| (P a) | 
| ∃x. (P x) | 
| 
 | ||||||||||
| B | 
 c is a constant local to the rule 
(no assumptions on c, arbitrary element).
 c is a constant local to the rule 
(no assumptions on c, arbitrary element).
| (Prime 5) | 
| ∃x. (Prime x) | 
   
  
     
       
      (Greater 5 3)  ∃y. (Greater 5 y) 
     ∃x.∃y. (Greater x y) 
   
  
     
       
      
         
          
      
             
        
               
            
                
                     ∃x . ((P x) ∧ (Q x))  
               
          
                 
                
                   
                     
                     (P a) ∧(Q a)  (Q a) 
                  ∃ x. (Q x) 
              ∃x. (Q x) 
    (∃x . ((P x) ∧ (Q x))) ⇒ ∃x. (Q x)  
| (P c) | 
| ∀x. (P x) | 
 c is a constant local to the rule 
(no assumptions on c, arbitrary element).
 c is a constant local to the rule 
(no assumptions on c, arbitrary element).
| ∀x. (P x) | 
| (P a) | 
| 
 | ||||||||
| (∀x . ((P x) ∧ (Q x))) ⇒ ∀x. (Q x) | 
   
  
     
       
      
         
           
          
             
               
               
                 
                   
                  ∀x . (P x) (P a) 
                (P a) ∨ (Q a) 
            ∀ x. (P x) ∨ (Q x) 
        ∀x.  ((P x) ∨ (Q x)) 
     (∀x. (P x)) ⇒ (∀x . ((P x) ∨ (Q x)))  
   
  
     
       
      ∀x. (P x) (P a) 
    ∃x. (P x) 
G2. Prove that (∀y. ∃x. (P x y)) ⇒ (∃x. ∀y. (P x y)).
G3. Prove that (¬(∃x. (P x))) ⇒ (∀x. ¬(P x)).
G4. Prove that (∀x. ¬(P x)) ⇒ ¬ (∃ x. (P x)).
G5. Prove that (∃x. ¬(P x)) ⇒ ¬(∀x. (P x)).
G6. Prove in classical logic that ¬(∀x. (P x)) ⇒ (∃x. ¬(P x)).
G7. Prove in classical logic that ((∀x. (P x)) ⇒ Q) ⇒ ∃x. ((P x) ⇒ Q).
G8. Prove that (∃x. ((P x) ⇒ Q)) ⇒ ((∀x. (P x)) ⇒ Q).
G9. Prove that ((∃x. (P x)) ⇒ Q) ⇒ ∀x. ((P x) ⇒ Q).
G10. Prove that (∀x. ((P x) ⇒ Q)) ⇒ ((∃x. (P x)) ⇒ Q).
G11. Prove that (Q ⇒ (∀x. (P x))) ⇒ ∀x. (Q ⇒ (P x)) .
G12. Prove that (∀x. (Q ⇒ (P x))) ⇒ (Q ⇒ (∀x. (P x))).
G13. Prove in classical logic that (Q ⇒ (∃x. (P x))) ⇒ (∃x. (Q ⇒ (P x))).
G14. Prove that (∃x. Q ⇒ (P x)) ⇒ (Q ⇒ (∃x. (P x))).
G15. Prove that ((∀x. (P x)) ∨ Q) ⇒ (∀x. (P x) ∨ Q).
G16. Prove in classical logic that (∀x. ((P x) ∨ Q)) ⇒ ((∀x. (P x)) ∨ Q).
G17. Prove that ((∃x. (P x)) ∨ Q) ⇒ ∃x. ((P x) ∨ Q).
G18. Prove that (∃x. ((P x) ∨ Q)) ⇒ (∃x. (P x)) ∨ Q.
*G19. Prove that (P a) ⇒ ((∀x. ((P x) ⇒ (Q x))) ⇒ (Q a)).
*G20. Prove that (∃x. ((P x) ⇒ (Q x))) ⇒ ((∀x. (P x)) ⇒ (∃x. (Q x))).
*G21. Prove that (∀x. (P x) ⇒ (Q x)) ⇒ ((∃x. (P x)) ⇒ (∃x. (Q x))) .
*G22. Prove that (∃x. ((P x) ∧ (Q x))) ⇒ (∃x. ((Q x) ∧ (P x))) .