
User-centric Android Flexible Permissions

Gian Luca Scoccia∗, Ivano Malavolta†, Marco Autili‡, Amleto Di Salle‡ and Paola Inverardi‡
∗Gran Sasso Science Institute, L’Aquila, Italy - gianluca.scoccia@gssi.infn.it

†Vrije Universiteit Amsterdam, Amsterdam, The Netherlands - i.malavolta@vu.nl
‡University of L’Aquila, L’Aquila, Italy - {marco.autili,amleto.disalle,paola.inverardi}@univaq.it

Abstract—Privacy in mobile apps is a fundamental aspect to
be considered, particularly with regard to meeting end user
expectations. Due to the rigidities of the Android permission
model, desirable trade-offs are not allowed. End users are
confined into a secondary role, having the only option of choosing
between either privacy or functionalities. This work proposes a
user-centric approach to the flexible management of Android
permissions that empowers end users to specify the desired level
of permissions on a per-feature basis.

Keywords-Mobile Apps, Android Permissions, Privacy.

I. PROBLEM STATEMENT

The trustability of mobile apps is one of the main factors

to be considered, given the constant need of these apps to

access sensitive and private information of end users [2], to

the point that consumers are willing to pay a premium for

privacy protection [5]. The current Android permissions model

suffers of a number of rigidities related to, e.g., the granularity

level of the permissions, the timing at which permissions are

granted, the fact that the permissions model considers all users

as equal, etc.

As a result, users have the only option of either not installing

the app or granting all permissions, often by relying only

on incomplete information about possible risks. This lack of

flexibility may have a negative impact on the success of a

mobile app. End users may decide to not use the app rather

than granting permissions they feel uneasy about. Indeed,

this issue was partially considered in the design of release

6 of the Android. However, many problems remain unsolved.

That is, Android permissions and their usage still attract a

considerable research interest. The outcome is that Android

users grant permissions with a minimal comprehension of

what the implications of their decisions will be [2], without

having the possibility of balancing between functionalities and

privacy.

II. PROPOSED SOLUTION

This work proposes Android Flexible Permissions (AFP),

a more user-centric approach to flexible permissions manage-
ment. End users are allowed to specify and customize fine-

grained permission levels according to their own subjective

privacy concerns. AFP leverages a novel permission model

through which app permissions are specified on a per-feature

basis. Differently from the current Android permission model,

AFP empowers end users to selectively grant permission by

specifying (i) the desired permission levels (e.g., access to the

contacts list can be granted to all contacts that do not belong

to specific circles of people like relatives or close friends), and

(ii) the features of the app in which the specified permission

levels are granted (e.g., access to the relatives circle in the

contacts list can be granted only during a video call in a

messaging app). AFP offers a dedicated external mobile app

for that purpose.

From the developers point of view, the goal is to provide a

means to create apps that dynamically adapt to user-defined
permission levels with a limited additional effort. Develop-

ers create their mobile apps as usually, without using any

additional library or tool. In order to comply with AFP, a

developer is provided with automatic support by the AFP Web

application that (by means of a wizard) allows to (i) define

the features offered by the mobile app, and (ii) map each

feature to the components that implements it, i.e., Android

activities, services, broadcast receivers, or content providers.

Features and mappings are then used to automatically retrofit

the app so that it will be able to dynamically handle fine-

grained permission levels at runtime.

III. THE AFP APPROACH

AFP involves the following main components:

– AFP App, an app from which users can manage their own

flexible permissions;

– AFP Library, a library to enforce permissions at runtime;

– AFP Server, a web app that allows developers to automat-

ically retrofit an existing app so as to comply with AFP. It

also offers mechanisms for signing and verifying AFP-enabled

apps.

With reference to Figure 1, in the following the AFP

workflow is described from the developer point of view, and

from the end-user point of view.

App developer perspective – When an app X is ready to be

published (right-hand side of Figure 1), the developer can send

the APK archive of X to the AFP Server so to enable AFP

(1). Internal to the server, all the Android components of X
are extracted, i.e., its constituent activities, services, broadcast

receivers, and content providers. Then, the developer use a

web-based editor for (i) defining the features of X in terms

of their name and description (later used by end users), and

(ii) mapping each one of them to (a subset of) the extracted

Android components implementing it (2). This step is the only

additional effort we request to developers, and it is heavily

guided by the editor together with the automatic extraction

of Android components. The output is a feature-component

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.84

368

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.84

368

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.84

368

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.84

370

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.84

365

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.84

365

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.84

365

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.84

365

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.84

365

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.84

365

Fig. 1. Overview of the AFP approach

mapping model, specifying the mapping between app features

and Android components.

App X is then statically analyzed and automatically retrof-

ited so as to enable AFP on it. For this purpose, the following

operations are performed (those are totally transparent to the

developer): (i) automatically includes our AFP Library in the

app; (ii) instruments X so that all calls to sensitive Android

APIs are proxified and redirected to the AFP Library; (iii)

injects the code in the main activity of X for allowing the

end user to switch to the AFP App when launching X for

the first time; (iv) assigns a unique secret key to the app X ,

which will be used at runtime by the AFP checker; (v) creates

a new record into a repository of registered apps within the

server; (vi) rebuilds and re-sign X as a new APK archive.

Finally, the instrumented APK of X is made available to the

developer (3), who can then proceed with the publication in

the Google Play Store (4).

End user perspective – The user workflow has been

designed to be as much as possible seamless and easy to

follow, with the objective of minimizing the effort required to

end-users to specify flexible permissions. Users can download

and install (5) apps that adopt the AFP system directly from

the Google Play Store since no modifications to the Android

OS are required. Upon the first launch of the newly installed

app (6) they are redirected to the AFP App (7), which in turn

invites them to configure the permissions.

Once inside the AFP App, the user can specify preferences

for each permission requested by the app (8). In the mean-

while, the AFP App also interacts with the AFP Server (9)

in background. The server uses an internally generated secret

key to check the app installation and verify the developer’s

identity, hence certifying that nobody tampered with the AFP
Library. Moreover, it verifies that the APK downloaded from

the Google Play Store is exactly the same as the one produced

by our approach. When the results of the checks are ready

(10), and the configuration phase has finished, the user will

be automatically redirected back to the newly installed app,

together with the now configured flexible permission model

(11). The permission model is now associated with the AFP-

enabled app and the user can continue with normal app usage,

in a completely transparent way, i.e., no further user interaction

or dialogs are required.

Whenever needed, the access to private or sensitive re-

sources will be granted by the AFP Library according to

the specified permissions (12). Intuitively, the AFP Library
proxifies each call of the app to sensitive Android APIs (e.g.,

call to the Android geolocation manager), hence wrapping the

access to sensitive resources. Should the permission model

allow the requested access, the execution proceeds normally;

otherwise, functionalities are degraded by mocking the re-

quested data according to the permission levels specified by the

end user (this aspect is inspired by the Mockdroid approach by

Beresford et al. [1]). For example, if the end user allows only

city-level geolocation, when the app calls the Android location

manager, the AFP Library intercepts that call and returns the

geographical center of the city where the user is, instead of

her precise location.

The AFP App also allows to specify default levels for the

permissions (e.g., geolocation is allowed only at the city-level,

independently of the app requesting it), that will be used as a

basis during the configuration of the flexible permissions for

any newly installed AFP-compliant app. This characteristic

permits to speed up the configuration of the permissions for

each newly installed AFP-enabled app.

IV. FUTURE WORK

Much needs to be still done. In the short term, our primary

goal is to finalize the implementation of AFP by using a

combination of Java and Web technologies. Then, a thorough

empirical evaluation of the approach will follow by leveraging

aptly defined experiments on a dataset created in the context

of a previous research in which we mined the top 500 most

popular free apps for each category of the Google Play

Store [3], [4]. In the mid term, the goal is to define a procedure

for (semi) automatically extracting the features provided by an

Android app from its binary or source code. Moreover, as most

of the approaches in the literature using static analysis, the use

of reflection, self-decrypting code, or obfuscation techniques

in general challenge our approach. We will investigate the

possibility of realizing a hybrid approach combining static

analysis with dynamic flow analysis. We believe that such a

hybrid approach may result in a valid and viable compromise

towards mitigating this challenge.

REFERENCES

[1] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mockdroid: trading
privacy for application functionality on smartphones. In Proceedings of
the 12th workshop on mobile computing systems and applications, pages
49–54. ACM, 2011.

[2] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android
permissions: User attention, comprehension, and behavior. In Proceedings
of the Eighth Symposium on Usable Privacy and Security, pages 3:1–3:14,
2012.

369369369371366366366366366366

[3] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni. End users perception
of hybrid mobile apps in the google play store. In Proceedings of the
4th International Conference on Mobile Services (MS 2015). Institute of
Electrical and Electronics Engineers (IEEE), 2015.

[4] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni. Hybrid mobile apps
in the google play store: An exploratory investigation. In Proceedings

of the 2nd International Conference on Mobile Software Engineering
and Systems (MobileSoft 2015), pages 56–59. Institute of Electrical and
Electronics Engineers (IEEE), 2015.

[5] A. P. F. Serge Egelman and D. Wagner. Choice architecture and
smartphone privacy: There’s a price for that. In The Economics of

Information Security and Privacy, pages 211–236. 2013.

370370370372367367367367367367

