Towards Adapting Choreography-Based
Service Compositions Through Enterprise
Integration Patterns

Amleto Di Salle, Francesco Gallo, and Alexander Perucci®?

University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
{amleto.disalle,francesco.gallo}@univagq.it,
alexander.perucci@graduate.univaq.it
http://www.univaq.it

Abstract. The Future Internet is becoming a reality, providing a large-
scale computing environments where a virtually infinite number of avail-
able services can be composed so as to fit users’ needs. Modern service-
oriented applications will be more and more often built by reusing and
assembling distributed services. A key enabler for this vision is then the
ability to automatically compose and dynamically coordinate software
services. Service choreographies are an emergent Service Engineering
(SE) approach to compose together and coordinate services in a distrib-
uted way. When mismatching third-party services are to be composed,
obtaining the distributed coordination and adaptation logic required to
suitably realize a choreography is a non-trivial and error prone task.
Automatic support is then needed. In this direction, this paper leverages
previous work on the automatic synthesis of choreography-based sys-
tems, and describes our preliminary steps towards exploiting Enterprise
Integration Patterns to deal with a form of choreography adaptation.

1 Introduction

The Future Internet promotes a distributed computing environment that will
be increasingly surrounded by a large number of software services, which can be
composed to meet user needs. The Future Internet of Services paradigm emerges
from the convergence of the Future Internet (FI) and the Service-Oriented Com-
puting (SOC) paradigm [1]. Services play a central role in this vision as effective
means to achieve interoperability between heterogeneous parties of a business
process, and new value added service-based systems can be built as a chore-
ography of services available in the FI. Service choreography is a decentralized
approach, which provides a loose way to design service composition by speci-
fying the participants (i.e., roles) and the (message-based) interaction protocol
between them, by decoupling the participant tasks from the services that only
later will be bound to the specified roles.

The need for service choreography was recognized in the Business Process
Modeling Notation version 2.0 (BPMN2), which introduced Choreography

! http://www.omg.org/spec/BPMN/2.0/.

© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 240-252, 2015.
DOI: 10.1007/978-3-662-49224-6_20

http://www.omg.org/spec/BPMN/2.0/

Towards Adapting Choreography-Based Service Compositions 241

Diagrams to offer choreography-specific modeling constructs. A choreography
diagram models peer-to-peer communication by defining a multi-party protocol
that, when put in place by the cooperating parties, will permit to reach the
overall choreography objectives in a fully distributed way. In this sense, service
choreographies are quite different from service orchestrations in which a sin-
gle stakeholder centrally plans and decides how an objective should be reached
through the cooperation with other services.

In this paper we leverage the experience on choreography development that
we have been doing so far within the EU CHOReOS project?. Then, being
supported by the EU CHOReVOLUTION (follow-up) project®, we report on
the novel idea we are currently investigating to achieve choreography adaptation
and evolution to face the challenges posed by the heterogeneity of FI services.

In this direction, we propose a way to enhance the previous CHOReOS
approach to the automatic synthesis of choreography-based systems [2-5], and
describes the preliminary steps we are undertaking within CHOReVOLUTION
towards exploiting Enterprise Integration Patterns (EIP) so as to deal with a
form of choreography adaptation. The novel contributions can be summarized as
follow: (i) adoption of EIP to deal with a form of adaptation for choreography-
based systems; (ii) enhancement of our synthesis process by introducing an
adapters generator; (iii) enhancement of the architectural style for including
adapters.

The paper is structured as follow. Section 2 sets the context of our work,
and Sect. 3 introduces an explanatory example. Then, Sect. 4 describes how the
synthesis process can be enhanced to deal with choreography adaptation and
evolution through protocol coordination, protocol adaptation and related com-
plex data mappings, and Sect. 5 describes the proposed enhancement at work on
the explanatory example. Related work is discussed in Sect.6, and conclusions
are given in Sect. 7.

2 Setting the Context

This section sets the context of our work by describing the problem we want to
address in Sect. 2.1, and the idea underlying the proposed solution in Sect. 2.2.
Then, Sect.2.3 provides basic notions of the Enterprise Integration Patterns
(EIP) [6] that we propose to exploit to deal with adaptation issues.

2.1 The Problem Space

When considering choreography-based service-oriented systems, the following
problems are mainly considered:

(i) realizability check - checks whether the choreography can be realized by
implementing each participant so that it conforms to the played role;

2 http://www.choreos.cu/.
3 http://www.chorevolution.eu/.

http://www.choreos.eu/
http://www.chorevolution.eu/

242 A. Di Salle et al.

(ii) conformance check - checks whether the set of services satisfies the chore-
ography specification;

(iil) automatic realizability enforcement - given a choreography specification and
a set of existing services, externally coordinate and adapt their interaction
so as to fulfill the collaboration prescribed by the choreography specifica-
tion.

In the literature, the approaches proposed in [7-19] address the problems
(i) and (ii); the approaches proposed in [2,3,5,20] address the problem (iii).
In this paper we concentrate on the automatic realizability enforcement prob-
lem. Specifically, starting from previous work in [2-5], we propose the following
enhancement to deal with a form of choreography adaptation that exploits EIP
to built service adapters.

2.2 The Solution Space

Addressing the automatic realizability enforcement problem calls for solving both
coordination issues and adaptation issues.

Coordination issues are addressed in previous work [2,5], where we propose
an automatic approach to synthesize the global coordination logic to be then dis-
tributed and enforced among the considered services. Preliminary ideas towards
addressing adaptation issues are described in [3,4], where we propose the use of
adapters for solving interaction protocol mismatches deriving from the hetero-
geneity of services not born to be directly composed together.

In this paper we describe the initial steps we have done towards exploit-
ing Enterprise Integration Patterns so as to deal with a form of choreography
adaptation that, in addition to interaction protocol mismatches, also account
for I/O data mismatches. Our mid-term goal within the CHOReVOLUTION
project is to achieve automated data-flow coordination and adaptation, which
means effectively coping with heterogeneous service interfaces and dealing with
as much EIPs [6] as possible in a automatic way. In particular, the idea is to
automatically generate adapters by combining different EIPs based on a notion
of protocol mediation and data similarity.

2.3 Exploiting Enterprise Integration Patterns

From a technical point of view, achieving the above calls for dealing with mis-
matching service signatures and interaction protocols. In particular, to achieve
adaptation, the operations signature and the interaction protocol of the concrete
services may need to be adapted to the roles to be played in the input choreog-
raphy model. This requires to implement a suitable notion of matching between
protocols by means of complex data mappings over both operation names and
I/O messages. Protocol refinement techniques must be developed to bridge the
gap between the abstract protocol of the choreography participant roles and the
protocol of the concrete services. These techniques, together with the ability

Towards Adapting Choreography-Based Service Compositions 243

of dealing with, e.g., appearing and disappearing services at run-time, would
permit to achieve evolution through on-the-fly service binding.

EIPs offer more than one approach for integrating applications, i.e., File
Transfer, Shared Database, Remote Procedure Invocation, and Messaging [6].
We focus on the Messaging approach since we consider Web Services (WSs) as
possible choreography participants, and WSs communicate through messages
passing (e.g., request/response or one-way operation types).

The Messaging approach uses the “pipes-and-filters” architectural style [21]
as base for connecting applications. The Endpoints (Filters) are connected with
one another via Channels (Pipes). The producing endpoint sends messages to
the channel, and the messages are retrieved by the consuming endpoint. There
are different types of pipes and filters patterns, each one of them dedicated to
solve a particular integration aspect.

For the purposes of this paper, we consider: Message Transformation that
converts a message from a format to another one; Message Aggregator that
receives multiple messages and combines them into a single message.

3 Explanatory Example

The explanatory example introduced in this section is a very small portion of an
In-store Marketing and Sale choreography that was used by the EU CHOReOS
project to demonstrate an Adaptive Customer Relationship Booster system. The
whole choreography was aimed at monitoring the activity of a client inside the
shop in order to propose him /her tailored shopping offers and/or advertisements
according to the user information (preferences, current shopping list, etc.) held
by a shopping assistant application service.

Figure 1 reports a simplified choreography diagram realized by using the
Eclipse BPMN2 modeler plugin®. The diagrams also shows the input and out-
put messages of each choreography task. Within the Eclipse BPMN2 modeler,
messages are specified by using the XML schema, which is the default language
for specifying BPMN2 messages.

The choreography is triggered by the Client entering the shop. A Shop
Entrance service (not shown in the figure) detects the presence of a specific
Client inside the store and assigns him a virtual cart. Once subscribed to the
cart, the Client can add and remove products to and from it. Once the Client
finishes shopping, the Smart Cart service allows for executing the payment by
interacting with the a Self Check-out Machine.

4 Method Description

In this section we describe the proposed method by distinguishing between pro-
tocol coordination and protocol adaptation.

* http://www.cclipse.org/bpmn2-modeler/.

http://www.eclipse.org/bpmn2-modeler/

244 A. Di Salle et al.

s Start Event

L G checkin ([Iproduct, quantity
Add Product
I cartID Y add o

[~~name, surname, > ® response £ @
: email [=~] product,

Client i quantity
[Client
Subscribe User Cart L
Smart Cart Remove Product

i | Smart Cart |
[subscription notification
g J [removal response
[cartID [total [)total
(Client (Self Check-0ut Machine | Smart Cart |
Check-0ut Request for Payment Payment -
Self Check-Out Machine Smart Cart Self Check-Out Machine End)
i ; H ven

-meck-mn notification - request response - payment confirmation

Fig. 1. In-store marketing and sale choreography

Protocol coordination allows for preventing undesired interactions among
(possibly adapted) services. That is, interactions not allowed by the choreogra-
phy specification can happen when the services collaborate in an uncontrolled
way. To deal with this problem, additional software entities, called Coordination
Delegates (CDs), are generated and interposed among the services participating
in the specified choreography in order to prevent possible undesired interactions.
Thus, the intent of CDs is to coordinate the interaction of the participant ser-
vices in a way that the resulting collaboration correctly realizes the specified
choreography. For instance, the Client is allowed to perform the Add Product
task to add products to the Smart Cart (see the top of the Fig.1). However,
after paying and before check-out, an undesired interaction can happen since the
Client might try to add products (see the top-most tasks just before the End
Event), thus avoiding paying for them.

Protocol adaptation allows for dealing with services that do not exactly fit the
choreography roles. That is, adapters are automatically synthesized to mediate
the interaction service-to-CD and CD-to-service according to the choreography
roles (see Fig. 2). Each Adapter is generated so as to bridge/mediate the concrete
service interaction protocol in order to exactly match the abstract participant
interaction protocol. In other words, Adapters realize correct service-role bind-
ing by solving possible interoperability issues (e.g., signature and protocol mis-
matches) between concrete services and abstract participants. By leveraging a
sufficiently accurate notion of behavioral interface refinement, Adapters enforce
service-role similarity, hence binding the concrete services to the abstract roles
defined by the choreography. The synthesized Adapters enforce exact similarity
through complex data mappings and complex protocol mediation patterns. For
instance, Adapters are able to map message data types, or reorder/merge/split
the sequence of operation calls and/or related 1/O messages.

Towards Adapting Choreography-Based Service Compositions 245

S1 52
"""""""""""" Standard M

= /_r:_')/ A2 ,l; Communication (e.g.,

i
i

'

! i ' | request/response
1 - ! i /

\ E CD1 *_ ’ CD2) | messages)

: H (o= H i

i ! ! i

L T

! H) i Additional ()

, ¥ ! i

H y ' ! Communication
' ' CD3 Ji ! (coordination

Y 7 . _ N e : ! information

' Protocol Coordinalﬁ\ A3 |

for coordination
purposes)

Protocol Adaptation
S3

Fig. 2. Architectural style with adapters

Coordination and adaptation software entities are synthesized in order to
proxify and control the participant services’ interaction. When interposed among
the services, according to the architectural style shown in Fig.2, coordination
entities still guarantee the collaboration specified by the choreography specifica-
tion through protocol coordination; adaptation entities mediate the interaction
of the participant services so as to fit the choreography roles.

An important aspect here is that the coordination logic performed by the
CDs is service-independent since it is based on the expected behavior of the
participants as specified by the choreography, rather than on the actual con-
crete services to be binded and coordinated. In this way separation of concerns
is realized by separating pure coordination issues (i.e., undesired interactions)
from adaptation/mediation ones (e.g., operation signature mismatches and data
incompatibilities at the service interface level, and behavior mismatches). For
example, the latter can arise whenever a service discovered as a participant does
not exactly match the role to be played.

In order to automatically synthesize adaptation software entities we propose
an extension of our CHOReOSynt tool [22] introducing a new RESTful service
called Synthesis Adapter Generator (see Fig.3).

By taking as input a BPMN 2.0 specification of the choreography, the exten-
sion we propose allows for deriving service Adapters in addition to CDs (Fig. 3).
To this end, model transformations are employed and interoperation with the
Service Discovery is required (out of the scope of this paper). Both CDs and
Adapters, when deployed by the Enactment Engine (out of the scope of this
paper), allow for enacting the choreography by realizing the distributed coordi-
nation logic between the discovered services.

The tool consists of the following RESTful services, and a set of Eclipse
plugins that have been developed to interact with such services.

M2M Transformator — The Model-to-Model (M2M) Transformator offers a
set of model transformations.

Synthesis Discovery Manager — The Synthesis process and the Discovery
process interact each other to retrieve, from the service base, those candidate
services that are suitable for playing the participant roles required by the chore-

246 A. Di Salle et al.

Choreography Synthesis Processor

/synthesisprocessor/synthesis E""> Synthesis M2M Transformator :

.

- bpmn2abstractCLTS ()
- extractParticipantRoles ()

- abstractCLTS2concreteCLTS ()
- clts2coord ()

Synthesis Processor 47
\/

REST
e Synthesis Discovery 'l‘)
Manager \l

- startSynthesis ()

- discoverServices ()

REST

Synthesis CD Generator *=**f| Synthesis .‘. Synthesis Le=2 H
==\l Adapter G havior Simul H
- generateCDs () I
= prestachiEgpec() - generateadapter()f - projection()

- simulate ()

Enactment Engine Service Discovery

- enactChoreography () - discover ()

Fig. 3. REST architecture of the extended synthesis processor

ography specification, and hence, those services whose (offered and required)
operations and behavior are compatible with the expected behavior as extracted
from the choreography through projection.

Behavior Simulator — Once a set of concrete candidate services has been
discovered, the synthesis process has to select them by checking, for each partic-
ipant, if its expected behavior can be simulated by some candidate service. Note
that, for a given participant, behavioral simulation is required since, although
the discovered candidate services for it are able to offer and require (at least)
the operations needed to play the role of the participant, one cannot be sure
that the candidate services are able to support the operations flow as expected
by the choreography.

Coordination Delegate and Adapter Generators — Once the services have
been selected for all the choreography participants, the synthesis processor can
generate the needed CDs and Adapters through the operations generateCD()
and generateAdapter (), respectively.

In the following we introduce an example in the marketing and sale domain
that will be then used in Sect.5 to describe our method at work.

5 Method at Work

This section describes the proposed enhancement at work on the explanatory
example introduced in Sect.3. There are several frameworks and/or systems
that implement/use EIPs in order to integrate applications. We have chosen
Spring Integration framework® since it implements most of the EIPs, and it is
well integrated with the Spring ecosystem. In particular, it is integrated with
the Spring Web Services project®.

5 http://projects.spring.io/spring-integration /.
5 http://projects.spring.io/spring-ws/.

http://projects.spring.io/spring-integration/
http://projects.spring.io/spring-ws/

Towards Adapting Choreography-Based Service Compositions 247

. InboundWSGateway | | N N N | OutboundWSGateway [
| (MessageEndpoint) (MessageEndpoint) S2

—/
[

Transformers, Splitters, Aggregators, ...

n

-

Spring WebServices
Endpoint

l

Fig. 4. Adapter architecture

Figure 4 describes the architecture of the generated adapters by using Spring
Web Services and Spring Integration. In particular, the Spring Web Services
Endpoint is the Web Service that mediates the interaction of the Service S1
and the Service S2. When the Service S1 calls an operation op! by sending a
message m1, the Endpoint receives the operation and put the message into the
input channel by using Inbound Web Service Gateways. The chain of EIPs, from
the Input Channel to the Output Channel, is generated by the synthesis proces-
sor depending of the found interoperability issues (e.g., signature and protocol
mismatches). The chain is made of one or more EIPs handlers to, e.g., Mes-
sage Transformers, used to convert a message from one format to another one;
Message Routers, used to decouple a message source from the ultimate destina-
tion of the message, and so on. Message Routers patterns can be, e.g., Splitter,
Aggregator, Resequencer [6].

Referring to the explanatory example in Fig. 1, we focus on the Subscribe
User Cart and Add Product Choreography Tasks.

[Client J [Adapter] [SmanCart] [Client] [Adapter] [SmanCart]
]] T
] |]
subscribeUserCart : : |
(name,suname.email) | H addProduct(product) H
> i >
]
|

T

subscribeUserCart(User) H
> o
D setQuantity(quantity) |
>

|
|
|
H addProduct

(product.quantity)

v
e T

]

!

a) Subscribe User Cart b) Add Product
Fig. 5. Adapter example

Concerning Subscribe User Cart choreography task, let us suppose that
the Client service is able to invoke a subscribeUserCart operation expecting
as input message three string elements, one for name, one for surname, and one
for email. The XSD schema codifying the input message is shown in Listing 1.1.
Let us also suppose that the SmartCart service offers a subscribeUserCart
operation expecting as input message only one User element. As shown in List-
ing 1.2, this element is a complex type encapsulating the following string ele-
ments: firstname, lastname, and mail.

248 A. Di Salle et al.

In order to let the Client and the SmartCart services to com-
municate, the processor generates an adapter that offers the operation
subscribeUserCart (name, surname, email) so that when the Client
invokes subscribeUserCart (name, surname, email) operation, the adapter
transforms the first message (Listing 1.1) into the second one (Listing 1.2). This
is done by generating an ad-hoc Message Transformer handler and adding it
to the chain. At the end, the adapter invokes the subscribeUserCart (User)
operation offered by the Smart Cart service. This behavior is shown in Fig. 5a.

Listing 1.1. input parameters of subscribeUserCart operation

1 <xsd:schema version="1.0" targetNamespace="http://choreosynth.disim.univaq.it/">
2 <xsd:element name="name" type="xsd:string"></xsd:element>

3 <xsd:element name="surname" type="xsd:string"></xsd:element>

A <xsd:element name="email" type="xsd:string"></xsd:element>

5 </xsd:schema>

1 <xsd:schema version="1.0" targetNamespace="http://choreosynth.disim.univaq.it/">

2 <xsd:complexType name="User">

3 <xsd:sequence>

4 <xsd:element name="firstname" type="xsd:string"></xsd:element>

5 <xsd:element name="lastname" type="xsd:string"></xsd:element>

6 <xsd:element name="mail" type="xsd:string" minOccurs="0" maxOccurs="unbounded">
«»</xsd:element>

</xsd:sequence>

8 </xsd:complexType>

9 </xsd:schema>

~

Concerning the Add Product choreography task let us suppose that the
Client service invokes two operations, addProduct (product) and setQuantity
(quantity). Let us also suppose that the SmartCart service offers a addProduct
(product,quantity) operation. Differently from the previous case, the adapter
is now generated by using the Message Router Aggregator pattern. This pat-
tern allows for accumulating the two messages (i.e., product and quantity)
received from the Client, and subsequently invokes the addProduct (product,
quantity) operation offered by SmartCart (as shown in the Fig. 5b).

The method for generating adapters exemplified above requires automated
synthesis of I/O data mappings. To this end, the idea is to exploits a slightly
modified version of the Strawberry tool [23] that allows for automatically infer-
ring data mappings between different messages of two different Web services,
i.e., Client and SmartCart in our case. Strawberry exploits (i) static data type
analysis to analyze the type structure” of the two different messages; (ii) test-
ing check if the two messages are also semantically correlated (since in general,
considering the messages’ type structure only is not sufficient). Efforts in this
direction will be part of future work.

" E.g., the type structure of the XML Schema types of the messages in the WSDL of
the considered services.

Towards Adapting Choreography-Based Service Compositions 249

6 Related Work

The mediation/adaptation of protocols have received attention since the early
days of networking. Indeed many efforts have been done in several directions
including for example formal approaches to protocol conversion, like in [24,25].

Recently, with the emergence of web services and advocated universal inter-
operability, the research community has been studying solutions to the automatic
mediation of business processes [26,27]. However, most solutions are discussed
informally, making it difficult to assess their respective advantages and draw-
backs.

Spitznagel and Garlan present an approach for formally specifying adapter
wrappers as protocol transformations, modularizing them, and reasoning about
their properties, with the aim to resolve component mismatches [28]. Although
this formalizations supports modularization, automated synthesis is not treated
at all hence keeping the focus only on adapter design and specification.

Passerone et al. use a game theoretic approach for checking whether incom-
patible component interfaces can be made compatible by inserting a converter
between them which satisfies specified requirements. This approach is able to
automatically synthesize the converter [29]. In contrast to our method, their
method needs as input a deadlock-free specification of the requirements that
should be satisfied by the adapter, hence delegating to the user a non-trivial
specification task.

Recently, Bennaceur and Issarny presented an approach that, exploiting
ontology reasoning and constraint programming, allows for automatically infer-
ring mappings between components interfaces [30]. Importantly, these mappings
guarantee semantic compatibility between the operations and data.

Rahm et al. propose a catalog of criteria for documenting the evaluations of
schema matching systems [31]. In particular, the authors discuss various aspects
that contribute to the match quality obtained as the result of an evaluation.
In [32,33] the authors present a generic schema match system called COMA,
which provides an extensible library of simple and hybrid match algorithms and
supports a powerful framework for combining match results. This framework can
be used for systematically evaluate different aspects of match processing, match
direction, match candidate selection, and computation of combined similarity,
and different matcher usages.

Paolucci et al. propose a base algorithm [34] for semantic matching between
service advertisements and service requests based on DAML-S, a DAML-based
language for service description. The algorithm proposed differentiate between
four degrees of matching and can be used for automatic dynamic discovery,
selection and inter-operation of web services.

7 Conclusion and Future Works

In this paper, we propose a way to enhance the previous CHOReOS approach
to the automatic synthesis of choreography-based systems, and we report on the

250 A. Di Salle et al.

novel idea we are currently investigating within CHOReVOLUTION to achieve
choreography adaptation and evolution. In particular, the idea is to automat-
ically generate adapters by combining different EIPs depending on a notion
of protocol mediation and data similarity. In order to automatically synthesize
the adapters we propose an extension to our CHOReOSynt tool by introducing a
new RESTful service called Synthesis Adapter Generator. Furthermore, we
propose a pipe-and-filter-based architecture of the generated adapters by using
Spring Web Services and Spring Integration frameworks.

An explanatory example has been used to show two types of adaptation based
on the Message Transformation pattern and the Message Aggregator pattern.
The former plays a very important role by allowing the mediation of loose-
coupling Message Producers and Message Consumers, which do not agree on a
common data format. The latter is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message.

As future work, our plan is to fully implement the proposed extension and
validate it on the case studies of the CHOReVOLUTION project.

Moreover, in order to achieve even more ambitious objectives within the
CHOReVOLUTION project and to improve the applicability of the approach,
we plan to extend it so as to deal with security aspects of the choreographies. This
would allow for dealing with multiple services that belong to different security
domains governed by different authorities, and use different identity attributes.
This can be achieved by integrating EIPs with Security Patterns [35].

Acknowledgment. This research work has been supported by the Ministry of Edu-
cation, Universities and Research, prot. 2012E47TM2 (project IDEAS - Integrated
Design and Evolution of Adaptive Systems), by the European Union’s H2020 Pro-
gramme under grant agreement number 644178 (project CHOReVOLUTION - Auto-
mated Synthesis of Dynamic and Secured Choreographies for the Future Internet),
and by the Ministry of Economy and Finance, Cipe resolution n. 135/2012 (project
INCIPICT - INnovating Clty Planning through Information and Communication Tech-
nologies).

References

1. European Commission: Digital Agenda for Europe - Future Internet Research and
Experimentation (FIRE) initiative (2015)

2. Autili, M., Di Ruscio, D., Di Salle, A., Inverardi, P., Tivoli, M.: A model-based
synthesis process for choreography realizability enforcement. In: Cortellessa, V.,
Varré, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 37-52. Springer,
Heidelberg (2013)

3. Autili, M., Di Salle, A., Tivoli, M.: Synthesis of resilient choreographies. In: Gor-
benko, A., Romanovsky, A., Kharchenko, V. (eds.) SERENE 2013. LNCS, vol.
8166, pp. 94-108. Springer, Heidelberg (2013)

4. Salle, A.D., Inverardi, P., Perucci, A.: Towards adaptable and evolving service
choreography in the future Internet. In: IEEE Services, pp. 333-337 (2014)

5. Autili, M., Inverardi, P., Tivoli, M.: Automated synthesis of service choreographies.
IEEE Softw. 32(1), 50-57 (2015)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Towards Adapting Choreography-Based Service Compositions 251

Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions - Printing 2011. Addison-Wesley Longman, Boston
(2004)

Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Pro-
ceedings of WWW (2011)

Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic
service composition and synthesis: the roman model. IEEE Data Eng. Bull. 31(3),
18-22 (2008)

Hallé, S., Bultan, T.: Realizability analysis for message-based interactions using
shared-state projections. In: Proceedings of FSE, pp. 27-36 (2010)

Pathak, J., Lutz, R., Honavar, V.: Moscoe: an approach for composing web services
through iterative reformulation of functional specifications. Int. J. Artif. Intell.
Tools 17, 109-138 (2008)

Salaiin, G.: Generation of service wrapper protocols from choreography specifica-
tions. In: Proceedings of SEFM (2008)

Poizat, P., Salaiin, G.: Checking the realizability of BPMN 2.0 choreographies. In:
Proceedings of SAC 2012 (2012)

Gossler, G., Salaiin, G.: Realizability of choreographies for services interacting
asynchronously. In: Arbab, F., Olveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253,
pp. 151-167. Springer, Heidelberg (2012)

Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of POPL. ACM (2012)

Giidemann, M., Poizat, P., Salaiin, G., Dumont, A.: VerChor: a framework for
verifying choreographies. In: Cortellessa, V., Varrd, D. (eds.) FASE 2013 (ETAPS
2013). LNCS, vol. 7793, pp. 226-230. Springer, Heidelberg (2013)

Salaiin, G., Bultan, T., Roohi, N.: Realizability of choreographies using process
algebra encodings. IEEE TSC 5(3), 290-304 (2012)

Ouederni, M., Salaiin, G., Bultan, T.: Compatibility checking for asynchronously
communicating software. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013.
LNCS, vol. 8348, pp. 310-328. Springer, Heidelberg (2014)

Basu, S., Bultan, T.: Automatic verification of interactions in asynchronous sys-
tems with unbounded buffers. In: Proceedings of ASE, pp. 743-754 (2014)
Giidemann, M., Poizat, P., Salaiin, G., Dumont, A.: VerChor: a framework for
verifying choreographies. In: Cortellessa, V., Varrd, D. (eds.) FASE 2013 (ETAPS
2013). LNCS, vol. 7793, pp. 226-230. Springer, Heidelberg (2013)

Giidemann, M., Salaiin, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, vol. 7561, pp. 238-253. Springer, Heidelberg (2012)

Shaw, M., Garlan, D.: Software Architecture - Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River (1996)

Autili, M., Ruscio, D.D., Salle, A.D., Perucci, A.: Choreosynt: enforcing chore-
ography realizability in the future Internet. In: Proceedings of FSE, pp. 723-726
(2014)

Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of
behavior protocols for composable web-services. In: Proceedings of ESEC/FSE
(2009)

Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE J. Sel.
Areas Commun. 8(1), 16 (1990)

Lam, S.S.: Correction to “protocol conversion”. IEEE TSE 14(9), 1376 (1988)
Vaculin, R., Sycara, K.: Towards automatic mediation of OWL-S process models.
In: Proceedings of IEEE Web Services (2007)

252

27.

28.

29.

30.

31.

32.

33.

34.

35.

A. Di Salle et al.

Vaculin, R., Neruda, R., Sycara, K.: An agent for asymmetric process mediation
in open environments. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z.,
Vo, Q.B. (eds.) Service-Oriented Computing: Agents, Semantics, and Engineering.
LNCS, vol. 5006, pp. 104-117. Springer, Heidelberg (2008)

Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: Proceedings of ICSE (2003)

Passerone, R., Alfaro, L.D., Henzinger, T.A., Sangiovanni-Vincentelli, A.L.: Con-
vertibility verification and converter synthesis: two faces of the same coin. In: Pro-
ceedings of ICCAD (2002)

Bennaceur, A., Issarny, V.: Automated synthesis of mediators to support compo-
nent interoperability. IEEE TSE 41(3), 221-240 (2015)

Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Web, Web-Services, and Database Systems, pp. 221-237 (2002)

Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: Proceedings of VLDB, pp. 610-621 (2002)

Massmann, S., Engmann, D., Rahm, E.: COMA++: results for the ontology align-
ment contest OAEI 2006. In: Proceedings of OM/ISWC (2006)

Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web
services capabilities. In: Horrocks, 1., Hendler, J. (eds.) ISWC 2002. LNCS, vol.
2342, pp. 333-347. Springer, Heidelberg (2002)

Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommer-
lad, P.: Security Patterns Integrating Security and Systems Engineering. Wiley,
Verlag (2005)

	Towards Adapting Choreography-Based Service Compositions Through Enterprise Integration Patterns
	1 Introduction
	2 Setting the Context
	2.1 The Problem Space
	2.2 The Solution Space
	2.3 Exploiting Enterprise Integration Patterns

	3 Explanatory Example
	4 Method Description
	5 Method at Work
	6 Related Work
	7 Conclusion and Future Works
	References

