Software Customization in Model Driven Development
of Web Applications

Antonio Cicchetti, Davide Di Ruscio, Amleto Di Salle
Dipartimento di Informatica
Universita degli Studi dell’Aquila
[-67100 LAquila, Italy

{cicchetti, diruscio, disalle}@di.univag.it

ABSTRACT

Model Driven Development (MDD) of complex software systems
can require manual adaptations of the generated artifact@ct,
in order to cope with unforeseen requirements which are owi-c
pletely satisfiable by means of the involved modeling laiggsa
developer interventions could be needed. The optimal isolub
deal with this issue, is based on the expressiveness impeaveof
the involved metamodels and refinement of the used moded-tran
formations. Nevertheless, these adaptations are not alpassible
or cost-effective especially if the new functionalitieathave to be
introduced affect only the single application being depebh

This paper discusses and attempt to hand-tune the genecated
by providing an approach supporting its merging with hanittem
modifications. For this purpose, the behaviour model of yiséemn
under study is considered to graphically specifyittjection points
where the modifications have to occur. The discussions aedba
on a running example consisting of a simple Web application.

Categories and Subject Descriptors

K.6.3 [Management of Computing and Information Systemg
Software ManagementSeftware developmend.2.10 [Software
Engineering]: Design—Methodologies D.2.13 [Software Engi-
neering]: Reusable Software-Bomain engineering

Keywords

Model Driven Development, Software Customization, Modars-
formation, Web Application, Model-View-Controller

1. INTRODUCTION

In Model Driven Development (MDD) [27] metamodeling and mo-
del transformations play a central role enabling to shétfticus of
software development from coding to modeling. In this respe
problems can be precisely described using specific termsamd
cepts more familiar to experts who work in the considered @om
avoiding technological details which are unnecessaryHerftinc-
tional descriptions. Furthermore, model transformatemesused to

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAC’07March 11-15, 2007, Seoul, Korea

Copyright 2007 ACM 1-59593-480-4 /07/00035.00.

glue the several levels of abstractions and by encoding ribesk
edge about the technological assets permit the automatedtage
tion of the implementation.

The technical intricacies of model transformations regjlgmn-
guages and tools that foster reuse, adaptation and cornopoisit
the same manner as the traditional software artifacts,dli&eses
and libraries, are developed to be used, adapted and cochja®je
Although model transformations are specified and develdakd
ing into account well-known software engineering prinegplen-
abling their adaptability, in some cases manual changdseajén-
erated artifacts are required to resolve unforeseen rEmeints or
limited expressiveness of the involved metamodels. Maimiai-
ventions should be avoided by adapting the required metatsod
and model transformations to cope with the new domain cdacep
but for complex systems such modifications are not always cos
effective and could require much efforts both for develspand
final users.

This paper discusses the need of supporting software cirtom
tions in MDD and describes the experience of the authorsatirtg
with these problems during the development of Web appboati
In fact, manual interventions on the generated code ardlysaa
quired to meet specificities or behaviours that are not censd
in advance or that concern only the single system being deeell
Furthermore, this work proposes an attempt to hand-tunaute
matically generated code by providing an approach supmpits
merging with the hand-written one. For this purpose, behavi
models are considered to graphically specify the pointh@figen-
erated code where the modifications have to occur. A runming e
ample consisting of a simple Web application will be conside
and an approach to support manual customizations of ther-gene
ated artefacts compliant to tivdodel-View-Controlle(MVC) [11]
pattern will be also provided.

The structure of the paper is as follows: next section mteiva
the need of software customization in MDD. Section 3 dessrio
simple Web application where manual customizations ardetee
Section 4 proposes and apply a solution to cope with thisissu
Finally, Section 5 draws the conclusions and presents s@me p
spective work.

2. SOFTWARE CUSTOMIZATION IN MDD

Model Driven Architecture (MDA) [14] is an important effoto
support and implement MDD. It is intended to be a top-down pro
cess which starts from abstract descriptions, cafkdform Inde-
pendent Model¢PIMs), able to capture the business logic of the
system being modeled. Then, such specifications are edrante
refined with platform specific details giving placeRatform Spe-
cific Models(PSMs). Finally, all the previous information will be
used to generate the implementation code.

Despite the remarkable steps toward a complete model driven
software development, today’s MDA tools are not always able
automatically build the complete applications except ferywpar-
ticular cases. In fact, it is possible to generate the achital in-
frastructure code as well as a complete working applicatiat
supports CRUD (Create, Read, Update, Delete) behavioraeper
tions, even though this is still not what MDD is expected t¢2ig.
Usually, the source PIMs contain the structural descniptibsys-
tems, and hence the behavior implemented by the used MDA tool
tends to be only a default. One of the main reasons is that¢he e
pressive power of structural models is not enough to suppert
potential complexity of the behavioral requirements thestchto be
expressed. Even though some ongoing work is being done to sup
port modeling behaviour, an agreed notation for this isagertot
been reached yet [15].

Except for very simple applications, the obtained defaattdy-
iors have to be manipulated in the generated PSM or code, by
means of hand-written modifications implementing the nesgli
functionalities. In fact, by using the available tools thesidiner
is able to generate kind of container in which s/he is calteddd
her/his own code. However, this intervention might causerss
problems:

it can be difficult to locate the point(s) in the generates- sy
tem where new code is required;

it can be difficult to verify and validate the modifications,
i.e. some manipulations could compromise system status
correctness;

the massive use of this technique can lead to model erosion,
since a lot of customizations are hidden in the code;

reverse engineering could be used to derive models from the
customized code. Although the outcome presents some dia-
grammatic representation of the system execution, it iisual
fails in significantly leveraging design decisions [23].

Over the last years, several techniques have been proposed t
deal with behavior customizations. Taking into accountdbn-
text of component based software development, few appesach
(e.g. [23]) propose to specify adaptors at a high abstnatgicel for
using new software components. Others (see [25]) tend tdicen
models and code by means of model interpreters. In partjcta
ecutable UML 2 activity diagrams can specify at specific tmres
invocations of handwritten code. The choice of the modekc@-
tio is left to the developer; an extend€# compiler will be able to
integrate such parts.

With respect to Web application modeling and adaptabikty i
sues, the work in [6] illustrates a technique to perform egrnt
aware adaption of a system. It is obtained by combining WebML
conceptual modeling [3] and Chimera Exception Language rul
definitions [2]. Starting from a conceptual model defineditfio
WebML, the correspondent code is obtained by means of an auto
mated transformation. Then, once defined Event-Condiictivn
rules, an engine is able to trigger them when specific pagexbn
changes occur. Finally, several MDA tools (ArcStyler [2Ah-
droMDA [29] to mention a few) provide with facilities to coep-
tually describe Web applications and generate the cornekg
code by means of a one-step model-to-code transformatitve. T
generation gives place to a complete skeleton of the modglpli-
cation even though the business rules have to be written hg. ha
Tools like Rhapsody [16] permit software customizationsade
level. In particular specific markers are placed in the getieer
code and hand written one should only be inserted there.

User
[a][5]
Ehdail
Passward
Userblame

| 0:1="""=0:H] Group
QI

GroypHame

L N

UserfForm Add

v

UserList

GroupSelections

J :
- UserForm add
Userform Edit
UserForm Edit wditlser
I
I

userGroup
5

Graup.
[SEL:User2Group]

Figure 1: Sample Source Specification (PIM)

Speaking about software adaptation, aspect-orientedaaide-
velopment (AOSD) [17, 8] gained popularity thanks to its mom-
sive property, that is the possibility to execute crossegitoncerns
exploiting weaving techniques without making modificati®a the
original code. However, in some cases it can not be simpleab d
with interference issues between original code and wover[bin

In the rest of the paper, the problem of software custonumati
in the model driven development of Web applications is abersd
and an approach to face it is introduced and described by srafan
a simple running example.

3. WEB APPLICATION MODELING

Over the last years the complexity of Web applications iaseel
requiring languages and tools to support their developraedtife
cycle. Many design methodologies, such as Hera [9], OO-H [12
OOHDM [26], UWE [19], W2000 [10], and WebML [3], have been
proposed to cope with the technical intricacy of such systeffl
methodologies adopt different notations and propose thaircon-
structs to describe this kind of applications under diffieréews
comprising at least the data, navigation and presentatiengov-
ing place to PIMs.

All of the above modeling approaches are based on concepts
proper of the Web domain (e.gpage navigation node naviga-
tion link andindex providing the designer with the necessary con-
structs to describe applications without considering enpénta-
tion details. For example, the Fig. 1 shows the data and aavig
tion specifications, given by using the WebML notation, ohas
ple application without providing information about thedenlying
platform. On the lower side of the figure, four Web pages ard-mo
eled to support the management of thr andG oup data enti-
ties modeled on the upper side of the same figure. Fronwvihe
page, alist of all users can be reached. FurthermorejsitneLi st
page provides with two links in order to reach the pages @elvot
to add a new uset§er For m Add page) or to edit a selected one
(User For m Edi t page). In the former, all the information about
a new user can be filled and the groups to whom she/he belongs
can be also selected. The provided data will be stored itugke
data entity and new relationships amongst the just addedanske
selected groups will be established. In order to modify thtad

of existing users th&jser Form Edi t page is defined consisting
of the form where the data of the selected users will be pdelda
and ready to be changed. The WebML notation used to specify
the above example is supported by the WebRatio tool [30] @ble
generate irone-stepthe complete implementation of the specified
applications executable on the J2EE [28] platform. In tldpey,

in order to set a simplelaborationist[18] approach to Web appli-
cation development used as basis for our discussions, théWe
notation is still maintained (because of its simplicity dtekibil-

ity) but considered as a source metamodel of model transfions
capable to gradually refine the WebML specifications into BSM
which are compliant to the MVC pattern.

Being more precise, MVC is an architectural pattern whichsai
at minimizing the degree of coupling between elements tateel
the user interface to underlying data models in an effeetag In-
creasingly, this pattern is used in program developmert @bject-
oriented languages and for organizing the design of Wehappl
tions proposing a three-way factoring paradigm based orfialhe
lowing: themodelholds all data relevant to domain entity or pro-
cess, and performs behavioral processing on that datgiewvelis-
plays data contained in the model and maintains consistertog
presentation when the model changes. Finallyctivgroller is the
glue between view and model reacting to signicant eventseén t
view, which may result in manipulation of the model.

As shown in [7], by means of model transformations it is pos-
sible to obtain MVC compliant models of Web applications -con
ceptually described through specialized modeling langsagin
this sense, the conceptual description given in Fig. 1 camanes-
formed into the specification shown in Fig. 2. In particuksrrow-
ing some constructs of the Conallen’s UML profile [5] the page

PSM abstraction Hand written Code

Data Specification \

o)

DataEntry Specification

(
| Controller :
PIM —— { PSM
Model Weaving
AOPy %Stralegies
Code Code

Figure 3: Overall Approach

to another server-side page. Finally, taéusi nessDel egat e>
stereotype is used to refer to business delegate objedtsities
implementation details of the business service and entapsiac-
cess and lookup mechanisms to the persistency layer.

The controller andview counterparts are modeled by means of
the<control | er > and<vi ews stereotypes respectively. Due
to space limitation, concerning thmodellayer specified through
the <nodel > stereotype, onlyser TOtransfer object is consid-
ered which is used to optimize data transfer across tiers.

By means of further model transformation steps, the PSM in
Fig. 2 can be refined and transformed into executable code. Ac
cording to our experience, this is not the typical scenasionan-

are modeled by giving both server and client sides by means of ually interventions are often required, especially on theegated

<serverPage>> and «cl i ent Page>> stereotyped classes, re-
spectively. A server page can be associated with other rssite
objects, i.e. database, middle-tier components and so dre T
<client Page>> stereotype represents a HTML page which is
usually associated with other client or server pages. Itetstecase

the<bui | d>> stereotyped association is used to state that a server

page builds a client one. An hyperlink between pages is neadel
by a<! i nk>> stereotyped association. A directed relationship be-
tween one server page and another server or client page isl@dod
by the<f or war d>> stereotyped association. This association rep-
resents the delegation of processing client’s requesis fesource

<< businessDelegate >>
UserDelegate

<< model >
UserTO

“+createllserfuse -UserTO}void
+editUseriuserUserTCvaid
+indAllGroups(: List
HindUserByPKad Int):User TO
+Hinda llUsers(:List

+use mame:String
+passward:String
+email:string

<< controller >3
User

<<wlew , clientPage >3
Menucp

<<link == | +prepareAddgvoid
“+adduser UserTOrvaid
+prepareEdit (i aid
+editgvoid

wiewdlsers

<< senverPage, view x>
UserList

<<wiew, serverPage x>
UserForm

prepareEdit
<<link ==

<< farward >

<< Tonward »>

<= build > <= build =>

<<link => edit == serverPage, view >>

UserList

<< clientPage , view >>
UserForm

=< link>> add prepareAdd

Figure 2: Generable Platform Specific Model MVC-Compliant

code, in order to cope with functionalities which are not ptetely
covered by the source metamodel.

Next section focuses on these issues and presents a tersativ
lution to support manual interventions on generated atsfto re-
solve unforeseen requirements or limited expressiverfete on-
volved metamodels.

4. DEALING WITH SOFTWARE CUSTO-
MIZATION OF WEB APPLICATIONS

As mentioned above, during the model driven developmenbiof-c
plex software systems, developers can be required to haredtihe
generated artifacts in order to cope with particular rezmaints and
funcionalities which are not completely specifiable by nseaithe
used metamodels. A possible solution to accommodate theaew
quirements, is based on the improvement of such metamondels a
model transformations. Nevertheless, these modificatmasot
always possible especially if the new behaviour affecty tmé ap-
plication being developed and not the overall domain bexatis
its irregularity or individuality. In this case, manual énventions
on the PSMs could be more profitable even if it is surely ailtic
and other problems may raise. In fact, according to our ésmpee,
changing the generated code can be very difficult if the dgvel
ers are not appropriately supported mostly to understamhinh
places of the code the modifications can occur.

In this section a methodology to support the customizatibn o
Web Applications developed by means of model driven appresc
is proposed. The premise is that the designer of both theesour
metamodels and the corresponding transformations deirices
vance in which locations of the generated artifacts mamitat-
ventions are permitted. Even though this could not appeaepo
ful enough, it is kind of trade-off: on one hand the users ekth

| :Client Browser| | :Menucg| | :UserLlstco| I :UserFormcr>| l :Userl | :UserList| l :UsevFormI l :UserDelegate
1 [[1 I

I : ‘ . . ‘
opt 1 1 | | | ' :
I i A ! ' ! !
[editUser]! ! ! .prepareEdit{! ! ! ! !
. ; : ! ! ! ! !
| | | | \ H H '
: i | | l ' 2) findUserby PRl o
, | : ! ! ! [Lot
| | i i ‘ ! .
| I | ' ! ! !
X . ! ! I !)
2) findUserBybk
I | ' ! o ptinduserybe
I I i | - ' . '
I | ' ' ! !
I | | | L ‘.forward \,: :
| | | | h I] !
| | | | ! ' ! !
| ! ! ! ' Lbuild | '
| | i : ! ' . !
I | i | T T . !
! ! JuserForm ! ! [1 1 1
. ; | | I | I
I i | h : ' ' !
! et , h . ' ! !
! ! | " | | '
| | | Leditd \ ' . :
| | i T ; ' ! !
i | | i ! 13 .editUserph i
| | ! ! >
| | | ! ‘ ; :
| | i ! ! ! !
i i 1 i) . 3) editUser)
| | | | g — — — | - editser [P i
| I i | i ' ! .
| |))
i ' | ! ! | 4) findAllUsersf:x >
| | | ! ‘ ; :
| | i ! ! ! !
! I | i ‘ | 4y findallUser
1 1 1 1 I 1 n sers
! ! | . g — — — | HfindAllse o _]
| | i | i ' ! .
| | i | ! ' ! !
! ! I | Sforward . '
1 1 | Il ‘%ﬁ . !
| I | | : ' ! !
| ! ! | build | i | '
| | | l
| | i A X ' ! !
! .usetList ! : ! ! ; :
A | i | ! ' , !

Figure 4: Generated Behavior Specification Fragment

transformations will have the possibility to customize tfener- provided for the changes. This model is an abstraction afribeel
ated artifacts by adding behaviours not completely covesethe in Fig. 4 and has only the essentials with the injection oivitere
source metamodels. On the other hand, to not compromise themanual interventions can occur. In particular, the modstdbes
system behaviour through manual customizations, the nuetaim two possibleactionsthat can be performed by the client browser
and transformation designer decides where manual intéoven with the Web server, that is the editing of an existing usether
are allowed. According to the approach depicted in Fig. 8s¢h addition of a new one. The possible injection points areciaigid

ified data are filled out, thedi t method of theuser controller is
called and by means of théser Del egat e the persistency layer
will be updated. This behaviour mainly depends on the indeed . . .
mantics of the source modeling language (WebML) defined with Figure 5: Generated PSM Abstraction
respect to the concepts of the considered domain. In Fig. 5, pre and post actions can be customized for the gddin

According to the proposed approach, these behaviourssepire ~ operation. For thedi t User operation, only the definition of a
too much information that the designer of the source metaod pre-action is permitted. The models in Fig. 4 and in Fig. 5 are
and transformations may want to hide for manual custonunati related in order to link the injection points specified in thdger
For this purpose a model like the one depicted in Fig. 5 will be with the right place in the former where the hand-writtenesadll

be merged with the generated one.

localities are shown to the developer in term of a view (B8 by dashed circles denoting e or post actions, i.e. whether the
abst racti on) of the generated system behaviour models Psaé. hand written code will be performed before or after, respely,
This view hides the details that the source metamodel andfoe the considered action.
mation designer does not want to give and shows where the cus-
tomizations can occur. In the remaining of the paper, thesgp X
will be calledinjection points This is the main characteristics that
differ the proposed approach with the attempts describ&kbm 2. : |
By going into more detail, the model in Fig. 2 lies on a defaei opt] |
haviour consisting of a number of interactions as shownenihIL : 1 editlser |
sequence diagram in Fig. 4. For example, the editing of tlee us :
information conceptually modeled through tbeer For m Edi t ! 1
page in Fig. 1, will consist of a number of interactions anging If“ _________ :
theUser controller, theUser Del egat e, theUser For mcontroller T T
and view. In fact, in order to publish the pre-filled form wite ot] :
data of the selected user, tbeer controller will invoke the method 7 |
fi ndUser ByPK of theUser Del egat e in order to retrieve the user ! 2) addllser !
data that have to be forwarded to theer For mserver page. This ' t|:|
builds the HTML page that will be sent to the user. Once the-mod g - — — -2+ _ _ _ _ L
1 |
| |

In order to better clarify the approach in Fig. 3 a new reguire The operatiorop_i nt er nal () implements the default behaviour

ment for the sample application described above is coresidémr of the previousop() method. Thepr eActi on andpost Acti on
traceability purposes, before the transaction storing thedified objects are the actions that will be executed before and thiteex-
data of a selected user takes place, an email to the systenimadm ecution ofop_i nt er nal () respectively and they are set by means
istrator is sent to inform her/him about the operation th&gbing of the providedset PreAct i on() andset Post Acti on() meth-

to be executedThis is a new functionality which cannot be com- ods. The clasact i on is an interface which will be implemented
pletely described by the source metamodel and the geneaetied by the class containing the hand-written as follows

facts should be manually modified. In the model depicted @ &i | . . ace Action {

the pre-action for the editing operation is permitted. Tmisans voi d execute():

that the code implementing the new requirement can be pedvid = }

for the customization. In order to reduce the risk of comgeem * S :
5 class MyAction inplenents Action {

ing the reliability of the generated application, we bedi¢hat the ¢ publ i c voi d execute(){
user could take advantage of dedicated Application Progragn 7 /1Place where the hand-witten code
Interface (API), dependent on the considered platformpplé- ° }”"“ 10 be §rlled
ment the adaptations. For example, considering the J2Eopta
and the MVC pattern, the Java code needed to implement the re-) . S . -
quired send mail operation is obtained by exploiting an latste According to this pattern the injection point specified by tevel-
Emai | Manager as follows oper in the model in Fig. 4 will induce the following code ireth
. generatediser class to whom thedi t () method belongs
2 Emai | Manager emanager = new Emai | Manager () ; 1 Oass User {
3 Message nessage = new Message(); 2 .
4 . 3 public void edit() {
5 nessage. set Fron("from@nuai | . addr ess") ; 4 preActi on. execut e();
6 nessage. set Subj ect ("subj ect"); 5 edit_internal ();
7 message. set Reci pi ent ("admi ni strat or @yst em addr ess") ; 6 post Act i on. execut e() ;
8 nmessage. set Body(" body") ; 7 }
9
10 emmnager.sendmai | (message); 2 } o
11 Ao
In this case, ther eAct i on object is an instance of a class imple-
Listing 1: Hand-written code implementing the new menting theAct i on interface and having the code in the listing 1
functionality as the body of the correspondiegecut e() method. In this ex-

ample, the code for the post-action, graphically indicateig. 4
through the lower dashed circle, has not been given; thimmea
that post Act i on. execut e() will be an invocation of a prede-
fined dummy operation.

whereMessage is a class provided by the underlying platform to
define an email message.

Once the injection points have been elicited and the cooresp
ing code have been provided, a weaving operation has to be per
formed to merge together the automatic generated code héth t
hand-written one. Of course, Aspect Oriented ProgrammA@y) 5. CONCLUSIONS AND FUTURE WORK
[17] is a candidate for this purpose. In particular, in ortteuse This paper proposed an approach to support manual changes in
AOP approaches, each specifiagection pointinduce the defini- the model driven development of Web applicatiimsesponse to
tion of pointcutsin the code generated by the static descriptions of the need of behavior customization of automatically geteerrap-
the system (see Fig. 2). Then thdvicecode will be merged, with pjications. The reasons of performing hand-tuning are momse

respect to the previously defined points, by using the censil |ike the lack of expressive power at higher levels of absimacor
AOP compller. _ _) the non-cost-effectiveness of metamodel and model tremsiiion
Alternatively, othermodel weaving strategi¢$3] can be imple- adaptations. Since such kind of customizations can copeseit-

mented. This is the case of the sample application for which a eral drawbacks as highlighted above, we propose an atterppbt
approach based on tiiependency injection pattef@2] has been vide with an abstraction level to avoid direct code manipafeand
proposed. In particular, bp() is the method of the class (be- necessary to tune the intervention granularity. The wosctdbes
longing to the PSM) invoked by the message correspondingeto t 3 technique by which PSM adaptations are enabled by chowsing
injection point selected in the PSM abstraction, the folfcode jection points on an abstraction of the PSM itself. The @losion

will be generated and the injection points are defined by the metamodel andftan
1 class A { mation designer, who decides in advance how and where the cus
2 private Action preAction; tomizations will be permitted in order to maintain the cotreess
: LTS (AEE0 O FIrERst e of the generated application merged with the hand-writtetec
5 public void op() { The approach differs from other works that allow manual in-
6 preAction. execut e(); tervention at code level and that enable large possilsilitiecus-
: ggg't thflrgﬁ' (ei;ecut e(): tomizations. The proposal described in this paper reduteset
°) ' possibilities in order to do not compromise generated Wellica
10 200 tions by means of manual customizations. The proposed apipro
u public void setPreAction(Action action) { is not able to deal with complex situations. However, acitydo
12 this.preAction=action; . . K L
13 } the experience of the authors in developing Web applicatitre
14 _ _ _ _ _ powerful of the approach is enough to deal with custominatiike
s PUb{ Lics"oljgt th rgﬁt:aAg: ! 32_(““ on action) { the one described in the running example where pre or pashact
1 } L ' have to be added, if permitted, and executed before or afteng

18 } HTTP requests respectively.

Under a MDD point of view, the main drawback of the proposed

solution is the inconsistency between the PIM and the reimgin
artifacts produced through the customization. This probéeuld
become very relevant if a number of modifications is perfame

in such a case the method usability could become a weak point
too.

However, the paper focuses on situations where higivet |

refactorings are not cost-effective and proposes an apbpriieat

could have to be used in exceptional cases only and by means of

proper tool support.

Upcoming extensions of the approach should encompass a step[

towards the reverse engineering of the changes by meansihfa U
profile able to enrich the sequence diagrams used to spémfy t
injection points; to each of them the related source codddcou
be attached as white-box components through tagged vaBees.
sides, transformation approaches able to support bitthresdity
and change propagation [4] should be explored to verify hdret
it could be possible to automatically preserve the consistde-
tween the modeling layers.

6.
(1]

(2]

(3]

[4]

(5]
(6]

[7]

(8]

[9]

[10]

[11]

[12]

REFERENCES

C. Atkinson and T. Kuihne. Aspect-Oriented Development
with Stratified FrameworkdEEE Software20(1):81-89,
2003.

F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Spetiifica
and Implementation of Exceptions in Workflow Management
SystemsACM Transations on Database Systems
24(3):405-451, 1999.

S. Ceri, P. Fraternali, and A. Bongio. Web Modeling
Language (WebML): a Modeling Language for Designing
Web sitesComputer Networks33(1-6):137-157, 2000.

A. Cicchetti, D. Di Ruscio, and R. Eramo. Towards
Propagation of Changes by Model Approximations. In
International Workshop on Models for Enterprise Computing
- EDOC 2006 To appear.

J. Conallen. Modeling Web Application Architecturesthwi
UML. Comm. ACM42(10):63-71, 1999.

F. Daniel, M. Matera, and G. Pozzi. Combining conceptual
modeling and active rules for the design of adaptive web
applications. INCWE '06: Workshop procs. of the sixth Int.
Conf. on Web Engineeringage 10, New York, NY, USA,
2006. ACM Press.

D. Di Ruscio and A. Pierantonio. Model Transformations i
the Development of Data—Intensive Web Applications. In
CAISE '05 volume 3520 of NCS pages 475—-490.
Springer-Verlag, 2005.

T. Elrad, O. Aldawud, and A. Bader. Aspect-Oriented
Modeling: Bridging the Gap between Implementation and
Design. InProcs. of the Generative Programming and
Component Engineering, ACM SIGPLAN/SIGSOFT Conf.,
GPCE 2002, Pittsburgh, PA, US#olume 2487 of NCS
pages 189-201. Springer-Verlag, October 2002.

F. Frasincar, G. Houben, and R. Vdovjak. Specification
Framework for Engineering Adaptive Web Applications.
WWW 2002.

F. Garzotto, L. Baresi, and M. Maritati. W2000 as a MOF
metamodel. Inhe 6th World Multiconf. on Systemics,
Cybernetics and Informatics-Web Engineering tr2002.
S.T. Pope G.E. Krasner. A cookbook for using the
model-view controller user interface paradigm in
Smalltalk-80.Jour. of Object-Oriented Programming
1(3):26-49, 1988.

J. Gomez and C. Cachero. OO-H Method: extending UML

[13]

[14]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]

[29]

to model web interfaces. pages 144-173, 2003. Idea Group
Publishing.

Thomas R. Graziadei. Aspect oriented model weaver.
Master’s thesis, Fachhochschule Vorarlberg GmbH. In the
Degree Program, 2005.

Object Management Group. OMG/Model Driven
Architecture - A Technical Perspective, 2001. OMG
Document: ormsc/01-07-01.

15] Object Management Group. OMG/Semantics of a

Foundational Subset for Executable UML Models - RFP,
2005. OMG Document: ad/2005-04-02.

I-Logix. Rhapsody Tool, 2006.
http://www.ilogix.com/sublevel.aspx?id=53.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Videira Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. Irith European Conf. on
Object Oriented Programming (ECOOP '9%plume 1241
of LNCS pages 220242, Helsinki, Finland, June 1997.
Springer-Verlag.

Anneke Kleppe, Jos Warmer, and Wim Bad¢DA

Explained: The Model Driven Architecture—Practice and
Promise Addison-Wesley, 2003.

N. Koch and A. Kraus. The expressive Power of UML-based
Web Engineering. IZWWWOST volume 2548 oL NCS pages
105-119. Springer-Verlag, 2002.

I. Kurtev, K. van den Berg, and F. Jouault. Evaluation of
rule-based modularization in model transformation
languages illustrated with ATL. IRrocs. of the 2006 ACM
symposium on Applied computinmrges 1202-1209. ACM
Press, 2006.

A. McNeile and N. Simons. Methods of Behaviour
Modelling: A Commentary on Behaviour Modelling
Techniques for MDA. White Paper (Draft). Metamaxim Ltd,
2004.

M.Fowler. Inversion of control containers and the
dependency injection pattern, 2006.
http://www.martinfowler.com/articles/injection.html

N. Moreno, R. Romero, and A. Vallecillo. Software
Adaptation in the Context of MDA. IProcs. of the Second
Int. Workshop on Coordination and Adaptation Techniques
for Software Entities (WCATOS)age 7, July 2005.
Interactive Objects. ArcStyler Tool, 2006.
http://www.interactive-objects.com.

S. Sarstedt, J. Kohlmeyer, A. Raschke, and M. Schnleater
A New Approach to Combine Models and Code in Model
Driven Development. IiProcs. of the Int. Conf. on Software
Engineering Research and Practice, SERP 2005, Las Vegas,
Nevada, USAvolume 1, June 2005.

D. Schwabe and G. Rossi. An object oriented approach to
Web-based applications desigrheor. Pract. Object Syst.
4(4):207-225, 1998. John Wiley & Sons, Inc.

B. Selic. The Pragmatics of Model-driven Development.
IEEE Softwarg20(5):19-25, 2003.

Sun. Java platform, enterprise edition, 2006.
http://java.sun.com/javaee/index.jsp.

AndroMDA Team. AndroMDA Tool, 2006.
http://www.andromda.org.

[30] Web Models. WebRatio Tool. http://www.webratio.com.

