
Biological Immunity and Software Resilience:
Two Faces of the Same Coin?

Marco Autili, Amleto Di Salle, Francesco Gallo(B),
Alexander Perucci, and Massimo Tivoli

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università dell’Aquila, L’Aquila, Italy

{marco.autili,amleto.disalle,francesco.gallo,massimo.tivoli}@univaq.it,
alexander.perucci@graduate.univaq.it

Abstract. Biological systems modeling and simulation is an important
stream of research for both biologists and computer scientists. On the
one hand, biologists ask for systemic approaches to model biological sys-
tems to the purpose of simulating them on a computer and predicting
their behavior, which is resilient by nature. This would limit as much
as possible the number of experiments in laboratory, which are known
to be expensive, often impracticable, hardly reproducible, and slow. On
the other hand, beyond facing the development challenges related to the
achievement of the resilience to be offered by biological system simula-
tors, computer scientists ask for a well-established engineering methodol-
ogy to systematically deal with the peculiarities of software resilient sys-
tems, in their more general sense. In line with this, in this paper we report
on our preliminary study of immune systems (a particular kind of bio-
logical systems) aimed at devising software abstractions that enable the
systematic modeling of resilient systems and their automated treatment.
We propose a bio-inspired concept architecture for structuring resilient
systems based on the Akka implementation of the widely-known Actor
Model, which supports scalable and resilient concurrent computation. To
the best of our knowledge, this work represents a first preliminary step
towards devising a bio-inspired paradigm for engineering the develop-
ment of resilient software systems.

1 Introduction

Biological systems modeling and simulation is an important stream of research
for both biologists and computer scientists. As stated by Hofmeyr [16], the impor-
tance of adopting a systemic approach to biology is not new. Its relevance in the
modern biological context comes from the need of robust mathematical models
and computer simulations that faithfully predict the behaviour of entire biolog-
ical systems, which are resilient by nature. In this direction, the construction of
predictive models of bio-molecular networks is of paramount importance.

Based on differential equations, cellular networks of moderate size have been
modeled successfully. However, when large-scale networks are concerned, the

c⃝ Springer International Publishing Switzerland 2015
A. Fantechi and P. Patrizio (Eds.): SERENE 2015, LNCS 9274, pp. 1–15, 2015.
DOI: 10.1007/978-3-319-23129-7 1



2 M. Autili et al.

construction of predictive quantitative models is not easy, if not impossible, due
to limited knowledge of mechanistic details and kinetic parameters. Indeed, the
knowledge about these systems is typically available in the form of a textual
description plus some informal diagrams, which often lead to ambiguities.

Furthermore, as noted by Sackmann et al. [27], the amount of biological
knowledge is increasing, and experiments in laboratory tend to be expensive,
slow, and often impracticable. As a result, the assistance of computers is becom-
ing indispensable. Computer-assisted experiments could be less expensive, faster
and more easily reproducible: “executable software models of biological systems
can be used for predictions, preparation and elimination of unnecessary, danger-
ous or unethical laboratory experiments” [21]. As discussed in Sect. 6, one of the
major questions systems biology is currently trying to answer is how to represent
biological knowledge in a machine-processable way.

On the other side of the coin, beyond facing the development challenges
related to the achievement of the resilience to be offered by biological system sim-
ulators, computer scientists ask for a well-established engineering methodology
to systematically deal with the peculiarities of software resilient systems, in their
more general sense [18]. By observing a strong analogy with biological systems,
software engineering approaches in the literature (see Sect. 6) achieve resilience
by means of mechanisms, e.g., replication, containment, isolation and delegation,
which ensure that parts of the system can fail and recover without compromising
the system as a whole. For example, recovery of components can be delegated
to another (external) component and high-availability is ensured by replication
where necessary. Thus, just like biological systems, software resilient systems
are more flexible, loosely-coupled, scalable, and more amenable to change. They
are significantly more tolerant of failure with respect to non-resilient systems.
Still confirming the conceptual relation between biological systems and software
resilient systems, biological immunity is related to the ability of an organism to
resist a particular infection or toxin by the action of specific antibodies or sen-
sitized white blood cells. This ability recalls the concept of software resilience,
i.e., the ability of a system to persistently deliver its services in a dependable way
even when facing changes, unforeseen failures and intrusions.

The work proposed in this paper starts from the observation that biological
immunity and software resilience may be considered as two faces of the same coin.
As a particular kind of biological systems, immune systems are resilient systems
par excellence. Thus, while architecting resilient software systems, it does make
sense to be inspired by the fundamental elements, relations, and behaviors of
immune systems.

In line with the above, in this paper we report our preliminary study of
immune systems aimed at devising software abstractions that enable systematic
modeling and automated treatment of resilient software systems. We propose a
bio-inspired concept architecture for structuring resilient systems based on the
Akka1 implementation of the widely-known Actor Model [15], which supports
scalable and resilient concurrent computation. To achieve this, we have devised
1 http://akka.io/.

http://akka.io/


Biological Immunity and Software Resilience 3

an abstraction of immune system elements that are then mapped to concrete
concepts of the Akka Actor Model. To the best of our knowledge, this work
represents a first preliminary step towards devising a bio-inspired paradigm for
engineering the development of resilient software systems.

The paper is organized as follows. In Sect. 2, we set the context of our work by
summarizing the fundamentals of immune systems and introducing the devised
abstractions. Leveraging these abstractions, in Sect. 3 we briefly describe three
immune system scenarios that are representative with respect to the resilience
concept. Basing on the Akka Actor Model introduced in Sect. 4, in Sect. 5, we
propose a bio-inspired concept architecture for resilient software systems and
we apply it to the described scenarios. Section 6 discusses related work, and
Sect. 7 concludes and outlines future research directions that we will undertake
to extend and put in practice the proposed concept architecture, and to precisely
define the bio-inspired paradigm on top of it.

2 Immune Systems

An immune system [16] is a particular kind of biological system that is self-
protecting against diseases. It is made of biological structures and processes
within an organism. The minimum biological structure within an immune system
is the cell, which in turn is made of molecules.

A key feature of an immune system is the ability to distinguish between (i)
non-infectious structures, which must be preserved since they do not represent
a disease, and (ii) infectious structures, i.e., pathogens, which must be removed
since they result in injuries to the organism the immune system belongs to.

The discrimination between non-infectious and infectious structure takes
place at the molecular level and is mediated by specific cell structures that
enable the presentation and recognition of harmful components referred to as
antigens (i.e., small fragments of a pathogen). In particular, these cell structures
are able to detect anomalous/undesired situations through antigens recognition,
and to place the immune system in a state of alarm. From this state, other cell
structures are in charge of reacting with a defensive response, hence removing
infectious structures.

By referring to [19], the main elements of an immune system can be summa-
rized as follows:

– Lymphocytes. They are the cells of an immune system. For the purposes of
this paper, it is enough to distinguish between T Cells and B Cells:
• T Cells. They can be of two kinds, T Helper and T Killer. The former
are cells responsible for preventing infections by managing and strength-
ening the immune responses enabled by the recognition of antigens. The
latter are cells able to destroy certain tumor cells, viral-infected cells, and
parasites. Furthermore, they are responsible for down-regulating immune
responses, when needed.

• B Cells. They are responsible for producing antibodies in response to
foreign proteins of bacteria, viruses, and tumor cells.



4 M. Autili et al.

Fig. 1. Immune system components

Both B Cells and T Cells carry receptor molecules that make them able to
recognize specific pathogens. In particular, T Killers recognize pathogens only
after antigens have been processed and presented in combination with a Major
Histocompatibility Complex (MHC) molecule. In contrast, B Cells recognize
pathogens without any need for antigen processing.

– Macrophages. They are important in the regulation of immune responses.
They are often referred to as Antigen-Presenting Cells (APC) because they
pick up and ingest foreign materials and present these antigens to other cells of
the immune system such as T Cells and B Cells. This is one of the important
first steps in the initiation of an immune response.

– Memory Cells. When B Cell and T Cell are activated and replicated, some
cells belonging to their progeny become long-lived Memory Cells. The role of
Memory Cells is to build an immunological memory that makes the immune
system stronger in being self-protecting to future infections/attacks. In par-
ticular, a Memory Cell remembers already recognized antigens and lead to a
stronger immune response when these antigens are recognized again.

– Immune response. An immune response to foreign antigens requires the
presence of APC in combination with B Cells or T Cells. When an APC
presents an antigen to a B Cell, the B Cell produces antibodies that specifically
bind to that antigen in order to kill/destroy it. If the APC presents an antigen
to a T Cell, the T Cell becomes active. Active T Cells essentially proliferate
and kill target cells that specifically express the antigen presented by the
APC. The production of antibodies and the activity of T Killers are highly
regulated by T Helpers. They send signals to T Killers in order to regulate
their activation, proliferation (replication) and efficiency (specialization).



Biological Immunity and Software Resilience 5

Following the description above, Fig. 1 shows the main elements of an immune
system as constructs of a simple graphical notation that we use in Sect. 3 for
immune system modeling purposes. The figure shows also the messages (signals)
that the system elements can exchange.

3 Immune System Scenarios

By leveraging the graphical modeling notation introduced above, in this section,
we briefly describe two scenarios in the immune systems domain, which are
representative for a broad class of resilient systems. The scenarios provide the
reader with a high-level description of the interactions that happen among the
elements of an immune system during an immune response.

Fig. 2. Immune system - Scenario 0

Scenario 0. Figure 2 shows a scenario where the elements of an immune system
are in an inactive state, marked with the off label. In particular, two APC engulf
a virus or bacteria: each APC decomposes the pathogen (virus or bacteria) and
exposes on its surface a piece of the pathogen, i.e., an antigen (see the triangle
and pentagon in the figure). Metaphorically, we can think of this as a setup
phase of a computer system, where each system’s component is in an idle state
and the antigen is a “perturbation” that comes from the outside or even by the
system itself. In our context, we can see this perturbation as either a new or an
anomalous, undesired, system behavior.

Scenario 1a and 1b. Continuing Scenario 0, the presence of an antigen causes
the activation of one or more cells of the immune system (left-hand side of Fig. 3).
In this case, the antigen is caught only by those cells that are able to treat it; so
they switch from the off state to the on state. By referring to the right-hand side
of Fig. 3, T Helpers recognize specific antigens and replicate themselves (replicate
signals); T Helpers make T Killers and APC active (by sending to them an
activation signal); T Killers replicate themselves. Some T Helpers specialize into
Memory Cells (specialization signal). This scenario highlights how an immune
response is a distributed and decentralized process.



6 M. Autili et al.

Fig. 3. Immune system - Activation scenarios

Scenario 1c. In this scenario, a B Cell becomes active after that it caught a
known antigen and the T Helper close to it became active. This scenario points
out that a B Cell has less constraints to satisfy with respect to T Cells, i.e., a B
Cell does not need to interface with MHC molecules (Fig. 4).

These simple, yet representative scenarios, lead us to observe that, as a particular
kind of resilient system in a specific domain:

– an immune system is composed of loosely-coupled elements, hence promoting
modularity;

– the elements of an immune system can interact with each other by exchanging
asynchronous messages, hence enhancing reliability;

– an immune system can react to unforeseen events, e.g., intrusions, being there-
fore fault tolerance;

– an immune system can foresee, e.g., dangerous situations through preventive
recognition, hence achieving robustness;

– the elements of an immune system have the ability to adapt to context changes
and recover from undesired situations, therefore showing flexibility and evolv-
ability.

4 Actor Model

The Actor Model is a formal mathematical model of concurrent computation
that was first proposed by C. Hewitt et al. in 1973 [15]. Over the years, this
model has seen several programming languages employing the notion of actor,



Biological Immunity and Software Resilience 7

Fig. 4. Immune system - Scenario 1c

most notably Erlang [2] (a concurrent programming language designed for pro-
gramming fault-tolerant distributed systems) and Scala [13] (which offers a con-
current programming model based on the Scala standard library dedicated to
Actors).

For the purpose of this paper, we focus on the Akka toolkit2, which is a
framework that natively permits a programming style based on the Actor Model.
Akka is written in Java and Scala, and offers an unified runtime and program-
ming model that allows for building highly concurrent, distributed, and resilient
message-driven applications.

In this section, after introducing the Actor Model, we present the Akka
framework (Sect. 4.1), whose elements are then used in Sect. 5 to present our
Akka-based Concept Architecture.

The Actor Model is characterized by (i) inherent concurrency of computa-
tion within and among Actors, (ii) dynamic creation/replication of Actors, (iii)
inclusion of Actor addresses in messages, and (iv) interaction only through direct
asynchronous message passing.

The Akka Actor Model achieve resilience by offering software abstractions
that support the systematic development of flexible, loosely-coupled and scalable
applications, which are significantly more tolerant of failure and stay responsive
in the face of failure. Resilience is achieved through replication, containment,
isolation and delegation mechanisms. Specifically, Akka components are isolated
from each other, thereby ensuring failures isolation within the affected compo-
nent only; the failing parts of the system have the possibility to recover without
compromising the system as a whole; recovery actions are delegated to other
2 http://akka.io.

http://akka.io


8 M. Autili et al.

(supervisor) components and, when needed, components replication is used to
achieve high-availability.

4.1 Akka Actor Model

Actors are objects that encapsulate state and behavior, and communicate
through message passing. Akka allows for modeling applications in terms of
interacting actors that can be dynamically assigned sub-tasks, and arranging
related functions into an organizational/hierarchical structure while thinking
about how to tolerate/escalate failures.

An actor has its own state and can be seen as a container for Behavior, a Mail-
box, Children and a Supervisor Strategy. Actors have a hierarchical structure
and each actor has a supervisor, with the root supervisor being the SystemActor.
In more details:

Actor Reference: actor references are used to represent actors to the out-
side. References enables transparency in the sense that an actor can be,
e.g., restarted without needing to update references elsewhere, or seamlessly
moved on remote hosts.

Behavior: messages are matched against the current behavior of the actor,
i.e., to functions which defines the actions to be taken in reaction to the
message. Importantly in our setting, the behavior of an actor can be changed
dynamically, e.g., to allow the actor to come back to work after an “out-of-
service” state is reached.

Mailbox: the mailbox connects the sender and receiver actor, and allows for
enqueuing the exchanged messages in order to support asynchronous com-
munication.

Children: an actor is potentially a supervisor and can create children for dele-
gating sub-tasks. The creation and termination actions are not blocking (i.e.,
they happen behind the scenes in an asynchronous way).

Supervisor Strategy: a supervisor actor has strategy for handling faults of its
children. For our purpose, the important aspect here is that fault handling
is done transparently by the Akka framework, by exploiting monitors and
by applying the available supervision strategies. Moreover, another crucial
aspect towards achieving resilience is that strategies can be updated/added
dynamically.

5 Akka-Based Concept Architecture

Figure 5 shows the bio-inspired concept architecture we are working on. It rep-
resents the starting point to support the bio-inspired paradigm that we have in
mind for engineering the development of resilient software systems. Indeed, by
referring to the scenarios 0, 1a, and 1b described in Sect. 3, we show only those
elements that are strictly needed to provide the reader with intuitions on how to
put together the elements of the concept architecture into a logically coherent
argumentation.



Biological Immunity and Software Resilience 9

Fig. 5. Bio-inspired concept architecture for resilient systems

According to the Akka framework, the System actor creates the
KillerSupervisor, HelperSupervisor and ConsumerSupervisor supervisor
actors. By taking inspiration from immune systems (Sect. 2) and related scenar-
ios (Sect. 3), the supervisor actors are in charge of detecting changes, intrusions,
failures, and undesired behaviors. For instance, referring to systems where secu-
rity is a crucial dependability requirement, the addition of a new component that
behaves as a trojan, or the presence of a component that misbehaves. Another
example, when referring to systems where performance is crucial, would be the
presence of a component that does not perform as expected anymore.

Furthermore, supervisor actors are in charge of creating respective sub-actors,
namely KillerActor, HelperActor and ConsumerActor, which are responsible
for, e.g., self-protecting/self-reconfiguring the system from the detected unde-
sired behavior/change by putting in place a resolutive response. This is done
through recognition of the kind of problem and production/replication of those
set of actors that can realize a suitable solution. E.g., removing, isolating, dis-
abling the introduced trojan or the misbehaving component; replacing the com-
ponent that badly perform with a new version of it that performs as expected.

In particular, by mimicking what happens in scenarios 0, 1a and 1b (Fig. 3)
when the presence of an antigen causes the activation of one or more cells of
the immune system and the antigen is caught only by those cells that are able
to treat it, in our concept architecture, the occurrence of the problem/change
is signalled by means of dispatch messages. Each message activates specific
instances of HelperActor and KillerActor. The former play the role of res-



10 M. Autili et al.

olutive response managers. After activation, a HelperActor instance aims at (i)
inducing replication of HelperActor instances by sending replication messages;
(ii) activating KillerActor and ConsumerActor instances by sending activation
messages; and (iii) specializing some actor instances in MemoryActor instances
by sending specialization messages. KillerActors are actuators that consume
messages and actually put in place the problem resolution or reconfiguration
strategy that realizes the triggered response.

Considering resilience attributes of immune systems [3] and the support to
resilience offered by the Akka Actor Model (Sect. 4), our concept architecture
applied to the scenarios 0, 1a, and 1b is able to meet the following software
resilience attributes:

– agility

−immune systems: they have multiple barriers or layers of defense to prevent
a pathogen from causing harm.
−software systems: system undesired behaviors or changes represent the soft-
ware counterpart of pathogens and our Actor Model implementation com-
partmentalizes the, e.g., undesired behavior, and allows its resolution locally
without compromising the operation of the system as a whole.

– redundancy

−immune systems: having the ability to replicate antibodies increases the
probability that a pathogen that matches these antibodies will be stopped.
Furthermore, generated antibodies keep memory of the already matched
pathogens, hence strengthening the ability to stop it.
−software systems: Akka toolkit offers persistence that enables actors to per-
sist their internal state so that it can be recovered when a produced or repli-
cated actor is started, restarted after a JVM crash or by a supervisor, or
migrated in a cluster.

– dynamic learning

−immune systems: as a redundancy enabler, based on previous knowledge
about already recognized antigens, the immune system is able to learn new
disturbances and related resolutive responses.
−software systems: if some change or undesired behavior occurs at run time,
and the affected actor is not able to manage it, the actor initially treats it
as an unknown message. As a such, the message is passed to its supervisor.
Based on historical knowledge, the supervisor is able to learn if there are
other actors able to deal with the change or undesired behavior. If it is the
case, the related resolutive logic is dynamically injected into the affected actor
through the PartialFunction mechanism offered by Akka. Clearly, different
policies can be applied when the supervisor has not been able to learn possible
solutions, e.g., killing the affected actor, or requiring human intervention.



Biological Immunity and Software Resilience 11

– flexibility

−immune systems: antibodies are produced and added depending on the need,
without any redesign.
−software systems: the flexibility concept is native in Akka since actors can
be dynamically produced or replicated, without blocking the system.

– robustness

−immune systems: leveraging Apoptosis [23] or “programmed cell death” as a
mechanism for deletion of “unwanted” cells, an immune system has the ability
to keep working even when multiple cells are killed since not properly working
anymore.
−software systems: in the Actor Model, robustness is a form of fault toler-
ance. It uses the “let it crash” policy to manage the programmed death of
faulty components that can be dynamically killed or stopped for preserving
the system functioning, if possible, or at least for preventing dangerous sys-
tem’s misbehaviours.

6 Related Work

In this section, we discuss related work in the areas of (i) biological systems
modeling and simulation and (ii) software resilient systems.

Biological systems modeling and simulation. Current approaches to bio-
logical systems modeling and simulation can be organized into three classes,
namely quantitative, qualitative, and rule-based approaches.

Quantitative approaches [12,29]. They make use of differential equations and
stochastic simulation to model biological processes. They essentially suffer two
main issues. On the one hand they do not scale in the heterogeneity of con-
stituent elements of the biological system, hence preventing their applicability
to biological processes with many species and variables. On the other hand, as
complex mathematical models, they are hard to be exploited and difficult to
understand by end-users, not only biologists but also software engineers.

Qualitative approaches [21,27]. They are primarily based on the biological sys-
tem’s network structure and, differently from quantitative approaches, do not
require knowledge about internal parameters of the system, e.g., kinetic parame-
ters. Rather, models can be produced to abstract different views of a biological
process hence allowing to reason at different biological organization levels, e.g.,
sub-cellular, cellular, tissue, organ, organism and ecosystem. The focus, here, is
to identify how different components are connected together, how they are con-
trolled and how they behave when functioning as a system. However, for these
approaches to be effective and profitable, two main aspects must be ensured:
(i) the model representation language must be rich enough to represent the var-
ious heterogeneous system’s elements and to capture all the system behaviours



12 M. Autili et al.

at the different organization levels; and (ii) the system identification technique
must be powerful enough to identify substantially complex models, which can
enable realistic simulation. The class of qualitative approaches comprises vari-
ous formalisms that span from Boolean Network models [30] to constraint-based
models [26], to Petri Nets [4,14], to logical models [20,24]. In addition to static
analysis of the structural properties of a biological system’s network topology,
Petri Nets and logical models enable to reason on the systems behaviour by
means of discrete dynamic modeling [1,8,24,30].

Rule-based approaches. They promote the production of rule-based models by
using specialized languages such as BioNetGen language [9] or Kappa [6]. Being
more reusable than equations, rule-based models allow for enhancing modularity,
hence making tractable the modeling and analysis [11] of complex biological
systems involving several different species [7]. Rules can also be used to generate
simulations, both deterministic and agent-based [28].

Software resilient systems. The work in [17] proposes an approach to auto-
matically detect faults of a redundant duplex system by using a model checker.
The proposed method analyzes vulnerabilities of different variants of an algo-
rithm by applying fault injection modelling. Relying on the Event-B model,
in [22], the authors present a formal approach to model and assessing recon-
figurable systems that guarantees resilience of data processing. The proposed
system architecture is able to dynamically scale and reconfigure.

Natural and Biological systems, such as Ant colonies and Immune sys-
tems, have several features that can be exploited in designing and developing
resilient systems. More precisely, these super organisms often use self-organizing
behaviors and feedback loops [5] that allow the system to achieve reliable and
robust solutions using information gathered from entities [25], without central-
ized control. The biological immune system can be seen as a massively distrib-
uted architecture: the multitude of independent cells work together resulting in
the emergent behavior of the immune system. The immune system evolves to
adapt and improve the overall system performance (e.g., organizational mem-
ory) [10,31]. These systems can be seen as complex collective systems in which
the behaviour emerges from the product of interactions between individual enti-
ties. These entities follow a simple set of rules (i.e., not via top-down mechanism)
and react only to their local environment. Features and principles as bottom-up
mechanisms, feedback loops could be used for designing a scalable, adaptive and
efficient framework.

7 Conclusions and Future Work

In this paper we proposed a bio-inspired concept architecture for resilient soft-
ware systems based on the Akka Actor Model. Our proposal originates from
the observation that immune systems natively enjoy resilience properties that
have a direct counterpart in software resilient systems. Our long term goal is



Biological Immunity and Software Resilience 13

to reach a mature enough knowledge about the key concepts that are com-
mon to both immune systems and resilient systems. By transposing (i) the ele-
ments of immune systems, (ii) their self-protecting behavior, and (iii) their rela-
tionships/interaction with other elements into their respective software design
principles, this knowledge would allow us to elevate our preliminary concept
architecture to a rigorously defined bio-inspired architectural style for resilient
systems. This architectural style would constitute a common ground on top of
which building the novel biological development paradigm we have in mind for
software resilient systems.

To reach this goal, several challenges have to be faced. They are related to the
definition and realization of general-purpose mechanisms that, being amenable
of domain-specific customizations, support features such as:

– automatic recognition of software failures/changes through, e.g., run-time
monitoring, feedback loops;

– dynamic learning of the solutions required to correctly react to the recognized
failures/changes based on, e.g., dynamically acquired historical knowledge;

– modular actuation of the (learned) solution, without compromising the overall
system function;

– opportunistic selection of those available solutions that better fit some prede-
fined policy, e.g., to guarantee specified non-functional requirements;

– self-stabilization of the self-* actions, e.g., self-adaptation, self-reconfiguration,
to guarantee the system equilibrium with respect to some specified invariant
properties, despite continuous applications of self-* actions;

– multilayer management of failures/changes (and related strategies) in a mod-
ular, yet cohesive, way depending on the affected layer(s), e.g., application,
middleware, operating system, network layer.

References

1. Bio-pepa: A framework for the modelling and analysis of biological systems. The-
oretical Computer Science, 410(33–34), 3065–3084 (2009)

2. Armstrong, J.: Erlang. Commun. ACM 53(9), 68–75 (2010)
3. Chandra, A.: Synergy between biology and systems resilience, master’s thesis, mis-

souri university of science and technology (2010)
4. Chaouiya, C.: Petri net modelling of biological networks. Briefings Bioinform. 8(4),

210–219 (2007)
5. Cheng, B.H.C., et al.: Software engineering for self-adaptive systems: a research

roadmap. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26.
Springer, Heidelberg (2009)

6. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based modelling,
symmetries, refinements. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054,
pp. 103–122. Springer, Heidelberg (2008)

7. Deeds, E.J., Krivine, J., Feret, J., Danos, V., Fontana, W.: Combinatorial com-
plexity and compositional drift in protein interaction networks. PLoS ONE 7(3),
03 (2012)



14 M. Autili et al.

8. Dematté, L., Priami, C., Romanel, A.: The blenx language: a tutorial. In: Bernardo,
M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 313–365.
Springer, Heidelberg (2008)

9. Faeder, J., Blinov, M., Hlavacek, W.: Rule-based modeling of biochemical systems
with bionetgen. In: Maly, I.V. (ed.) Systems Biology, volume 500 of Methods in
Molecular Biology, pp. 113–167. Humana Press (2009)

10. Farmer, J., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and
machine learning. Physica D 22(13), 187–204 (1986)

11. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. Proc. Nat. Acad. Sci. 106(16), 6453–6458 (2009)

12. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

13. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theoret. Comput. Sci. 410(2–3), 202–220 (2009)

14. Hardy, S., Robillard, P.N.: Pn: Modeling and simulation of molecular biology sys-
tems using petri nets: modeling goals of various approaches. J. Bioinform. Comput.
Biol. 2–4, 2004 (2004)

15. Hewitt, C., Bishop, P., Steiger, R.: A universal modular ACTOR formalism for
artificial intelligence. In: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. pp. 235–245. Standford, CA, August 1973

16. Hofmeyr, S.A.: An interpretative introduction to the immune system. In: Design
Principles for the Immune System and Other Distributed Autonomous Systems,
pp. 3–26. Oxford University Press (2000)

17. Höller, A., Kajtazovic, N., Preschern, C., Kreiner, C.: Formal fault tolerance analy-
sis of algorithms for redundant systems in early design stages. In: Majzik, I., Vieira,
M. (eds.) SERENE 2014. LNCS, vol. 8785, pp. 71–85. Springer, Heidelberg (2014)

18. Majzik, I., Vieira, M. (eds.): SERENE 2014. LNCS, vol. 8785. Springer, Heidelberg
(2014)

19. Janeway Jr., C., Travers, P., Walport, M., et al.: Immunobiology: The Immune
System in Health and Disease, 5th edn. Garland Science, USA (2013)

20. Klamt, S., Saez-Rodriguez, J., Lindquist, J.A., Simeoni, L., Gilles, E.D.: A method-
ology for the structural and functional analysis of signaling and regulatory net-
works. BMC Bioinform. 7, 56 (2006)

21. Krepska, E., Bonzanni, N., Feenstra, A., Fokkink, W.J., Kielmann, T., Bal, H.E.,
Heringa, J.: Design issues for qualitative modelling of biological cells with petri
nets. In: Fisher, J. (ed.) FMSB 2008. LNCS (LNBI), vol. 5054, pp. 48–62. Springer,
Heidelberg (2008)

22. Laibinis, L., Klionskiy, D., Troubitsyna, E., Dorokhov, A., Lilius, J., Kupriyanov,
M.: Modelling resilience of data processing capabilities of CPS. In: Majzik, I.,
Vieira, M. (eds.) SERENE 2014. LNCS, vol. 8785, pp. 55–70. Springer, Heidelberg
(2014)

23. Lawen, A.: Apoptosisan introduction. BioEssays 25(9), 888–896 (2003)
24. Morris, M.K., Saez-Rodriguez, J., Sorger, P.K., Lauffenburger, D.A.: Logic-based

models for the analysis of cell signaling networks. Biochem. 49(15), 3216–3224
(2010)

25. Nieh, J.C.: A negative feedback signal that is triggered by peril curbs honey bee
recruitment. Curr. Biol. 20(4), 310–315 (2010)

26. Papin, J.A., Palsson, B.O.: Topological analysis of mass-balanced signaling net-
works: a framework to obtain network properties including crosstalk. J. Theoret.
Biol. 227(2), 283–297 (2004)



Biological Immunity and Software Resilience 15

27. Sackmann, A., Heiner, M., Koch, I.: Application of petri net based analysis tech-
niques to signal transduction pathways, BMC Bioinform. 7–482 (2006)

28. Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and
coarse-graining of biological complexity with NFsim. Nat. Meth. 8(2), 177–183
(2011)

29. Srivastavawz, R., Youw, L., Summersy, J., Yin, J.: on stochastic vs. deterministic
modeling of intracellular viral kinetics (2002)

30. Wang, R.-S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an
overview of methodology and applications. Phys. Biol. 9(5) (2012)

31. Watanabe, Y., Ishiguro, A., Shirai, Y., Uchikawa, Y.: Emergent construction of
behavior arbitration mechanism based on the immune system. In: The 1998 IEEE
International Conference on Evolutionary Computation Proceedings, IEEE World
Congress on Computational Intelligence, pp. 481–486 (1998)


