_{k+1}.

Analysis

Pick a non-singleton vertex v. We want to find a lower bound to the probabilty that a neighbor of v ends up in \mathcal{I}_{k}

Analysis

Pick a non-singleton vertex v. We want to find a lower bound to the probabilty that a neighbor of v ends up in \mathcal{I}_{k}

Lemma 1: With probability at least $1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}$, at least one neighbor of v elects itself.
Where $\widetilde{d}(v)=\max _{z_{i} \in N(v)} d\left(z_{i}\right)$ is the maximum degree among the neighbors of v.

$$
\begin{aligned}
& d(v)=3 \\
& \widetilde{d}(v)=5
\end{aligned}
$$

Analysis

Lemma 1: With probability at least $1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}$, at least one neighbor of v elects itself.

Proof:

The probability of the complementary event (no neighbor of v elects itself) is:

Analysis

Lemma 1: With probability at least $1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}$, at least one neighbor of v elects itself.

Proof:

The probability of the complementary event (no neighbor of v elects itself) is:

$$
\prod_{z_{i} \in N(v)}\left(1-p\left(z_{i}\right)\right)
$$

(Recall that elections are independent)

Analysis

Lemma 1: With probability at least $1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}$, at least one neighbor of v elects itself.

Proof:

The probability of the complementary event (no neighbor of v elects itself) is:

$$
\prod_{z_{i} \in N(v)}\left(1-p\left(z_{i}\right)\right)=\prod_{z_{i} \in N(v)}\left(1-\frac{1}{2 d\left(z_{i}\right)}\right)
$$

Analysis

Lemma 1: With probability at least $1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}$, at least one neighbor of v elects itself.

Proof:

The probability of the complementary event (no neighbor of v elects itself) is:

$$
\prod_{z_{i} \in N(v)}\left(1-p\left(z_{i}\right)\right)=\prod_{z_{i} \in N(v)}\left(1-\frac{1}{2 d\left(z_{i}\right)}\right) \leq \prod_{z_{i} \in N(v)}\left(1-\frac{1}{2 \widetilde{d}(v)}\right)
$$

Analysis

Lemma 1: With probability at least $1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}$, at least one neighbor of v elects itself.

Proof:

The probability of the complementary event (no neighbor of v elects itself) is:

$$
\begin{aligned}
\prod_{z_{i} \in N(v)}\left(1-p\left(z_{i}\right)\right) & =\prod_{z_{i} \in N(v)}\left(1-\frac{1}{2 d\left(z_{i}\right)}\right) \leq \prod_{z_{i} \in N(v)}\left(1-\frac{1}{2 \widetilde{d}(v)}\right) \\
& =\left(1-\frac{1}{2 \widetilde{d}(v)}\right)^{d(v)}
\end{aligned}
$$

Analysis

Lemma 1: With probability at least $1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}$, at least one neighbor of v elects itself.

Proof:

The probability of the complementary event (no neighbor of v elects itself) is:

$$
\begin{aligned}
\prod_{z_{i} \in N(v)}\left(1-p\left(z_{i}\right)\right) & =\prod_{z_{i} \in N(v)}\left(1-\frac{1}{2 d\left(z_{i}\right)}\right) \leq \prod_{z_{i} \in N(v)}\left(1-\frac{1}{2 \widetilde{d}(v)}\right) \\
& =\left(1-\frac{1}{2 \widetilde{d}(v)}\right)^{d(v)}=\left(1-\frac{1}{2 \widetilde{d}(v)}\right)^{2 \widetilde{d}(v) \cdot \frac{d(v)}{2 \widetilde{d}(v)}}
\end{aligned}
$$

Analysis

Lemma 1: With probability at least $1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}$, at least one neighbor of v elects itself.

Proof:

The probability of the complementary event (no neighbor of v elects itself) is:

$$
\begin{aligned}
\prod_{z_{i} \in N(v)}\left(1-p\left(z_{i}\right)\right) & =\prod_{z_{i} \in N(v)}\left(1-\frac{1}{2 d\left(z_{i}\right)}\right) \leq \prod_{z_{i} \in N(v)}\left(1-\frac{1}{2 \widetilde{d}(v)}\right) \\
& =\left(1-\frac{1}{2 \widetilde{d}(v)}\right)^{d(v)}=\left(1-\frac{1}{2 \widetilde{d}(v)}\right)^{2 \widetilde{d}(v) \cdot \frac{d(v)}{2 \tilde{d}(v)}} \\
& \leq e^{-\frac{d(v)}{2 \widetilde{d}(v)}}
\end{aligned}
$$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Among the neighbors of v that elected themselves, let z be the one with the highest degree $d(z)$.

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Among the neighbors of v that elected themselves, let z be the one with the highest degree $d(z)$.

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Among the neighbors of v that elected themselves, let z be the one with the highest degree $d(z)$.
In case of ties, break them using the chosen tie-breaking scheme

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Only the neighbors of z that are not neighbors v can prevent z from joining \mathcal{I}_{k}.

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Only the neighbors of z that are not neighbors v can prevent z from joining \mathcal{I}_{k}.

This is due to our choice of z !

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Only the neighbors of z that are not neighbors v can prevent z from joining \mathcal{I}_{k}.

This is due to our choice of z !
For a neighbor w of z to defeat z, it must have $d(w) \geq d(z)$.
Let W be the set of neighbors w of z that are not neighbors of v and satisfy $d(w) \geq d(z)$.

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Only the neighbors of z that are not neighbors v can prevent z from joining \mathcal{I}_{k}.

This is due to our choice of z !
For a neighbor w of z to defeat z, it must have $d(w) \geq d(z)$.
Let W be the set of neighbors w of z that are not neighbors of v and satisfy $d(w) \geq d(z)$.

If no vertex in W elects itself, then $z \in \mathcal{I}_{k}$.

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"
$\operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"

$$
\operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)=1-\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right)
$$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"
$\operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)=1-\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right)$
$\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right)$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"
$\operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)=1-\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right)$
$\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) \leq \sum_{w \in W} \operatorname{Pr}\left(A_{w}\right)$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"
$\operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)=1-\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right)$
$\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) \leq \sum_{w \in W} \operatorname{Pr}\left(A_{w}\right)=\sum_{w \in W} \frac{1}{2 d(w)}$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"
$\operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)=1-\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right)$
$\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) \leq \sum_{w \in W} \operatorname{Pr}\left(A_{w}\right)=\sum_{w \in W} \frac{1}{2 d(w)} \leq \sum_{w \in W} \frac{1}{2 d(z)}$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"

$$
\begin{aligned}
& \operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)=1-\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) \\
& \begin{aligned}
\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) & \leq \sum_{w \in W} \operatorname{Pr}\left(A_{w}\right)=\sum_{w \in W} \frac{1}{2 d(w)} \leq \sum_{w \in W} \frac{1}{2 d(z)} \\
& =\frac{|W|}{2 d(z)}
\end{aligned}
\end{aligned}
$$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"

$$
\begin{aligned}
& \operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)=1-\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) \\
& \begin{aligned}
\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) & \leq \sum_{w \in W} \operatorname{Pr}\left(A_{w}\right)=\sum_{w \in W} \frac{1}{2 d(w)} \leq \sum_{w \in W} \frac{1}{2 d(z)} \\
& =\frac{|W|}{2 d(z)} \leq \frac{d(z)}{2 d(z)}
\end{aligned}
\end{aligned}
$$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"

$$
\begin{aligned}
& \operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)=1-\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) \\
& \begin{aligned}
\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) & \leq \sum_{w \in W} \operatorname{Pr}\left(A_{w}\right)=\sum_{w \in W} \frac{1}{2 d(w)} \leq \sum_{w \in W} \frac{1}{2 d(z)} \\
& =\frac{|W|}{2 d(z)} \leq \frac{d(z)}{2 d(z)}=\frac{1}{2} .
\end{aligned}
\end{aligned}
$$

Analysis

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Proof:

Let A_{w} be the event " w elects itself" and let \bar{A}_{w} be the complementary event " w does not elect itself"

$$
\begin{aligned}
\operatorname{Pr}\left(z \in \mathcal{I}_{k}\right) \geq \operatorname{Pr}\left(\bigcap_{w \in W} \bar{A}_{w}\right)=1-\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) \geq \frac{1}{2} \\
\begin{aligned}
\operatorname{Pr}\left(\bigcup_{w \in W} A_{w}\right) & \leq \sum_{w \in W} \operatorname{Pr}\left(A_{w}\right)=\sum_{w \in W} \frac{1}{2 d(w)} \leq \sum_{w \in W} \frac{1}{2 d(z)} \\
& =\frac{|W|}{2 d(z)} \leq \frac{d(z)}{2 d(z)}=\frac{1}{2}
\end{aligned}
\end{aligned}
$$

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \hat{d}(v)}}\right)$

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}\right)$

Proof:

Reminder: H_{v} is the event "At least one neighbor of v enters \mathcal{I}_{k} "

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right)$

Proof:

Reminder: H_{v} is the event "At least one neighbor of v enters \mathcal{I}_{k} "
Let B be the event "At least one neighbor of v elects itself".

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right)$

Proof:

Reminder: H_{v} is the event "At least one neighbor of v enters \mathcal{I}_{k} "
Let B be the event "At least one neighbor of v elects itself".

$$
\operatorname{Pr}\left(H_{v}\right)=\operatorname{Pr}(B) \cdot \operatorname{Pr}\left(H_{v} \mid B\right)
$$

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right)$

Proof:

Reminder: H_{v} is the event "At least one neighbor of v enters \mathcal{I}_{k} "
Let B be the event "At least one neighbor of v elects itself".
$\operatorname{Pr}\left(H_{v}\right)=\operatorname{Pr}(B) \cdot \operatorname{Pr}\left(H_{v} \mid B\right) \geq\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right) \cdot \operatorname{Pr}\left(H_{v} \mid B\right)$
Lemma 1: At least one neighbor of v elects itself with probability at least $1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}$.

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right)$

Proof:

Reminder: H_{v} is the event "At least one neighbor of v enters \mathcal{I}_{k} "
Let B be the event "At least one neighbor of v elects itself".
$\operatorname{Pr}\left(H_{v}\right) \geq\left(1-e^{-\frac{d \tilde{d})}{2 \tilde{d}(v)}}\right) \cdot \operatorname{Pr}\left(H_{v} \mid B\right)$

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right)$

Proof:

Reminder: H_{v} is the event "At least one neighbor of v enters \mathcal{I}_{k} "
Let B be the event "At least one neighbor of v elects itself".
$\operatorname{Pr}\left(H_{v}\right) \geq\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right) \cdot \operatorname{Pr}\left(H_{v} \mid B\right) \geq\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right) \cdot \frac{1}{2}$

Lemma 2: If some neighbor of v elects itself, then some neighbor z of v belongs to \mathcal{I}_{k} with probability at least $\frac{1}{2}$.

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}\right)$
A non-singleton vertex v in G_{k} "disappears" in phase k with (at least) the above probability.

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \widetilde{d}(v)}}\right)$
A non-singleton vertex v in G_{k} "disappears" in phase k with (at least) the above probability.

Let $d_{k}>0$ the maximum degree of a vertex in G_{k}.

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right)$
A non-singleton vertex v in G_{k} "disappears" in phase k with (at least) the above probability.

Let $d_{k}>0$ the maximum degree of a vertex in G_{k}.
If $d(v) \geq \frac{d_{k}}{2}$:
$P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d_{k} / 2}{2 d_{k}}}\right)$

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right)$
A non-singleton vertex v in G_{k} "disappears" in phase k with (at least) the above probability.

Let $d_{k}>0$ the maximum degree of a vertex in G_{k}.
If $d(v) \geq \frac{d_{k}}{2}$:
$P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d_{k} / 2}{2 d_{k}}}\right)=\frac{1}{2}\left(1-e^{-\frac{1}{4}}\right)$

Analysis

Lemma 3: $P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right)$
A non-singleton vertex v in G_{k} "disappears" in phase k with (at least) the above probability.

Let $d_{k}>0$ the maximum degree of a vertex in G_{k}.
If $d(v) \geq \frac{d_{k}}{2}$:
$P\left(H_{v}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d(v)}{2 \tilde{d}(v)}}\right) \geq \frac{1}{2}\left(1-e^{-\frac{d_{k} / 2}{2 d_{k}}}\right)=\begin{gathered}\frac{1}{2}\left(1-e^{-\frac{1}{4}}\right) \\ \begin{array}{c}\text { This is just some } \\ \text { constant } t \approx 0.39\end{array}\end{gathered}$

Analysis

In a generic phase k, a node with degree at least $\frac{d_{k}}{2}$ disappears with probability at least c.

Intuitively: nodes with "high" degree disappear fast!

Analysis

In a generic phase k, a node with degree at least $\frac{d_{k}}{2}$ disappears with probability at least c.

Intuitively: nodes with "high" degree disappear fast!

- Suppose that there is a vertex v with degree $d(v) \geq \frac{d_{k}}{2}$
- Suppose that the degree of v remains at least $\frac{d_{k}}{2}$

Analysis

In a generic phase k, a node with degree at least $\frac{d_{k}}{2}$ disappears with probability at least c.

Intuitively: nodes with "high" degree disappear fast!

- Suppose that there is a vertex v with degree $d(v) \geq \frac{d_{k}}{2}$
- Suppose that the degree of v remains at least $\frac{d_{k}}{2}$

Question: What is the probability that v does not disappear within the next ϕ phases?

Analysis

In a generic phase k, a node with degree at least $\frac{d_{k}}{2}$ disappears with probability at least c.

Intuitively: nodes with "high" degree disappear fast!

- Suppose that there is a vertex v with degree $d(v) \geq \frac{d_{k}}{2}$
- Suppose that the degree of v remains at least $\frac{d_{k}}{2}$

Question: What is the probability that v does not disappear within the next ϕ phases?

A: At most: $(1-c)^{\phi}$

Analysis

In a generic phase k, a node with degree at least $\frac{d_{k}}{2}$ disappears with probability at least c.

Intuitively: nodes with "high" degree disappear fast!

- Suppose that there is a vertex v with degree $d(v) \geq \frac{d_{k}}{2}$
- Suppose that the degree of v remains at least $\frac{d_{k}}{2}$

Question: What is the probability that v does not disappear within the next ϕ phases?
A: At most: $(1-c)^{\phi} \quad$ Fix $\phi=3 \log _{1-c} \frac{1}{n}$

Analysis

In a generic phase k, a node with degree at least $\frac{d_{k}}{2}$ disappears with probability at least c.

Intuitively: nodes with "high" degree disappear fast!

- Suppose that there is a vertex v with degree $d(v) \geq \frac{d_{k}}{2}$
- Suppose that the degree of v remains at least $\frac{d_{k}}{2}$

Question: What is the probability that v does not disappear within the next ϕ phases?
A: At most: $(1-c)^{\phi} \quad$ Fix $\phi=3 \log _{1-c} \frac{1}{n}$

$$
(1-c)^{\phi}=(1-c)^{3 \log _{1-c} \frac{1}{n}}=(1-c)^{\log _{1-c} \frac{1}{n^{3}}}=\frac{1}{n^{3}}
$$

Analysis

Thus, after $3 \log _{1-c} \frac{1}{n}$ phases, the probability that:

- v did not disappear; and
- the degree of v is still above $\frac{d_{k}}{2}$;
is at most $\frac{1}{n^{3}}$.

Analysis

Thus, after $3 \log _{1-c} \frac{1}{n}$ phases, the probability that:

- v did not disappear; and
- the degree of v is still above $\frac{d_{k}}{2}$;
is at most $\frac{1}{n^{3}}$.

The probabiltiy that after $3 \log _{1-c} \frac{1}{n}$ phases there is at least one node with degree larger than $\frac{d_{k}}{2}$ is at most:

$$
n \cdot \frac{1}{n^{3}}=\frac{1}{n^{2}}
$$

Analysis

In other words:
Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Analysis

In other words:
Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Observation: When the maximum degree of the graph reaches 0 a MIS has formed.

Analysis

In other words:
Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Observation: When the maximum degree of the graph reaches 0 a MIS has formed.

Or it will be formed in the next iteration.
Question: How many "groups" of $3 \log _{1-c} \frac{1}{n}$ phases are needed for the maximum degree to reach 0 if each group halves the maximum degree?

Analysis

In other words:
Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Observation: When the maximum degree of the graph reaches 0 a MIS has formed.

Or it will be formed in the next iteration.
Question: How many "groups" of $3 \log _{1-c} \frac{1}{n}$ phases are needed for the maximum degree to reach 0 if each group halves the maximum degree?

$$
\approx \log d
$$

Analysis

In other words:
Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Observation: When the maximum degree of the graph reaches 0 a MIS has formed.

Or it will be formed in the next iteration.
Question: How many "groups" of $3 \log _{1-c} \frac{1}{n}$ phases are needed for the maximum degree to reach 0 if each group halves the maximum degree?

$$
\approx \log d
$$

Q: How many phases in total?

Analysis

In other words:
Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Observation: When the maximum degree of the graph reaches 0 a MIS has formed.

Or it will be formed in the next iteration.
Question: How many "groups" of $3 \log _{1-c} \frac{1}{n}$ phases are needed for the maximum degree to reach 0 if each group halves the maximum degree?

$$
\approx \log d
$$

Q: How many phases in total?

$$
\approx\left(3 \log _{1-c} \frac{1}{n}\right) \cdot \log d=O(\log d \cdot \log n)
$$

Analysis

Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Question: What is the probability that all of the $\log d$ "groups" of phases actually halve the maximum degree?

Analysis

Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Question: What is the probability that all of the $\log d$ "groups" of phases actually halve the maximum degree?

- The probabilty that one fixed group does not halve the maximum degree is at most $\frac{1}{n^{2}}$.

Analysis

Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Question: What is the probability that all of the $\log d$ "groups" of phases actually halve the maximum degree?

- The probabilty that one fixed group does not halve the maximum degree is at most $\frac{1}{n^{2}}$.
- The probabilty at least one group does not halve the maximum degree is at most $\log d \cdot \frac{1}{n^{2}}<\log n \cdot \frac{1}{n^{2}}<\frac{1}{n}$.

Analysis

Every $3 \log _{1-c} \frac{1}{n}$ phases the maximum degree of the graph halves with probability at least $1-\frac{1}{n^{2}}$.

Question: What is the probability that all of the $\log d$ "groups" of phases actually halve the maximum degree?

- The probabilty that one fixed group does not halve the maximum degree is at most $\frac{1}{n^{2}}$.
- The probabilty at least one group does not halve the maximum degree is at most $\log d \cdot \frac{1}{n^{2}}<\log n \cdot \frac{1}{n^{2}}<\frac{1}{n}$.

MIS forms in $O(\log d \cdot \log n)$ phases with probability

$$
\text { at least } 1-\frac{1}{n}
$$

Recap:

Luby's Algorithm finds a Maximal Independent Set of G.

Recap:

Luby's Algorithm finds a Maximal Independent Set of G.

- Total number of phases:

$$
O(\log d \cdot \log n)
$$

Recap:

Luby's Algorithm finds a Maximal Independent Set of G.

- Total number of phases:
$O(\log d \cdot \log n)$
- Time for each phase:
$O(1)$

Recap:

Luby's Algorithm finds a Maximal Independent Set of G.

- Total number of phases:
- Time for each phase:
$O(\log d \cdot \log n)$
- Total time:
$O(\log d \cdot \log n)$

Recap:

Luby's Algorithm finds a Maximal Independent Set of G.

- Total number of phases:
- Time for each phase:
$O(\log d \cdot \log n)$
$O(1)$
- Total time:
$O(\log d \cdot \log n)$
- Probability of success:

$$
\geq 1-\frac{1}{n}
$$

