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1 Introduction

An abstract reduction system (from now on, ARS for short) consists of a set
of elements equipped with one or more binary relations. This notion has got
a level of generality such that the following concepts can be seen as particular
ARSs: production rules of a grammar, rewriting of first order terms, rewrit-
ing of higher order terms, rewriting of term trees, string rewriting, graph
rewriting, process rewriting, rewriting of formalized derivations.

The level of generality does not substantially decrease if, instead of a
finite number of binary relations, only one relation is considered. In the
following we will study ARSs with only one reduction relation −→, that can
be considered as an oriented equation or an elementary transformation.

After defining an ARS, we will introduce the following notions: reduction
graphs, confluence, termination, noetherian induction and canonicity. For
more details we refer to [1, 2, 4].

2 ARS

An ARS is defined as follows.

Definition 1 An ARS (Abstract Reduction System) is a structure

A = 〈A,−→〉

where A is a countable set and −→ ⊆A×A is a binary relation called re-
duction.
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Definition 1, differently from that in [3], requires for each ARS the count-
ability of the set A, whose elements are written as a, b, . . ..
If for a, b∈A we have (a, b)∈ −→, then we write a −→ b. The element
b is the result of the application of one step of reduction starting from the
element a.

The reflexive-transitive closure of −→ is written
∗

−→. Thus, a
∗

−→ b

if there exists a finite sequence (possibly empty) of reduction steps a −→
a1 −→ . . . −→ ak −→ b for some a1, . . . , ak ∈A. We say that a reduces to b

if a
∗

−→ b and also that b is a reduct of a.
The transitive closure of −→ is written

+
−→. The inverse relation of −→

is written ←− or −→−1.
The reflexive-transitive-symmetric closure of −→ is written

∗

←→, i.e. the
equivalence relation induced by −→, also called convertibility . In the follow-
ing, convertibility will sometimes be denoted with =, also used to denote the
syntactic identity.

An ARS A is coherent or consistent if
∗

←→ ⊆A2 and
∗

←→ 6= A2, that is
not every two elements are convertible.

An element a∈A is said to be in normal form or is a normal form if
there exists no element b∈A such that a −→ b. An element a has normal
form if there exists b∈A such that a

∗

−→ b and b is a normal form.
We say that an ARS has a property P whenever its reduction relation

has the property P .

3 Reduction Graphs

For every a∈A, let us consider the directed graph whose root is labelled with
a and whose nodes are labelled with elements b∈A that are reducts of a.

Definition 2 Let A = 〈A,−→〉 be an ARS. For every a∈A we define the
following sets:

∆(a) = {b∈A | a −→ b}

∆+(a) = {b∈A | a
+
−→ b}

∆∗(a) = {b∈A | a
∗

−→ b}
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Definition 3 Let a∈A be an arbitrary element of an ARS A. The reduc-
tion graph of a, denoted G(a), is the ARS 〈∆∗(a),−→a〉, where −→a is the
restriction of −→ on ∆∗(a).

Note that a reduction graph can be a very complex structure. A sim-
ple well-known graph is the so-called Hindley graph (Figure 1) that we will
introduce when studying the confluence property (Section 4).

Figure 1: Hindley graph

Note that, in this simplified representation of a reduction graph, only the
root node has been put in evidence and node labels have been omitted.

A reduction graph G(a) can be defined as the smallest sub-ARS that
contains all reducts of a, according to the following definition of sub-ARS.

Definition 4 Let 〈A1,−→1〉 and 〈A2,−→2〉 be two ARSs.
〈A1,−→1〉 is a sub-ARS of 〈A2,−→2〉, or 〈A2,−→2〉 is an extension of
〈A1,−→1〉, if:

1. A1 ⊆ A2;

2. −→1 is the restriction of −→2 on A1 (that is, for all a, a′ ∈A1 we have
that a −→2 a′ if and only if a −→1 a′);

3. A1 is closed with respect to −→2 (that is, for all a∈A1, a −→2 a′ implies
a′ ∈A1).

It can be shown that every property of an ARS is preserved in its sub-ARSs.

4 Confluence

The confluence property , also referred to as Church-Rosser property , is im-
portant for both the coherence of rewriting, implying (as we will see later) the
uniqueness of the normal form whenever such a form exists, and the rewriting
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strategies, in the sense that due to confluence there is no need of backtrack-
ing. Moreover, whenever convertibility is decidable, the confluence property
implies that checking convertibility of any two elements can be carried out
by simply reducing both elements to a common reduct.

Definition 5 Let A = 〈A,−→〉 be an ARS. The reduction relation −→ is
confluent (or Church-Rosser, CR for short) if for all a, b, c∈A there exists

d∈A such that c
∗

←− a
∗

−→ b implies c
∗

−→ d
∗

←− b.

Definition 6 The reduction relation
∗

←→ is Church-Rosser if for all a, b∈A

there exists c∈A such that a
∗

←→ b implies a
∗

−→ c
∗

←− b.

a

∗
b

∗
c

∗∗

d

Figure 2: Confluence diagram

Proposition 1 Let A = 〈A,−→〉 be an ARS. The reduction relation −→ is

confluent if and only if
∗

←→ is Church-Rosser.

Proof (=⇒) By assuming the confluence property, the proof of the Church-

Rosser property is by induction on the number n of reduction steps in a
∗

←→ b

for all a, b∈A. If n = 0, then a = b and the common reduct is d = a = b. In
the induction case, let us assume that the Church-Rosser property holds

for n and prove it for n+1. Let a
n+1
←→ b. Hence, there exists c∈A such

that a
n
←→ c ←→ b. By induction hypothesis there exists d∈A such that

a
∗

−→ d
∗

←− c. By case analysis on c←→ b, we have:
- if c←− b, it easily follows that d is the common reduct for a and b;
- if c −→ b, by the confluence assumption there exists d′ ∈A such that
d

∗

−→ d′
∗

←− b.

(⇐=) By definition of the convertibility relation
∗

←→ we have that, for all

a, b, c∈A, any confluence peak c
∗

←− a
∗

−→ b implies c
∗

←→ b. The confluence
property then follows from the assumption of the Church-Rosser property.
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In the following we will indifferently use ‘confluent’ or ’Church-Rosser’.
Due to the confluence property, we can assert that, starting from a given

element, a reduction relation cannot obtain different results, i.e. different
normal forms.

Corollary 1 Let A = 〈A,−→〉 be an ARS such that −→ is confluent. Each
element in A has at most a normal form.

Proof By contradiction: let us suppose that there exists an element a such
that a

∗

−→ b and a
∗

−→ c for some distinct normal forms b and c. By the
Church-Rosser property, elements b and c should have a common reduct, but
by assumption they are both in normal form. This contradicts the Church-
Rosser property, thus b and c must be equal.

The uniqueness normal form property (UN for short) does not necessarily
imply confluence.

Example 1: Let A = 〈{a, b, c, d},−→〉 be an ARS with the reduction
relation −→ defined as follows:

a −→ b

a −→ c

c −→ b

c −→ d

d −→ d

or graphically:
a

b c
d

The relation −→ has the uniqueness normal form property, but is not con-
fluent. •

Definition 7 Let A = 〈A,−→〉 be an ARS. The reduction relation −→ is
weakly confluent or locally confluent or weakly Church-Rosser (WCR for
short) if for all a, b, c∈A there exists d∈A such that c ←− a −→ b implies

c
∗

−→ d
∗

←− b.
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It can be easily seen that local confluence is a particular case of confluence.

Corollary 2 Let A = 〈A,−→〉 be an ARS. If the relation −→ is confluent,
then is locally confluent.

The opposite inplication is not true in general, that is local confluence
does not imply confluence. A counter-example is the following:

Example 2: Let a, b, c, d∈A and the reduction relation −→ be defined as
follows:

a −→ b

a −→ c

b −→ a

b −→ d

It is enough to consider the possible reductions starting from the elements
a and b and we can show that the relation is locally confluent, but is not
confluent. The reduction graph is the Hindley graph that we have already
seen (Section 3). •

Another example of ARS that is locally confluent, non-confluent and also
acyclic is given in Figure 3.

. . .

Figure 3: Acyclic WCR graph

Corollary 3 Let A = 〈A,−→〉 be an ARS. The relation −→ is confluent if

and only if
∗

−→ is weakly confluent.

Note that a confluent ARS that has at least two distinct normal forms is
coherent, as not all elements can be reduced to the same element.
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5 Termination

Typically, the notions of termination that can be considered are weak termi-
nation and strong termination.

Definition 8 Let A = 〈A,−→〉 be an ARS. The reduction relation −→ is
weakly normalizing (WN for short) if each element a∈A has a normal form.

Definition 9 Let A = 〈A,−→〉 be an ARS. The reduction relation −→ is
strongly normalizing or terminating or noetherian (SN for short) if there
exists no infinite derivation a0 −→ a1 −→ . . . an −→ . . . of reduction steps,
i.e. every derivation ends with a normal form.

Example 3: Let a, b, c∈A and

a −→ b

a −→ c

c −→ a

Such a reduction relation is weakly normalizing (every element has a normal
form, the element b), but is not terminating because there exists the infinite
derivation a −→ c −→ a −→ c −→ . . ..
The relation defined in Example 2 is also weakly normalizing and non-
terminating. •

A terminating relation is obviously weakly normalizing.
To prove that an ARS is terminating is generally difficult, as the termi-

nation property is in general undecidable, even in simple cases such as, for
example, that of a rewrite system with only one rule. For proving termination
several methods have been defined in the literature. A method consists in
the definition of a suitable partial ordering > on the elements of an ARS such
that a −→ b implies a> b. Another method consists of embedding an ARS in
another ARS that is known to be terminating. Various conditions sufficient
for the termination of particular ARSs have been given in the literature.
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6 Noetherian Induction

In order to prove properties of an ARS, hence properties satisfied by each
a∈A, we can make use of the principle of noetherian induction. Le us recall
the definition of the following set of elements:

∆+(a) = {b∈A | a
+
−→ b}.

Definition 10 Let A = 〈A,−→〉 be an ARS. Let P be a unary predicate on
the set A. P is said −→-complete if

∀a∈A [∀b∈∆+(a) P (b)] =⇒ P (a).

Note that, if an element a is a normal form, then P (a) is true for each
−→-complete predicate P .

Theorem 1 (Principle of Noetherian Induction) Let A = 〈A,−→〉 be an
ARS such that −→ is noetherian. Let P be a unary −→-complete predicate
on the set A. Then ∀a∈A we have P (a).

Proof The proof is by contradiction. Let us assume that there exists a
subset B of A such that B = {b∈A | ¬P (b)} 6= ∅. For each b∈B we have
that b is either in normal form or (in the sense of “exclusive or”) reducible
to a normal form.

• b is in normal form.
This case is not possible because it contradicts the assumption that the
predicate P is −→-complete. Any −→-complete predicate is indeed
true on normal forms.

• b is reducible.
In this case there exists an element b0 ∈B such that for all b′ ∈∆+(b0)
we have that P (b′) holds. But this contradicts the assumption that P is
−→-complete. In fact, in order not to contradict the −→-completeness
of P we are forced to build an infinite derivation from b0 whose elements
do not satisfy the property P (and this would contradict the noetherian
hypothesis).

Hence, we have must have B = ∅.
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We have seen that, in general, local confluence does not imply conflu-
ence. However, this implication is true whenever the reduction relation is
terminating. An application of the Principle of Noetherian Induction is the
following result.

Lemma 1 (Newman Lemma)
Let A = 〈A,−→〉 be an ARS such that −→ is noetherian.
The relation −→ is confluent if and only if is locally confluent.

Proof The implication “confluence implies locally confluence” is given by
Corollary 2 without the termination hypothesis on the reduction relation.
The vice versa, i.e. “locally confluence implies confluence”, is proved by
noetherian induction. It is enough to formalize the property to be proved,
that is the confluence of the relation −→, as the unary predicate

P (a) = ∀b c (b
∗

←− a
∗

−→ c) =⇒ ∃d. b
∗

−→ d
∗

←− c

and then prove that P (a) holds for every a (in other words, we prove that
the relation −→ is confluent). By the principle of noetherian induction, to
prove P (a) for every a∈A it is sufficient to show that P is −→-complete, as
−→ is noetherian by hypothesis. Le us suppose that a

m
−→ b and a

n
−→ c.

If m = 0, then choose d = c.
If n = 0, then choose d = b.
If m,n 6= 0, then at least one reduction step is made, thus there exist b1, c1 ∈A

such that a −→ b1

∗

−→ b and a −→ c1

∗

−→ c. By hypothesis the relation
−→ is locally confluent, hence there exists d1 ∈A such that b1

∗

−→ d1

∗

←− c1.
Proving that the confluence predicate P is −→-complete means proving that
P (a) is true whenever we know that P (e) holds for every e∈∆+(a). Because

b1, c1 ∈∆+(a), P (b1) is true, thus there exists d2 ∈A such that b
∗

−→ d2

∗

←−

d1. P (c1) is also true, thus there exists d∈A such that d2

∗

−→ d
∗

←− c.

Hence, there exists an element d such that b
∗

−→ d
∗

←− c, that is P (a) holds.
The predicate P is thus −→-complete and, by the principle of noetherian
induction, P (a) holds for every a∈A.
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An abbreviated formulation of Newman Lemma is SN + WCR =⇒ CR.

a

b1

b

c1

c

d

d1

d2

∗ ∗∗ ∗

∗∗

∗

∗

WCR

Induction

Induction

Figure 4: Newman Lemma

7 Canonicity

Definition 11 Given an ARS 〈A,−→〉, the relation −→ is canonical or
complete if it is confluent and terminating.

From Corollary 1 we know that, if the relation −→ is confluent, then the
normal form of any element in A, if it exists, then is unique. Moreover, the
following holds.

Corollary 4 Given an ARS 〈A,−→〉, if the relation −→ is canonical, then
the normal form of any element in A exists and is unique.

We observe that canonicity makes the convertibility relation decidable:
indeed, given any two elements in A, it is enough to reduce them to their
normal forms (which exist and are unique) and then check their syntactic
equality.
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