
A model-based synthesis process for choreography
realizability enforcement

Marco Autili, Davide Di Ruscio, Amleto Di Salle, Paola Inverardi, and
Massimo Tivoli ?

Università degli Studi di L’Aquila, Italy
{marco.autili,davide.diruscio,amleto.disalle,paola.inverardi,massimo.tivoli}@univaq.it

Abstract. The near future in service-oriented system development envisions a
ubiquitous world of available services that collaborate to fit users’ needs. Modern
service-oriented applications are often built by reusing and assembling distributed
services. This can be done by considering a global specification of the interactions
between the participant services, namely choreography. In this paper, we propose
a model-based synthesis approach to automatically synthesize a choreography out
of a specification of it and a set of services discovered as suitable participants. Our
work advances the state-of-the-art in two directions: (i) we address the problem of
choreography realizability enforcement, and (ii) we provide a model-based tool
chain to support the development of choreography-based systems, which has thus
far been largely missed.

Keywords: Service Choreographies, Model Driven Engineering, Service Ori-
ented Architectures, Choreography Realizability Enforcement

1 Introduction

The near future in service-oriented system development envisions a ubiquitous world
of available services that collaborate to fit users’ needs [7]. The trend is to build modern
applications by reusing and assembling distributed services rather than realize stand-
alone and monolithic programs [13].

When building a service-based system, a possible Service Engineering (SE) ap-
proach is to compose together distributed services by considering a global specifica-
tion, called choreography, of the interactions between the participant services. To this
extent, the following two problems are usually considered: (i) realizability check - check
whether the choreography can be realized by implementing each participant service so
as it conforms to the played role; and (ii) conformance check - check whether the set
of services (being possibly reused) satisfies or not the choreography specification. In
the literature many approaches have been proposed to address these problems (e.g.,
see [2, 5, 13] just to mention a few). However, by taking a step forward with respect
to the state-of-the-art, a further problem worth to be considered concerns realizability

? This work is supported by the European Community’s Seventh Framework Programme
FP7/2007-2013 under grant agreement number 257178 (project CHOReOS - Large Scale
Choreographies for the Future Internet - www.choreos.eu).

enforcement. That is, given a choreography specification and a set of existing services
discovered as suitable participants, restrict the interaction among them so to fulfill the
collaboration prescribed by the choreography specification.

In this direction, we are working on the CHOReOS EU project1 whose core objec-
tive is to leverage model-based methodologies and relevant SOA standards, while mak-
ing choreography development a systematic process to the reuse and the assembling of
services discovered within the Internet. Towards the above objective, CHOReOS revis-
its the concept of choreography-based service-oriented systems, to introduce a develop-
ment process and associated methods, tools, and middleware for coordinating services
in the Internet.

Contribution. Within this large initiative, in order to address the realizability en-
forcement problem, in this paper we focus on a model-based SE process to automat-
ically synthesize a choreography out of an its specification and a set of discovered
services. Since a choreography is a network of collaborating services, the notion of co-
ordination protocol becomes crucial. In fact, it might be the case that the collaborating
services, although potentially suitable in isolation, when interacting together can lead
to undesired interactions. The latter are those interactions that do not belong to the set
of interactions modeled by the choreography specification. To prevent undesired inter-
actions, we automatically synthesize additional software entities, called Coordination
Delegates (CDs), and interpose them among the participant services. CDs coordinate
the services’ interaction in a way that the resulting collaboration realizes the specified
choreography. This is done by exchanging suitable coordination information that is au-
tomatically generated out of the choreography specification.

Progress beyond state-of-the art. As already anticipated, from the one hand, we
tackle the problem of realizability enforcement, which so far has been receiving little
attention by the SE community. On the other hand, the definition of the CHOReOS
process and its synthesis sub-process required the exploitation of state-of-the-art lan-
guages, systems, and techniques emerged in different contexts including SOA, model-
transformations, and distributed coordination. Their integration and interoperability
within the same technical space represent the opportunity to harness the power and
individual capabilities of different tools as part of a tool chain to support the systematic
development of choreography-based systems which has thus far been largely missed.

Structure of the work. This paper is structured as follows. By introducing an ex-
planatory example, in the domain of travel agency systems, which will be used through
the rest of the paper, Section 2 describes our choreography synthesis process, hence giv-
ing an intuition of how CDs can be generated and used to enforce choreography realiz-
ability. In Section 3, we discuss the distributed coordination algorithm that characterizes
the coordination logic performed by a synthesized CD. Furthermore, we provide details
about the correctness of the algorithm with respect to choreography enforcement, and
a discussion on the overhead due to the exchange of coordination information. Related
works are discussed in Section 4, and compared with our approach. Section 5 concludes
the paper and discusses future directions.

1 See at www.choreos.eu.

Fig. 1. The Choreography Synthesis process

2 The Choreography Synthesis process

The choreography synthesis process described in this section, and shown in Figure 1, is
part of the overall CHOReOS development process [6]. The CHOReOS process lever-
ages activities that span from requirement specification to service discovery, to choreog-
raphy synthesis, to choreography deployment and execution, and to design and run-time
analysis. As mentioned in Section 1, choreography synthesis is the main contribution
of the work described in this paper and it aims at automatically generating CDs that
correctly coordinate the discovered services in a distributed way.

To describe the synthesis process, we use an explanatory example that concerns the
development of a choreography-based travel agency system. Indeed, within CHOReOS,
we applied our process to a real-scale case study, namely the passenger-friendly airport
scenario. The application of the process and its results are shown by a public demo
available at the CHOReOS web-site2.
Choreography Model. We use BPMN2 Choreography Diagrams as notation to specify
choreographies. The BPMN2 diagram shown in Figure 2 uses rounded-corner boxes to
denote choreography tasks. Each of them is labeled with the roles of the two participants
involved in the task, and the name of the service operation performed by the initiating
participant and provided by the other one. A role contained in a light-gray filled box
denotes the initiating participant. Briefly, the diagram specifies that the travel agency
system can be realized by choreographing four services: a Booking Agency service,
two Flight Booking services, and a Hotel Booking service. In particular, (i)
the booking of the flight has to be performed before the booking of the hotel and (ii)
only the answer from one of the two flight booking services is taken into account (see
the exclusive gateway represented as a rhombus in Figure 2).

The choreography synthesis process generates the CDs required to realize a spec-
ified choreography. The generation process consists of three model transformations as
discussed in the following.
BPMN-to-CLTS. By means of transformation rules implemented through the ATLAS
Transformation Language [8] (ATL), the BPMN2 specification is transformed into a

2 See at http://www.choreos.eu/bin/Discover/videos. The related development
code is available at http://www.choreos.eu/bin/Download/Software.

Fig. 2. BPMN2 choreography diagram for a Flight-Hotel Booking choreography

Choreography Labeled Transition System (CLTS) specification. Figure 3 shows the
CLTS model for the BPMN2 choreography diagram in Figure 2. This model has been
drawn by means of a GMF-based editor specifically developed and freely available3.

Fig. 3. CLTS model of the Flight-Hotel Booking choreography

Informally, a CLTS is a Labeled Transition System (LTS) that, for coordination pur-
poses, is suitably extended to model choreography behavior, e.g., by considering con-
ditional branching and multiplicities on participant instances. The transformation takes
into account the main gateways found in BPMN2 Choreography Diagrams: exclusive
gateways (decision, alternative paths), inclusive gateways (inclusive decision, alterna-
tive but also parallel paths), parallel gateways (creation and merging of parallel flows),
and event-based gateways (choice based on events, i.e., message reception or timeout).
For instance, the exclusive gateway in the BPMN2 diagram shown in Figure 2 has been
transformed to the exclusive branching in the CLTS diagram shown in Figure 3, hence
generating two alternative paths outgoing from state 2.

Although this transformation is indispensable for the realization of the CHOReOS
process, it does not represent an advance on the state-of-the-art per se. In fact, in the
literature, there exist other similar attempts to transform business process models to

3 See at http://code.google.com/p/choreos-mde/.

Fig. 4. LTSs for the services of the travel agency system

automata-based models [3, 17] (just to mention a few). For this reason, in the sequel,
we do not further discuss this transformation.

Before describing the other two transformations, let us continue our example by
discussing the problem underlying the notion of undesired interactions introduced in
Section 1. The CLTS model in Figure 3 predicates on the roles ba, fb1, fb2, and hb
that, after discovery, are played by the Booking Agency, Flight Booking 1,
Flight Booking 2, and Hotel Booking services, respectively. Figure 4 shows
the interaction protocol of these services by using LTSs. The exclamation “!” and
the question “?” marks denote required and provided operations, respectively. The
Booking Agency service searches for a flight by exploiting two different flight
booking services (see !getFlight1 and !getFlight2). As soon as one of the
two booking services answers by sending flight information (see !flightInfo1 or
!flightInfo2), the agency cancels the search on the other booking service (see
!cancel1 or !cancel2).

Fig. 5. A possible undesired interaction with respect to the Flight-Hotel Booking choreography

According to the discovery phase, the above services can be considered as suitable
participants (i.e., each service conforms the role to be played) for the specified choreog-
raphy4. However, this does not necessarily mean that the “uncontrolled” collaboration
of the participant services is free from undesired interactions. In fact, Figure 5 shows
a possible trace resulting from the parallel composition [9] of the service protocols.
This trace represents an undesired interaction, with respect to the interactions modeled
by the CLTS shown in Figure 3, since both fb1 and fb2 proceed while only one of
them should be allowed according to the exclusive branching in state 2. To prevent un-

4 Discovery issues and the problem of checking whether a service is a suitable participant for a
choreography (conformance check) are out of the scope of this paper.

Fig. 6. Coord model for the Flight Booking 1 service

desired interactions, the automatic synthesis of the CDs is carried out according to the
CLTS-to-Coord and Coord-to-Java model transformations discussed below.
CLTS-to-Coord. An ATL transformation is defined to automatically distribute the
CLTS into a set of models, whose metamodel is denoted as Coord in Figure 1. A
Coord model MCDi

, for a coordination delegate CDi, specifies the information that
CDi needs to know in order to properly cooperate with the other CDs in the system. The
aim of this cooperation is to prevent undesired interactions in the global collaboration
of the participant services, hence enforcing choreography realizability.

Back to the example, Figure 6 shows the Coord model that represents the coor-
dination information for the CD supervising Flight Booking 1. In Section 3, we
detail how this information is used for realizability enforcement purposes. Strictly con-
cerning the purposes of this section, it is sufficient to mention that the Coord model
contains the following information: when in the state 2 of the CLTS shown in Figure 3,
fb1 is allowed to perform the operation flightInfo1 provided by ba, hence mov-
ing to the state 4; when in the state 2 also fb2 is allowed to perform an operation,
namely flightInfo2, provided by ba, hence moving to the state 3. However, since
state 2 models an exclusive branching, only one of fb1 and fb2 must be allowed to
proceed. Thus, concerning fb1, the CD supervising Flight Booking 1 needs to
know that, when in the state 2, another service, i.e., Flight Booking 2, is allowed
to take a move, and hence it must be blocked in order to solve the possible concur-
rency problem. Symmetrically, the CD supervising Flight Booking 2 knows that
Flight Booking 1 must be blocked. As detailed in Section 3, the two CDs uses
coordination information to “perform handshaking” and “elect a winner”. Sharing some
similarities with [2], this information is then exploited by the CDs to also keep track
of the global state of the coordination protocol implied by the specified choreography.
This means that each delegate can deduce the global state from the observation of the
communication flow between the participant services.
Coord-to-Java. The Coord model specifies the logic that a CD has to perform inde-
pendently from any target technology. To validate our approach in practical contexts,
we chose Java as a possible target language of our Acceleo5-based model-to-code trans-

5 http://www.eclipse.org/acceleo/

formation. The Java code of a delegate CDi exploits the information contained in its
Coord model MCDi

.
Back again to our example, from the cdfb1 Coord model, a proxy web ser-

vice is generated as a wrapper for the operations required by Flight Booking 1.
That is, the corresponding Java class implements the operation flightinfo1, which
wraps the homonymous operation provided by Booking Agency and required by
Flight Booking 1. Listing 1.1 shows an excerpt of the generated code for the
cdfb1 class. The fb1Coord class variable is used to store the cdfb1 Coord model.
Such a model is used to coordinate the wrapped operations. For instance, after that the
CD for Flight Booking 1 verified that flightInfo1 is an allowed operation
with respect to the choreography global state (variable globalState), it establishes,
through handleRules and handleRule3, whether the request of flightInfo1
can be forwarded to Booking Agency (line 19) or not (line 28). The choreography
global state is tracked by means of the asynchronous exchange of coordination infor-
mation with the other CDs. It is worth to mention that the code of handleRules
and handleRule3 is generic and does not depend on the information contained in
cdfb1.

Listing 1.1. Fragment of the generated CD for fb1
1 @WebService (serviceName="cdfb1" , targetNamespace="http://choreos.di.univaq.it" ,

↪→portName="fb1Port")
2 p u b l i c c l a s s cdfb1 {
3

4 p r i v a t e s t a t i c CoordinationDelegate COORDINATION_DELEGATE = new
↪→CoordinationDelegate ("cdfb1") ;

5 p r i v a t e s t a t i c f i n a l String REQUEST_FLIGHTINFO1 = "flightInfo1" ;
6 p r i v a t e s t a t i c Coord fb1Coord = CoordFactory .eINSTANCE .createCoord () ;
7 p r i v a t e s t a t i c ChoreographyState globalState = new ChoreographyState (

↪→ChoreographyState .INITIAL_STATE) ;
8

9 p u b l i c vo id cdfb1 () {
10 . . .
11 }
12

13 @WebMethod (operationName="flightInfo1")
14 //@Oneway
15 p u b l i c vo id flightInfo1 () throws DiscardException {
16 CoordinationDelegateFacade facade = new CoordinationDelegateFacade () ;
17 CoordinationResult result = facade .handleRules (REQUEST_FLIGHTINFO1 ,

↪→COORDINATION_DELEGATE , fb1coord , globalState) ;
18

19 i f (result==CoordinationResult .FORWARD) {
20

21 //Forward message to the BookingAgency Service
22 BookingAgency_Service bookingAgencyService = new BookingAgency_Service () ;
23 client .BookingAgency BookingAgencyPort = BookingAgencyService .

↪→getBookingAgencyPort () ;
24 BookingAgencyPort .flightInfo1 () ;
25

26 facade .handleRule3 (REQUEST_FLIGHTINFO1 , COORDINATION_DELEGATE , fb1coord ,
↪→globalState) ;

27 }
28 i f (result==CoordinationResult .DISCARD) {
29 //Discard message
30 throw new DiscardException () ;
31 }
32 }
33 }

Fig. 7. Overall architecture of the choreography-based travel agency system

Once the implementation code has been generated for all the required CDs, services
and CDs are composed together. Figure 7 shows the architectural configuration of the
composition where ba, fb1, fb2, and hb are instances of Booking Agency, Flight
Booking 1, Flight Booking 2, and Hotel Booking, respectively; cdba,
cdfb1, cdfb2, , and cdhb are their respective CDs.

The required/provided interface bindings between a participant service and a CD are
realized by means of synchronous connectors. A CD is connected to all the other CDs
by means of asynchronous connectors (see the n-ary association shown in Figure 7 as
a rhombus). The latter serve to exchange coordination information. As better explained
in the next section, coordination information is exchanged only when synchronization
is needed, i.e., when there is more than one component that is allowed to perform some
action according to the current global state of the choreography model. For instance, in
our example, this happens when both fb1 and fb2 can move from the state 2. Note
that, dealing with the reuse of existing (black-box) services, this is the best we can do
in terms of the overhead due to the exchange of coordination information. In the next
section we discuss why this is overhead is negligible.

3 Distributed coordination algorithm

In this section we provide an algorithmic description of the coordination logic that a
CD has to perform. Having such a description is indispensable for generating the CDs
code out of the Coord model. The distributed coordination algorithm leverages some
foundational notions on happened-before relation, partial ordering, time-stamps, and
total ordering. The reader which is not completely confident with such notions can
refer to the work described in [10].

While exchanging coordination information, the standard time-stamp method is
used in our approach to establish, at each CD, a total order of dependent blocking and
unblocking messages, hence addressing starvation problems. Acknowledging messages
are used to be sure that all the blocking messages (a CD has sent) has been actually

received. Moreover, by assigning a priority order to the services to be choreographed,
the method also solves concurrency problems arising when two events associated with
the same time-stamp must be compared.

Adopting the same presentation style as the one used in [10], our distributed
coordination algorithm is defined by the following rules that each delegate CDi

follows in a distributed setting, when its supervised service Si performs a request of
α, without relying on any central synchronizing entity or shared memory. Roughly
speaking, these rules locally characterize the collaborative behavior of the CDs at
run-time from a clear one-to-many point of view. To this end, each CD maintains
its own BLOCK queue (i.e., the queue of blocking messages) that is unknown to
the others delegates. At the beginning, each CD has its own timestamp variable set
to 0 and, at each iteration of the algorithm, waits for either its supervised service
to make a request or another CD to forward a request. The actions defined by
each rule are assumed to form a single event (i.e., each rule has to be considered
as atomic). Within the rules, we denote with TSi the current timestamp for CDi,
and with s the current state of the CLTS model MC of the choreography. More-
over, we denote with Coordi[h] the h-th coordination information element in the
Coord model of CDi; Coordi[h][sourceState] (resp., Coordi[h][targetState])
is a state of MC that is a source (resp., target) state for the transition la-
beled with Coordi[h][allowedOperation]; Coordi[h][allowedOperation]
is the operation that can be performed by Si when MC is in the state
Coordi[h][sourceState]; Coordi[h][allowedServiceInSourceState] (resp.,
Coordi[h][allowedServiceInTargetState]) is the set of services (different from
Si) that, with respect to MC , are allowed to move from Coordi[h][sourceState]
(resp., Coordi[h][targetState]).

Rule 1: Upon receiving, from Si, a request of α in the current state s of MC ,
1.1 if there exist h s.t. Coordi[h][sourceState] = s and

Coordi[h][allowedOperation] = α (i.e., α is allowed from s) then
1.1.1 CDi updates TSi to TSi + 1;
1.1.2 for every CDj s.t. j ∈ Coordi[h][allowedServiceInSourceState]:

1.1.2.1 CDi sends BLOCK(s,TSi,from-CDi,to-CDj) to CDj ;
1.1.2.2 CDi puts BLOCK(s,TSi,from-CDi,to-CDj) on its BLOCK queue;

1.2 if there exist h s.t. Coordi[h][sourceState] 6= s and
Coordi[h][allowedOperation] = α (i.e., α is not allowed from s)
then CDi discards α;

1.3 if does not exist h s.t. Coordi[h][allowedOperation] = α (i.e., α is not in
the alphabet of MC) then CDi forwards α (hence synchronizing with Si);

Rule 2: When a CDj receives a BLOCK(s,TSi,from-CDi,to-CDj) from some CDi,
2.1 CDj places BLOCK(s,TSi,from-CDi,to-CDj) on its BLOCK queue;
2.2 if (TSj < TSi) or (TSi = TSj and Si ≺ Sj) then CDj updates TSj to

TSi + 1; else CDj updates TSj to TSj + 1;
2.3 CDj sends ACK(s,TSj ,from-CDj) to CDi;

Rule 3: Once CDi has received all the expected ACK(s,TSj ,from-CDj) from every CDj

(see Rule 2), and it is granted the privilege (according to Rule 5) to proceed from
state s,

3.1 CDi forwards α;
3.2 CDi updates s to s′=Coordi[h][targetState];
3.3 CDi updates TSi to TSi + 1;
3.4 for every CDj s.t. j ∈ Coordi[h][allowedServiceInSourceState] or j ∈

Coordi[h][allowedServiceInTargetState]:
3.4.1 if s == s′ then CDi removes any BLOCK(s,TSi,from-CDi,to-CDj)

from its own BLOCK queue; else CDi empties its own BLOCK queue;
3.4.2 CDi sends UNBLOCK(s′,TSi,from-CDi) to CDj ;

Rule 4: When a CDj receives an UNBLOCK(s′,TSi,from-CDi) from some CDi,
4.1 CDj updates s to s′;
4.2 if (TSj < TSi) or (TSi = TSj and Si ≺ Sj) then CDj updates TSj to

TSi + 1; else CDj updates TSj to TSj + 1;
4.3 if s == s′ then CDj removes any BLOCK(s,TSi,from-CDi,to-CDj) from

its BLOCK queue; else CDj empties its own BLOCK queue;
4.4 CDj retries Rule 1 from the (updated) state s;

Rule 5: CDi is granted the privilege to proceed from the current state s of MC when,
ranging over j, for every pair of messages BLOCK(s,TSi,from-CDi,to-CDj) and
BLOCK(s,TSj ,from-CDj ,to-CDi) on its BLOCK queue: either (i) TSi < TSj

or (ii) TSi = TSj and Si ≺ Sj ;

For a full understanding of the algorithm, in the following, we provide a detailed
explanation of some rules.

If the conditions on Rule 1.2 hold (i.e., the conditions on Rules 1.1 and 1.3 fail),
it means that Si is trying to perform an operation that is in the alphabet of MC but is
not allowed from the current state of MC . In this case, CDi prevents Si to perform that
operation by discarding it. Indeed, one cannot always assume that the actual code of a
(black-box) service has been developed in a way that it is possible to discard a service
operation by the external environment. Actually, it can be done only if the developer
had preemptively foreseen it and, for instance, an exception handling logic was aptly
coded for such an operation6. Thus, we would need to distinguish between controllable
and uncontrollable actions. In other words, we should distinguish between service op-
eration that can be discarded by the external environment (e.g., a CD) and service op-
erations that cannot be discarded. For example, inputs coming from a sensor are often
considered as uncontrollable since they should be always accepted and treated by the
receiving service. In contrast, controllable actions can be safely discarded to correctly
prevent undesired behaviors. As it is usually done in the discrete controller synthesis
research area, the developer is in charge of specifying which service operations are
controllable and which are uncontrollable. Therefore, for the purposes of our method,
we should assume that the service developer specifies this kind of information, e.g., by
tagging, within a service LTS, operation labels as controllable or uncontrollable. Since
in this paper we mainly focus on the automatic distribution of the choreography-based
coordination logic, for the sake of simplicity, we avoid to address controllability issues
and we assume that all service operations are controllable. However, the extension to
account for controllability issues is straightforward.

6 E.g., through declaration of thrown exceptions on interface operations, or of fault messages on
WSDL operations, or simply of error return values for class methods.

Fig. 8. An excerpt of a possible execution of the distributed coordination algorithm

Rule 1.3, allows CDs to be permissive on the operations that do not belong to the
alphabet ofMC (i.e., operations “outside the scope” of the choreography). Note that one
could instead choose to be restrictive on that operations by disabling Rule 1.3 hence
preventing the service to perform that operation by discarding it (as in the case of a
service trying to perform an operation that is in the alphabet of MC but is not allowed
from the current state). Clearly, choosing between either the permissive or the restrictive
version of Rule 1.3 can be handled by considering CDs parametric with respect to that
rule.

Rule 4.4 resumes the execution of an unblocked CD by “restarting” from Rule 1. If
this CD is still trying to handle a request α that is pending from the previous iteration
of the algorithm (see the operation flightInfo2 in the coordination scenario shown
in Figure 8), retrying Rule 1 means to directly re-check the conditions of Rules 1.1, 1.2,
and 1.3 with the new updated state and the pending α. Otherwise, it means that the CD
retries Rule 1 from an updated choreography global state.

It is worthwhile to observe that conditions (i) and (ii) of Rule 5 are tested locally
by a CD.

Correctness. The above algorithm satisfies three crucial conditions [10] for correct
distributed coordination: (1) a coordination delegate which has been granted the
privilege to proceed must proceed and unblock the other competing delegates before
the privilege to proceed can be granted to another delegate; (2) different block
messages for granting the privilege to proceed must be privileged in the order in which
they are made, excluding the ones “associated” to discarded operations; (3) if every
coordination delegate which is granted the privilege to proceed eventually proceeds
and unblocks the other competing delegates, then every block message for granting
the privilege to proceed is eventually privileged, excluding the ones “associated” to
discarded operations. In fact, condition (i) of Rule 5, together with the assumption that
the messages concerning coordination information are received in order, guarantees
that CDi has learned about all operation requests which preceded its current operation
request. Since Rules 3 and 4 are the only ones which remove messages from the
BLOCK queue, condition (1) trivially holds. Condition (2) follows from the fact
that the total ordering ≺ (happened-before relation plus component priority) extends
the partial ordering → (happened-before relation). Rule 2 guarantees that after CDi

requests the privilege to proceed (by sending BLOCK messages), condition (i) of Rule
5 will eventually hold. Rules 3 and 4 imply that if each coordination delegate which is
granted the privilege to proceed eventually proceeds and unblocks the other competing
delegates, then condition (ii) of Rule 5 will eventually hold, thus ensuring condition (3).

Analysis of the overhead due to the exchange of coordination information. The
overhead due to the exchange of coordination information among the coordination
delegates is negligible. First of all, note that BLOCK messages are exchanged only
when non-determinism occurs from the current state s of MC . In the worst case7, the
non-determinism degree is asymptotically bounded by the number n of components,
i.e., it is O(n). For each received BLOCK message an ACK message is exchanged.
UNBLOCK messages are instead exchanged at each state of MC and for a maximum
number that is O(n). Thus, if m is the number of states of MC then the maximum
number of coordination information messages (BLOCK, UNBLOCK, ACK) that are
exchanged is O(3 ∗ m ∗ n), i.e., O(m ∗ n). However, very often, in the practice,
n ≤ m holds (m ≤ n is less frequent). This means that the maximum number of
exchanged coordination information messages can be considered as O(m2). We can,
then, conclude that the introduced overhead is polynomial in the number of states of
MC and, hence, negligible further considering that the size of coordination information
messages is insignificant. After all, as also shown by the work described in [10], this is
the minimum that one can do to ensure correct distributed coordination.

By continuing the explanatory example introduced in Section 2, we better show how
CDs use, at run-time, the information in their Coord models to correctly and distribu-
tively interact with each other, hence enforcing the realizability of the choreography
specified by MC . By referring to Figure 3, we focus on the fact that only the answer
from one of the two flight booking services is taken into account. Following the rules
of the distributed coordination algorithm, Figure 8 shows how Flight Booking 2

7 Note that, in the practice, the worst case is unusual.

is blocked whenever Flight Booking 1 is faster in collecting the information to
be provided to Booking Agency.

The shown scenario concerns an excerpt of a possible execution of the distributed
coordination algorithm. It starts when the two allowed operations flightInfo1
and flightInfo2, required by Flight Booking 1 and Flight Booking
2 respectively, concurrently occur while in the current state 2 of the CLTS model
of the choreography. At state 2, the timestamps for Flight Booking 1 and
Flight Booking 2 are 1 and 2, respectively. Furthermore, Flight Booking
1 ≺ Flight Booking 2.

4 Related Work

The approach to the automatic generation of CDs presented in this paper is related to a
number of other approaches that have been considered in the literature.

Many approaches have been proposed in the literature aiming at automatically com-
posing services by means of BPEL, WSCI, or WS-CDL choreographers [4, 5, 11, 14,
16]. The common idea underlying these approaches is to assume a high-level specifica-
tion of the requirements that the choreography has to fulfill and a behavioral specifica-
tion of the services participating in the choreography. From these two assumptions, by
applying data- and control-flow analysis, the BPEL, WSCI or WS-CDL description of
a centralized choreographer specification is automatically derived. This description is
derived in order to satisfy the specified choreography requirements.

In particular, in [16], the authors propose an approach to automatically derive ser-
vice implementations from a choreography specification. In [14], the author strives to-
wards the same goal, however assuming that some services are reused. The proposed
approach exploits wrappers to make the reused services match the choreography.

Most of the previous approaches, concerns orchestration that is a possible approach
to service composition. Conversely, our approach is one of the few in the literature that
consider choreography as a means for composing services. Despite the works described
in [14, 16] focus on choreography, they consider the problem of automatically check-
ing whether a choreography can be realized by a set of interacting services, each of
them synthesized by simply projecting the choreography specification on the role to be
played. This problem is known as choreography realizability check. Note that it is a
fundamentally different problem with respect to the one considered in this paper, i.e.,
choreography realizability enforcement. In fact, our approach is reuse-oriented and aims
at restricting, by means of the automatically synthesized CDs, the interaction behavior
of the discovered (third-party) services in order to realize the specified choreography.
Differently, the approaches described in [14, 16] are focused on verifying whether the
set of services, required to realize a given choreography, can be easily implemented by
simply considering the role-based local views of the specified choreography. That is,
this verification does not aim at synthesizing the coordination logic, which is needed
whenever the collaboration among the services leads to global interactions that violate
the choreography behavior.

In [12] a game theoretic strategy is used for checking whether incompatible com-
ponent interfaces can be made compatible by inserting a converter between them. This

approach is able to automatically synthesize the converter. Contrarily to what we have
presented in this paper, the synthesized converter can be seen as a centralized CD.

In our previous work [1] a preliminary version of the coordination algorithm pre-
sented in Section 3 has been applied in a component-based setting, namely EJB com-
ponents for J2EE component-based systems, to support automated composition and
coordination of software components. In this paper, it has been completely revised to
deal with service-oriented systems and solve some open issues.

In [15], the authors show how to monitor safety properties locally specified (to each
component). They observe the system behavior simply raising a warning message when
a violation of the specified property is detected. Our approach goes beyond simply de-
tecting properties (e.g., a choreography specification) by also allowing their enforce-
ment. In [15] the best thing that they can do is to reason about the global state that
each component is aware of. Note that, differently from what is done in our approach,
such a global state might not be the actual current one and, hence, the property could
be considered guaranteed in an “expired” state.

5 Conclusions and Future Work

In this paper we presented a model-based synthesis process for automatically enforc-
ing choreography realizability. The main contributions of the presented work with re-
spect to the choreography generation research area are: (i) an automated solution to the
problem of choreography realizability enforcement which so far has not been largely
investigated, in contrast with the fundamentally different problem of choreography re-
alizability check; (ii) the formalization of a distributed algorithm specifically defined
for choreography-based coordination; (iii) the definition of model transformations ca-
pable to produce both the model and the actual implementation of a choreographer
distributed into a set of cooperating CDs - this is done without generating any central-
ized model, hence addressing state-explosion problems and scalability issues; and (iv)
the full automation and applicability of the approach to practical contexts, e.g., SOAP
Web-Services.

The approach is viable and the automatically generated code allows for the correct
enforcement of the specified choreography. As future work, we obviously need to carry
out more validation and empirical investigation of the proposed techniques.

The implementation of the whole approach and the modeled explanatory example
can be found at http://www.choreos.eu/bin/Download/Software. The current
implementation of the approach supports the generation of Java code for coordinating
SOAP-based Web-services. Considering the general-purpose nature of the approach,
other languages and application domains are eligible, and other form of wrapping can
be easily realized.

An interesting future direction is the investigation of non-functional properties of
the choreography, e.g., by extending the choreography specification with performance
or reliability attributes and accounting for them in the CDs synthesis process.

As discussed in Section 3, our approach allows supervised services to perform an
operation that is outside the scope of the specified choreography. In this sense our
approach is permissive. However, it can be parameterized to be either permissive or

restrictive with respect to that operations. However, simply enabling or disabling the
execution of operations outside the scope of the choreography is a trivial strategy. In
the future we plan to investigate, and embed into the approach implementation, more
accurate strategies to suitably deal with operations that do not belong to the specified
choreography.

This paper has been mainly focused on describing the model-based and automatic
synthesis of CDs at work, within a choreographic static scenario. Thus, as further future
work, highly dynamic scenarios should be considered and our process should be revised
accordingly. For instance, such scenarios are related to contexts in which services may
change their behaviour according to the “global state” of the choreography.

References

1. M. Autili, L. Mostarda, A. Navarra, and M. Tivoli. Synthesis of decentralized and concurrent
adaptors for correctly assembling distributed component-based systems. Journal of Systems
and Software, 81(12):2210–2236, 2008.

2. S. Basu and T. Bultan. Choreography conformance via synchronizability. In Proceedings of
WWW ’11, pages 795–804, 2011.

3. D. Bisztray and R. Heckel. Rule-Level Verification of Business Process Transformations
using CSP. In Proceedings of GT-VMT’07, 2007.

4. A. Brogi and R. Popescu. Automated Generation of BPEL Adapters. In Proc. of ICSOC’06,
volume 4294 of LNCS, 2006.

5. D. Calvanese, G. D. Giacomo, M. Lenzerini, M. Mecella, and F. Patrizi. Automatic service
composition and synthesis: the roman model. IEEE Data Eng. Bull., 31(3):18–22, 2008.

6. CHOReOS Consortium. CHOReOS dynamic development model definition - Public Project
deliverable D2.1, September 2011.

7. ERCIM News. Special Theme: Future Internet Technology. Number 77, April 2009.
8. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation tool. Science

of Computer Programming, 72(1-2):31–39, 2008.
9. R. M. Keller. Formal verification of parallel programs. Commun. ACM, 19(7), 1976.

10. L. Lamport. Ti clocks, and the ordering of events in a distributed system. Commun. ACM,
21:558–565, July 1978.

11. A. Marconi, M. Pistore, and P. Traverso. Automated Composition of Web Services: the
ASTRO Approach. IEEE Data Eng. Bull., 31(3):23–26, 2008.

12. R. Passerone, L. D. Alfaro, T. A. Henzinger, and A. L. Sangiovanni-vincentelli. Convertibil-
ity verification and converter synthesis: Two faces of the same coin. In ICCAD, 2002.

13. P. Poizat and G. Salaün. Checking the Realizability of BPMN 2.0 Choreographies. In
Proceedings of SAC 2012, pages 1927–1934, 2012.

14. G. Salaün. Generation of service wrapper protocols from choreography specifications. In
Proceedings of SEFM, 2008.

15. K. Sen, A. Vardhan, G. Agha, and G. Rosu. Efficient decentralized monitoring of safety in
distributed systems. In Proceedings of ICSE’04, 2004.

16. J. Su, T. Bultan, X. Fu, and X. Zhao. Towards a theory of web service choreographies. In
WS-FM, pages 1–16, 2007.

17. W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow
patterns. Distrib. Parallel Databases, 14(1), 2003.

