
Towards Recovering the Software Architecture of
Microservice-based Systems
Giona Granchelli∗, Mario Cardarelli∗, Paolo Di Francesco†,

Ivano Malavolta‡, Ludovico Iovino†, Amleto Di Salle∗
∗University of L’Aquila, L’Aquila, Italy

{giona.granchelli | mario.cardarelli}@student.univaq.it, amleto.disalle@univaq.it
†Gran Sasso Science Institute, L’Aquila, Italy - {paolo.difrancesco | ludovico.iovino}@gssi.it

‡Vrije Universiteit Amsterdam, The Netherlands - i.malavolta@vu.nl

Abstract—Today the microservice architectural style is being
adopted by many key technological players such as Netflix, Ama-
zon, The Guardian. A microservice architecture is composed of
a large set of small services, each running in its own process and
communicating with lightweight mechanisms (often via REST
APIs). If on one side having a large set of independently developed
services helps in terms of developer productivity, scalability,
maintainability, on the other side it is very difficult to have a clear
understanding of the overall architecture of a microservice-based
software system, specially when the deployment and operation
of the involved microservices evolves at run-time.

In this paper we present MicroART, an architecture recov-
ery approach for microservice-based systems. By using Model-
Driven Engineering techniques, we leverage a suitably defined
domain-specific language for representing the key aspects of the
architecture of a microservice-based system and provide a tool-
chain for automatically extracting architecture models of the
system. The only inputs of MicroART are: (i) a GitHub repository
containing the source code of the system and (ii) a reference to
the container engine managing it. We validated MicroART on a
publicly available benchmark system, with promising results.

Index Terms—Microservices, Architecture recovery, Model-
Driven Engineering.

I. INTRODUCTION

Lewis and Fowler define the microservice architectural
(MSA) style as an approach to developing a single system
as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an
HTTP resource API [10]. This style puts emphasis on the
design and development of highly maintainable and scalable
software where large systems are decomposed into indepen-
dent services [18]. Services are small in size with respect
to Service-Oriented Architecture (SOA) design, independent
from each other, and designed using bounded contexts to
combine together related functionalities [9]. Alshuqayran et
al. [1] state that commonly agreed on benefits of this style
are multiple, e.g. increase in agility, developer productivity,
resilience, scalability, reliability, maintainability, separation
of concerns, and ease of deployment. However, a set of
challenges have significant impact on this style, as services
discovering over the network, security management, commu-
nication optimization, data sharing and performance [1].

Model-Driven Engineering (MDE) promotes models as first-
class entities and leverages the abstraction of software devel-

opment from coding to modeling [5, 21]. The main benefit
is the intention to better manage the increasing complexity
of modern software while preserving the values of quality
attributes of code-centric techniques. A model is a high-level
representation of aspects of a system usually employed by soft-
ware engineers to precisely specify concepts and relationships
before the development phase starts. Modeling tools can be
sophisticated and they can even generate the skeleton or all of
the code without employing explicit programming techniques
that can result particularly error-prone.

Reverse engineering is the process of analyzing and com-
prehending the software and producing a representation of
it at a high level of abstraction [3, 4]. In particular, Model-
driven Reverse Engineering (MDRE) applies reverse engineer-
ing techniques in combination with modeling technologies,
to overcome the maintenance problem. Reverse engineering
methodologies have many applications and purposes, e.g.,
design recovery, program comprehension of legacy systems
aimed to support the evolution of the system, and description
reconstruction of poorly documented systems [4, 17]. One of
the main tasks in reverse engineering is design recovery. It
reduces the complexity of software systems by leveraging the
software architecture abstraction instead of dealing directly
with the source code [19]. In detail this task recreates design
abstractions from a combination of code, existing design doc-
umentation when available, personal experience, and general
knowledge about application domains [2]. When the process
of reverse engineering produces an explicit architecture rep-
resentation is usually described as reverse software archi-
tecting process [13]. Reverse Engineering techniques have
been largely applied in literature for architecture recovery
and change dependency analysis [17, 22], but recent studies
confirmed that in the microservice architectural style area little
investigation is being performed [1, 8].

In this paper we present an architecture recovery approach
for microservice-based systems to tackle the problem of the
complexity of microservice architecture. The proposed ap-
proachis implemented as a prototype named MicroART [11].
More specifically, our approach is able to automatically extract
the deployment architecture of a microservice-based system
starting from (i) a GitHub repository containing its Docker-
based source code and (ii) a reference to the Docker container



engine managing it; then, the approach allows software ar-
chitects to semi-automatically refine the obtained deployment
architecture into the final software architecture of the system.
Large microservice-based architectures can grow up to hun-
dreds or thousands of services, each one with its own pe-
culiarities and different running environment. Organizing and
managing a high number of services can be challenging and
being able to recovery the software architecture from source
code repositories or other artefacts might result in a significant
improvement in the management and comprehension of this
type of systems.

A first assessment of the approach and its prototype valida-
tion have been performed on the Acme Air system, an open-
source benchmark microservice-based system, confirming the
applicability and the advantages of the approach.

The rest of the paper is organized as follows. Section
II presents the proposed approach and Section III discusses
the details of the MicroART DSL. Section IV presents the
validation of MicroART with respect to a third-party bench-
mark system. Section V presents the implementation of our
approach, whereas Section VI discusses related work. Section
VII closes the paper and discusses future work.

II. RECOVERING MICROSERVICE-BASED ARCHITECTURES

The MicroART approach for microservice architecture re-
covery is composed of two phases, namely architecture re-
covery labelled with A and architecture refinement labelled

with B , as shown in Figure 1.

Fig. 1: Approach overview

The architecture recovery phase deals with all the activities
necessary to extract an architectural model of the system
starting from its source code repository. From the source code
repository we expect to find information about: system (e.g.,
system and service names), deployment (e.g., service descrip-
tors), product management (e.g., teams, developers, releases).
This makes the approach specially tailored for microservice-
based systems. Among the most important reasons why we
have built our approach on the analysis of repositories there
are: (i) they enable automation of the process, by providing
access to the source code but also system’s configuration files,
(ii) they provide access to the history of the evolution of
the system, and (iii) they are widely adopted in industry.
For architecture model we mean a model representing the
deployment architecture of the system, which is composed by
all the elements of the architecture.

The architecture refinement phase aims to refine the initial
architecture model into one or more refined architectural

models by means of model refinement incremental steps.
The software architect can decide to enhance the generated
architectural model in order to recover an architecture more
suitable for its needs, e.g., removing unnecessary details,
perform model analysis, architectural change impact analysis,
overall understanding of the system, and finally decide when
the refined architectural model is ready to be finalized. In the
remaining of the section we detail the two phases with the
related steps to obtain the final result.

A. Architecture Recovery

In the architecture recovery phase, we recover the system
architecture by analyzing the system’s source code repository.
It is based on the extract-abstract-present paradigm [14],
depicted in Figure 2. Generally, in the Extraction phase, the
information is extracted from artefacts as the system’s source
code, documentation, history, or the architect knowledge. Ab-
straction is about grouping and filtering information to obtain
a meaningful and focused set of information. Presentation is
about organizing the information in a way that is familiar to
the targeted readers [13].

Fig. 2: Architecture recovery: extract-abstract-present
paradigm

Figure 3 provides a graphical representation of the archi-
tecture Extraction activities. The extraction phase is divided
in two major activities: static analysis and dynamic analysis.

In the static analysis, the following information is retrieved
by analysing the repository given as input: (i) service descrip-
tors, (ii) system name, and (iii) developers. Service descriptors
are simple text files describing properties and configurations
of each service in order to efficiently package and run each
service and its dependencies. These files contain all the neces-
sary information related to the deployment of each service in
the target environment, as the name of both the service and its
container, input and output ports of containers, and the build
path. Examples of service descriptors are the Docker and Va-
grant files, respectively for the Docker1 container engine and
the Vagrant2 platform. The system name and the information
about each developer which has contributed to the repository
are collected, specifically name, username, and email.

Once the static analysis is completed, the dynamic analysis
activity begins. The dynamic analysis aims to extract the
following information: (i) containers information, and (ii) the
communication logs. Since this information is not available
statically, this operation must be performed at runtime. Two
main steps are involved in the dynamic analysis: (i) query the
runtime environment in order to identify each container IP ad-
dress and the network interface used by microservices for their

1https://www.docker.com
2https://www.vagrantup.com

https://www.docker.com
https://www.vagrantup.com


Fig. 3: Detailed activities of the extraction phase

communication, and (ii) the creation of the communication
logs. Container engines typically provide runtime environment
information by running specific commands (e.g., in Docker
the command is inspect). By means of these commands, the
containers information is extracted and the specific network
interface used for microservice communications is discovered.
By using a monitoring tool (in our implementation TcpDump)
this interface can be monitored, and the communication logs
can be written to Log files.

The Abstraction phase is about grouping and filtering the
information gathered in the extraction phase in order to rework
the collected information in the desired manner. The extracted
information is given as input to a model factory that creates the
architecture model, which is the final output of the architecture
recovery phase as shown in Figure 2. The model generated at
this stage conforms to MicroART-DSL, our domain-specific
modeling language for microservice-based architectures. The
concepts and relationships within the MicroART-DSL lan-
guage are presented in Section III.

The abstraction phase includes the mapping procedure that
associates the gathered data from the previous phase (see
Figure 3) to the MicroART-DSL concepts (see Figure 4). As
shown in Table I, for each extracted data, a direct mapping to
the DSL concept is matched and the result of this association
are the models described in section IV.

The first step of the mapping procedure creates an instance
of the root metaclass Product by setting the extracted system
name. For each service descriptor a new MicroService class
is created, and the corresponding attributes are mapped. For
each MicroService class, a new instance of Team class will
be attached, because a single team is associated to a single
microservice. A Developer class is created for each developer
that has committed to the system repository. On the basis of

the commit history and the commit paths, if a match is found
with a specific microservice build path, then the Developer
is assigned to the microservice’s team. On the basis of the
communication logs, for each microservice communication an
Interface class is created on both the service provider and
the service consumer side. A source interface is introduced
in order to keep track of the source service request, instead
the target interface will have more detailed information about
the resource needed, i.e., endpoint, protocol and method. For
each communication, a new translation into a Link class will be
applied, representing the connection between two interfaces.
The creation and the utilization of the Cluster metaclass is a
classification, not involved in the translation mapping, that can
be used to group microservices under specific characteristics,
as also discussed in section III, Cluster provides a logical
division of the system.

The Presentation phase is related to render the obtained
architecture model making the modelled concepts, extracted
and mapped in the previous phase available and especially
exploitable to the software architect. The architecture model
extracted can be rendered with a visual editor, or in a text
editor developed and distributed with a concrete syntax part
of the infrastructure developed in MicroART, like the editors
showing the models rendered in Section IV in Figure 6a and
6b.

B. Architecture Refinement

This phase, labelled in Figure 1 with B is semi auto-
matic, since it requires the intervention and supervision of
the software architect. Initially, a model of the architecture
is automatically created, as presented in phase A . After
that, refinements are applied on the model, leading thus to
the final microservice architecture representation. We define
refinement such as the process of modification of the archi-
tecture model in a new model, in this case, filtered of some
of the contained elements that the architect can easily spot.
For this phase the architect interaction is needed since it has
to select one or more components in the architecture model
in order to filter or resolve that specific components from the
system representation. The purpose of this phase is produce
another architecture model which the architect considers more
significant for its purposes. This new architecture is referred
to as refined architecture model, as shown in Figure 1.
The advantages of adopting refined architecture models
are several, and could be defined considering the architect
needs. Indeed, a refined architecture model could be used
for analysis, or for obtaining different views of the system
architecture customized on specific components. The first
refinement we have applied to our approach is the Service
Discovery Resolution, and other refinements can be further
defined and integrated in the current platform.

Service Discovery Resolution is the first architectural
refinement considered in the approach and its purpose is
to resolve the service discovery services in order to reveal
the dependencies among microservices. Microservice-based



TABLE I: Mapping between the extracted information and the MicroART-DSL

Extracted information DSL concept
Analysis type Information Concept Metaclass

St
at

ic
an

al
ys

is GitHub metadata System Name Product (name)
Developers Developer (Name, Username, Email)

Service Descriptor

Service name Team (Name)
Container name Microservice (Name)
Input ports Interface (Port)
Output ports Interface (Port)
Build path Microservice (Build)

D
yn

am
ic

an
al

ys
is

Containers Identifiers Microservice
IP address Microservice (Host)

Communication Logs
IP source address Link
IP target address Link
URL Interface (EndPoint)

architectures adopt service discovery mechanisms in order to
keep the microservices dependencies loosely coupled. Since
microservices might change their status dynamically (e.g.,
IP address) for several reasons (e.g., upgrades, autoscaling
or failures), the service discovery mechanisms are used to
allow services to find each other in the network dynamically.
Despite service discovery mechanisms are fundamental to
simplify the discover of services at run-time, they mask
the real resource dependencies among microservices in the
system. The software architect can use the MicroArt graphical
editor for identifying and selecting the service discovery
services in the architecture model of the system and obtain
a new refined architecture model where dependencies are
represented.

The architecture model is refined into the refined archi-
tecture model by following three steps: (i) removing all the
existing Links among microservices, (ii) removing the service
discovery MicroServices identified by the software architect,
and (iii) creating new Links by identifying the actual connec-
tions between microservices. This last step is feasible because
it is now possible to track each request from the service
consumer to the targeted service provider.

III. THE MICROART DOMAIN-SPECIFIC LANGUAGE

In this section we present the conceived domain-specific
language (DSL) for microservice-based systems and discuss
its underlying metamodel, as depicted in Figure 4. The meta-
model is composed of seven metaclasses where Product is
the root node of the system being designed. MicroService
represents the microservices composing the system and its
attributes are: host, which is the assigned IP address, and type,
which is the type assigned to the microservice. According
to the service type classification discussed by Richards [20],
we have classified in our DSL the microservices as either
functional or infrastructural. The set of possible values of
the ServiceType enumeration allows to define a service as
functional by assigning to the service the value functional,
or implicitly define the service as infrastructural by assigning
to it one of the remaining possible infrastructural value, which
were extracted according to the classification provided in
[8]. Interface represents a communication endpoint and it

is attached to specific microservices, for which it represents
either an input or output port. Link connects two interfaces
together, thus representing the communication among them.
Team is composed of one or more developers. Each microser-
vice is owned by one and only one team. The metaclass
Developer represents a software developer that participates to
the development of the system. Cluster is a logical abstraction
for grouping together specific microservices.

Fig. 4: DSL Metamodel for microservice-based systems

Our DSL has been developed around the microservice needs
and characteristics [10], and it is kept minimal in order to
support the design and description of multiple microservice-
based systems.

Typical aspects of the MSA style represented in the DSL.
First, the notion of products, not projects3 where cross-
functional teams are responsible for building and operating
each product has been realized by tying together the meta-
classes Product, Microservice, Team and Developer. Second,

3https://www.martinfowler.com/articles/microservices.html#
ProductsNotProjects

https://www.martinfowler.com/articles/microservices.html#ProductsNotProjects
https://www.martinfowler.com/articles/microservices.html#ProductsNotProjects


the Cluster metaclass allows to group together microservice
in specific categories, as for example functional and infras-
tructural services [15]. Third, the metaclasses Interface and
Link allow to define lightweight communication protocols,
by specifying for their representation only the required basic
information.

Every model generated by MicroART is an instance of the
MicroART-DSL metamodel; examples of model instances are
discussed in Section IV.

IV. VALIDATION

The presented approach and its prototype tool have been
applied on a publicly available open-source system called
Acme Air4. Acme Air is a microservice-based system of a
fictitious airline system implemented in NodeJS, and runs
on top of the Docker platform5. The given input to the
MicroART tool is the Acme Air GitHub repository URL and
the architecture recovery activity A starts. The details of
the extraction phase are shown in Figure 5, where the used
artefacts are shown simply instantiating the extraction phase
presented in Figure 3.

Fig. 5: Acme Air extraction phase

The static analysis extracts the service descriptors, specifi-
cally represented by the DockerFiles and the Docker-compose
file. The system name (i.e., Acme Air), and the developers
information are extracted. The dynamic analysis starts by
running the inspect command at runtime, from which the
container information and the network interface (i.e., Docker
Network Bridge) are obtained. Using this information, the
running TcpDump monitoring tool detects the communication
among services and stores them into log files, while the system
usage is simulated.

4https://github.com/acmeair/acmeair
5https://www.docker.com

The second phase of the architecture recovery (i.e., the abstrac-
tion phase) begins, the collected information is mapped to the
DSL metaclasses and the architecture model is instantiated.
The resulting model is visualized with the help of the devel-
oped graphical editor and a screenshot is shown in Figure 6a.

The model extracted in Figure 6a represents the Acme
Air Product. Ten MicroServices have been identified by Mi-
croART, and they are represented as rectangles with green
edges. Within each MicroService, the Interfaces used for
communication are represented with gray-edges boxes. The
set of interfaces of each microservice is divided in two parts
by a thin green line. On the top part the exposed interfaces are
reported, while in the bottom part the required interfaces are
shown. Teams are connected to the respective microservices,
and are represented with blue ellipses. Similarly, Developers
are displayed as dotted-blue ellipses and are connected to
the respective teams. Due to the lack of space in Figure 6a,
we have reported graphically Teams and Developers only in
Figure 6b. In 6a, wrapped in a red box there is the Nginx
service, which in the Acme Air system acts as a service
discovery service. As it is clearly evident in the architectural
model, the number of Links towards the service discovery is
predominant.

The architecture refinement phase B allows the software
architect to perform the service discovery resolution refine-
ment where he selects the service discovery microservice on
the architecture model, in order to discover the real microser-
vices dependencies. The architecture model is thus refined
into a refined architecture model, as reported in Figure 6b.
In this refined model, the service discovery service has been
removed and the number of dependencies has significantly
been reduced, as anticipated in section II.

In the refined model, in Figure 6b, it is now possible to
graphically display the real dependencies among microservices
from a development perspective. In the model there are now
nine MicroServices since the Nginx service discovery has been
removed. The number of Links is significantly decreased and,
most importantly, the Links are now showing the actual depen-
dencies from the development perspective. Indeed, it is now
possible to spot how the Main service and Flight service
are not depending on other microservices. Indeed, while the
Main service deals exclusively with providing to the users
the web page information and has no real dependencies with
other microservices, the isolation of Flight service might
reveal a lack in the monitoring stage, which has not gen-
erated enough logs of the information. For this reason it
is important to monitor the system for an amount of time
representative of the system usage in production. Similarly,
it is expected to see that many dependencies are with the
Authentication service, as users need to be authenticated
in the Acme Air system to perform many of its operations.
Teams and the Developers are shown respectively in blue
ellipses and dotted-blue ellipses. Analyzing the distribution of
developers and the size of the teams can be helpful for many
reasons; for example, this information may help in identifying
management issues (e.g., too many developer assigned to a

https://github.com/acmeair/acmeair
https://www.docker.com


(a) Architecture model
(b) Refined architecture model

Fig. 6: Acme Air architectural models

microservice, or vice-versa) or to balance the effort distribution
among microservices.

The architecture refinement phase provides to the software
architect the possibility to reason, analyse, and refine the
architecture model, for instance for performing change impact
analysis at the architectural level or having a deep understand-
ing of the overall architecture of the system.

V. TOOL SUPPORT

For supporting the approach presented in Section II, we
developed a tool named MicroART in order to guide the
architecture recovery of microservice-based systems. This tool
first extracts the information from the given repository then it
generates an architecture model of the system. This model is

then refined by MicroART into a refined architecture model
by application of the service discovery resolution refinement.

MicroART has been realized using Model-Driven Engineer-
ing tools and development principles [7], working with model-
based representations of the microservice architectures, and
the tool is publicly available for download6. The MicroART
tool has been developed on top of Eclipse and in particular
the Eclipse Modeling Platform (EMF) in combination with
the Spring Framework7, as can be seen in the bottom layer of
Figure 7. The Extraction Layer is composed of a Repository
Analyzer, used for connecting and extracting information from
GitHub repositories. The Dynamic Analyzer extracts infor-

6https://github.com/microart/microART-Tool
7https://projects.spring.io/spring-framework/

https://github.com/microart/microART-Tool
https://projects.spring.io/spring-framework/


Fig. 7: Tool support for recovering microservice architectures

mation from the running system, e.g., Acme Air, and with
the Information Aggregator composes the information to be
mapped into the MicroART-DSL concepts. This translation is
done by the DSL Manager in the Abstraction Layer that creates
the architecture models to be rendered with the DSL Visual
Editor developed and part of the Presentation Layer, built
on top of the GMF tool8. The DSL manager communicates
also with the Plug-in Manager that allows the Developers to
integrate their resolution plugin, like the one presented in this
paper, i.e., Service Discovery Resolution plug-in. The architect
can work with the UI in order to manipulate the models and
obtain the refined model version we described in section II.
We outline that the MicroART tool architecture is extensible
and it will be improved in the future to manage also other
resolution patterns and increase the level of automation in
the refinement phase, when allowed. Currently, the MicroART
prototype implementation depends on GitHub repositories that
use Docker as container engine, and thus MicroART applica-
bility is restricted to projects based on these technologies.

VI. RELATED WORK

The Architecture Reconstruction and MINing (ARMIN) is
a tool to reconstruct deployment architectures from the source
code presented in [16]. ARMIN starts the recovery process
with the source information extraction, where a set of elements
and relations are extracted from the system. By using the
elements different views of the system’s architecture are gen-
erated. The ARMIN approach differs from our because they
consider only the source code extraction without considering
the dynamic analysis.

Several architecture recovery techniques and tools are pre-
sented in [17]. They provide different recovery approaches
and give an overview of the state of the art of this field.
A framework called Mitre is introduced, and it consists of
three components: the architectural representation, the source
code recognition engine and ”bird’s-eye” program-overview
capability. The Mitre’s approach is based on an abstract syntax
tree. Compared to our tool despite some step of the recovery

8https://www.eclipse.org/modeling/gmp

approach of Mitre are similar, Mitre is not specific for mi-
croservice based system. Also the authors present Architecture
Reconstruction Method (ARM), a recovery technique that
works in four major phases: development of a concrete pattern-
recognition plan, extraction of a source mode, detection and
evaluation of pattern instances, reconstruction and analysis of
the architecture. Differently from our tool, ARM proposes
a method that is aimed at systems developed with design
patterns, MicroART has not this kind of limitation. Another
techniques is the software architecture reconstruction (SAR)
method that is based on a relation partition algebra. This
method employs five levels of architecture reconstruction: ini-
tial, described, redefined, managed, and optimized. Differently
to our technique, which aims to recover the dependency of the
system, SAR is oriented to a system information extraction.

A SOA-oriented architecture recovery process is presented
in [6]. Similarly to our approach, it is based on both a static
and dynamic phases and it uses a set of tools, relying on UML
to understand the system details.

In [23] the authors define an ADL by introducing a UML
profile that facilitates the incremental integration specification.
The approach allows developers to specify and design mi-
croservice integration, and provide mechanisms with which
to automatically obtain the implementation code for business
logic and interoperation among microservices. The approach
is generative and differently in our approach we focus on
recovering the microservices architecture.

Another work has been considered concerning DSL im-
plementation for architectural description [12]. This approach
supports full traceability between source code elements and
architectural abstractions, and allows software architects to
compare different versions of the generated UML model with
each other. The focus is on filling the gap between the design
and the implementation of a software system. Differently, in
our approach we recover the microservices architecture to
overcome the maintenance problem.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach for semi-
automatically recovering the architecture of microservice-
based systems. The approach is based on MDE principles and
is composed of two main steps: the first aims at recovering
the deployment architecture of the system, while the second
step has the goal to refine the obtained architecture. The
considered architecture models conform to a dedicated DSL.
The approach and the tool have been successfully applied to
a third-party benchmark system called Acme Air.

Future work includes the definition of new plugins related
to the component resolution functionality, such as those for
resolving third-party data stores, load balancers, logging ser-
vices. Also, we are investigating on identifying and defining
a set of metrics for automatically evaluating key aspects of
the system, such as the coupling among microservices within
the system, their cohesion, their evolvability. Those metrics
will live in a shared ecosystem, where third-party actors
can reuse and execute them on specific microservice-based

https://www.eclipse.org/modeling/gmp


systems, and even aggregate them in order to create new
ones. In this context, we are planning to extend the proposed
approach to support the incremental application of the metrics
at run-time, during the whole lifetime of the system; software
architects will have a better guidance with respect to the
evolution of the system, e.g., in terms of evolution effort
estimation. Finally, we are planning to extend MicroART
to support components deployed in the public cloud or in
other deployment platforms (e.g., Vagrant), with additional
logging and rendering tools, and to investigate the application
of MicroART to other microservice technologies (e.g., AWS
Lambda serverless Function-as-a-Service). Additional aspects
that we are considering are related to data contracts, message
exchange patterns and formats, protocols, and integration with
DevOps provisioning tools.

ACKNOWLEDGEMENT

This research has been supported by the European Union’s
H2020 Programme under grant agreement number 644178
(project CHOReVOLUTION - Automated Synthesis of Dy-
namic and Secured Choreographies for the Future Internet),
and by the Ministry of Economy and Finance, Cipe resolution
n. 135/2012 (project INCIPICT - INnovating CIty Planning
through Information and Communication Technologies).

REFERENCES

[1] N. Alshuqayran, N. Ali, and R. Evans. A systematic
mapping study in microservice architecture. In Service-
Oriented Computing and Applications (SOCA), 2016
IEEE 9th International Conference on, pages 44–51.
IEEE, 2016.

[2] T. J. Biggerstaff. Design recovery for maintenance and
reuse. Computer, 22(7):36–49, 1989.

[3] H. Brunelire, J. Cabot, G. Dup, and F. Madiot. Modisco:
A model driven reverse engineering framework. Informa-
tion and Software Technology, 56(8):1012 – 1032, 2014.

[4] E. J. Chikofsky and J. H. Cross. Reverse engineering and
design recovery: A taxonomy. IEEE software, 7(1):13–
17, 1990.

[5] A. Cicchetti, D. Di Ruscio, L. Iovino, and A. Pierantonio.
Managing the evolution of data-intensive web applica-
tions by model-driven techniques. Software & Systems
Modeling, 12(1):53–83, 2013.

[6] F. Cuadrado, B. Garcı́a, J. C. Dueñas, and H. A. Parada.
A case study on software evolution towards service-
oriented architecture. In Advanced Information Network-
ing and Applications-Workshops, 2008. AINAW 2008.
22nd International Conference on, pages 1399–1404.
IEEE, 2008.

[7] A. R. da Silva. Model-driven engineering: A survey
supported by the unified conceptual model. Computer
Languages, Systems and Structures, 43:139 – 155, 2015.

[8] P. Di Francesco, P. Lago, and I. Malavolta. Research on
Architecting Microservices: trends, Focus, and Potential
for Industrial Adoption. IEEE International Conference
on Software Architecture (ICSA), 2017.

[9] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina. Microser-

vices: yesterday, today, and tomorrow. arXiv preprint
arXiv:1606.04036, 2016.

[10] M. Fowler and J. Lewis. Microservices a def-
inition of this new architectural term. URL:
http://martinfowler.com/articles/microservices.html, Last
accessed: Mar 2017.

[11] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Mala-
volta, L. Iovino, and A. Di Salle. MicroART: A
Software Architecture Recovery Tool for Maintaining
Microservice-based Systems. IEEE International Con-
ference on Software Architecture (ICSA), 2017.

[12] T. Haitzer and U. Zdun. Dsl-based support for semi-
automated architectural component model abstraction
throughout the software lifecycle. In Proceedings of the
8th International ACM SIGSOFT Conference on Quality
of Software Architectures, QoSA ’12, pages 61–70, New
York, NY, USA, 2012. ACM.

[13] R. L. Krikhaar. Reverse architecting approach for com-
plex systems. In Software Maintenance, 1997. Proceed-
ings., International Conference on, pages 4–11. IEEE,
1997.

[14] H. A. Müller, S. R. Tilley, and K. Wong. Understanding
software systems using reverse engineering technology
perspectives from the rigi project. In Proceedings of the
1993 conference of the Centre for Advanced Studies on
Collaborative research: software engineering-Volume 1,
pages 217–226. IBM Press, 1993.

[15] S. Newman. Building microservices. ” O’Reilly Media,
Inc.”, 2015.

[16] L. O’Brien and C. Stoermer. Architecture reconstruction
case study. 2003.

[17] L. O’Brien, C. Stoermer, and C. Verhoef. Software
architecture reconstruction: Practice needs and current
approaches. Technical report, DTIC Document, 2002.

[18] C. Pahl and P. Jamshidi. Microservices: A systematic
mapping study. In Proceedings of the 6th International
Conference on Cloud Computing and Services Science,
pages 137–146, 2016.

[19] I. Pashov and M. Riebisch. Using feature modeling
for program comprehension and software architecture
recovery. In Engineering of Computer-Based Systems,
2004. Proceedings. 11th IEEE International Conference
and Workshop on the, pages 406–417. IEEE, 2004.

[20] M. Richards. Microservices vs. service-oriented archi-
tecture, 2015.

[21] D. C. Schmidt. Guest editor’s introduction: Model-driven
engineering. Computer, 39(2):25–31, Feb 2006.

[22] C. Stringfellow, C. Amory, D. Potnuri, A. Andrews,
and M. Georg. Comparison of software architecture
reverse engineering methods. Information and Software
Technology, 48(7):484 – 497, 2006.

[23] M. Zúñiga-Prieto, E. Insfran, S. Abrahao, and C. Cano-
Genoves. Incremental integration of microservices in

cloud applications. 2016.


