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Definition: An independent set of a graph G = (V,E) is a set
I ⊆ V such that ∀(u, v) ∈ E, u ̸∈ I or v ̸∈ I (or both).

Definition: A independent set I of a graph G = (V,E) is
maximal if there is no independent set I ′ of G with I ′ ⊃ I.

A Maximal Independent Set is not necessarily
a Maximum Independent Set.



Luby’s Algoritm

• A distributed algorithm to compute a Maximal Independent
Set (MIS)

• Runs in time O(log d · log n) with high probability (w.h.p.),
where d is the maximum degree of G.

• Asymptotically better than the algorithm of the previous
lecture (which required O(d log n) time, w.h.p.).
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Luby’s Algoritm

Let d(v) be the degree of vertex v in G.
v
d(v) = 3The algorithm works in phases

At the generic phase k...

• Elected nodes are candidates to join an independent set Ik
of Gk.

• Each node v in Gk elects itself with probability p(v)= 1
2d(v) .

• Intially G0 = G

• Gk+1 is obtained by deleting the vertices in Ik and their
neighbors N(Ik) from Gk

Stop when Gk+1 = ∅

• Find Ik.

If v is a singleton, v
always elects itself.
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If two neighbors are elected simultaneously, the node
with higher degree wins (remains in Ik).
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⇐

If two neighbors are elected simultaneously, the node
with higher degree wins (remains in Ik).
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If both nodes have the same degree, choose using an
arbitrary tie-breaking scheme (e.g., by vertex ID).

d(v) = d(u)
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v
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⇐

If both nodes have the same degree, choose using an
arbitrary tie-breaking scheme (e.g., by vertex ID).

d(v) = d(u)

or
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Previous rules are used to remove “problematic”
nodes from the candidate nodes.

Gk Ik = {u, v}

u
v

Luby’s Algoritm

The remaning nodes form the independent set Ik
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Consider a generic phase k

A good event Hv for node v is the following:

At least one neighbor of v enters Ik (i.e., Ik ∩N(v) ̸= ∅)

If Hv happens, then v ∈ N(Ik) =⇒ v does not belong to Gk+1.

v
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Analysis
Pick a non-singleton vertex v. We want to find a lower bound
to the probabilty that a neighbor of v ends up in Ik

Lemma 1: With probability at least 1− e
− d(v)

2ed(v) , at least
one neighbor of v elects itself.

v
. . .

z1

z3

z2

Where ed(v) = maxzi∈N(v) d(zi) is the maximum degree
among the neighbors of v.

ed(v) = 5

d(v) = 3
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(Recall that elections are independent)
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Lemma 2: If some neighbor of v elects itself, then some
neighbor z of v belongs to Ik with probability at least 1

2 .

Analysis

v
z

Ik

=⇒
prob. ≥ 1

2

v

Proof:
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Lemma 2: If some neighbor of v elects itself, then some
neighbor z of v belongs to Ik with probability at least 1

2 .

Analysis

Proof:

Among the neighbors of v that elected themselves, let z be the
one with the highest degree d(z).

In case of ties, break them using the chosen tie-breaking scheme

v
z
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2 .

Analysis

Proof:

Only the neighbors of z that are not neighbors v can prevent z
from joining Ik.

This is due to our choice of z!

For a neighbor w of z to defeat z, it must have d(w) ≥ d(z).

Let W be the set of neighbors w of z that are not neighbors of
v and satisfy d(w) ≥ d(z).

If no vertex in W elects itself, then z ∈ Ik.
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Lemma 2: If some neighbor of v elects itself, then some
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This is just some
constant c ≈ 0.39
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Intuitively: nodes with “high” degree disappear fast!

• Suppose that there is a vertex v with degree d(v) ≥ dk

2

Question: What is the probability that v does not disappear
within the next ϕ phases?

A: At most: (1− c)ϕ Fix ϕ = 3 log1−c
1
n

(1− c)ϕ = (1− c)3 log1−c
1
n = (1− c)log1−c

1
n3 =

1

n3

• Suppose that the degree of v remains at least dk
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Thus, after 3 log1−c
1
n phases, the probability that:

• v did not disappear; and

• the degree of v is still above dk

2 ;

is at most 1
n3 .

The probabiltiy that after 3 log1−c
1
n phases there is at least

one node with degree larger than dk

2 is at most:

n· 1
n3

=
1

n2



Analysis

Every 3 log1−c
1
n phases the maximum degree of the graph

halves with probability at least 1− 1
n2 .

In other words:



Analysis

Every 3 log1−c
1
n phases the maximum degree of the graph

halves with probability at least 1− 1
n2 .

In other words:

Observation: When the maximum degree of the graph
reaches 0 a MIS has formed.*

Or it will be formed in the next iteration.



Analysis

Every 3 log1−c
1
n phases the maximum degree of the graph

halves with probability at least 1− 1
n2 .

In other words:

Question: How many “groups” of 3 log1−c
1
n phases are

needed for the maximum degree to reach 0 if each group
halves the maximum degree?

Observation: When the maximum degree of the graph
reaches 0 a MIS has formed.*

Or it will be formed in the next iteration.



Analysis

Every 3 log1−c
1
n phases the maximum degree of the graph

halves with probability at least 1− 1
n2 .

In other words:

Question: How many “groups” of 3 log1−c
1
n phases are

needed for the maximum degree to reach 0 if each group
halves the maximum degree?

Observation: When the maximum degree of the graph
reaches 0 a MIS has formed.

≈ log d

*
Or it will be formed in the next iteration.



Analysis

Every 3 log1−c
1
n phases the maximum degree of the graph
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n phases the maximum degree of the graph

halves with probability at least 1− 1
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In other words:

Question: How many “groups” of 3 log1−c
1
n phases are

needed for the maximum degree to reach 0 if each group
halves the maximum degree?

Observation: When the maximum degree of the graph
reaches 0 a MIS has formed.

≈ log d

Q: How many phases in total?

≈
�
3 log1−c

1

n

�
· log d = O(log d · log n)

*
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Analysis
Every 3 log1−c

1
n phases the maximum degree of the graph

halves with probability at least 1− 1
n2 .

Question: What is the probability that all of the log d
“groups” of phases actually halve the maximum degree?

• The probabilty that one fixed group does not halve the
maximum degree is at most 1

n2 .

• The probabilty at least one group does not halve the
maximum degree is at most log d · 1

n2 < log n · 1
n2 < 1

n .

MIS forms in O(log d · log n) phases with probability
at least 1− 1

n
.
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Recap:

• Total number of phases: O(log d · log n)

• Time for each phase: O(1)

• Total time: O(log d · log n)

• Probability of success: ≥ 1− 1
n

Luby’s Algorithm finds a Maximal
Independent Set of G.


