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ABSTRACT
Service choreographies represent a powerful and exible approach
to compose software services in a fully distributed way. A key en-
abler for the actual realization of choreographies is the ability to
automatically compose services, and perform exogenous coordi-
nation and adaptation of their interaction. This is a nontrivial and
error prone task. Automatic support for realizing choreographies is
needed. In this paper we focus on adapter generation and describe
our novel approach to the synthesis of service Adapters. When
needed, adapters permit to correctly bind concrete services to (ab-
stract) choreography roles by solving possible protocol mismatches.
Enterprise Integration Patterns are used as adaptation primitives
and composed to realize complex adaptation policies.
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1 INTRODUCTION
Service choreographies represent a powerful and exible approach
to compose software services in a fully distributed way. Service
choreographies have been around since many years, and many
valuable (mostly theoretic) approaches have been proposed [9, 15,
17, 20, 27] (just to mention a few).

With the objective of bringing the adoption of choreographies to
the development practices currently adopted by IT companies, our
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research and development activity has been focused on practical
and automatic approaches to support the realization of model-based
reuse-oriented service choreographies [1–7]. During the last decade,
this research and development activity has been funded (in particu-
lar) by two EU projects: the FP7 CHOReOS and its follow-up H2020
CHOReVOLUTION1.

The need for service choreographies was recognized in the Busi-
ness Process Modeling Notation version 2.02 (BPMN2), which in-
troduced Choreography Diagrams to oer choreography modeling
constructs. A choreography diagram models peer-to-peer commu-
nication by dening a multi-party message-passing protocol that,
when put in place by the concrete services that realize the roles
of the choreography, permits to reach the overall choreography
objectives in a fully distributed way. In BPMN2 choreography dia-
grams, a participant role models the expected behaviour (e.g., the
expected interaction protocol) that a concrete service should sup-
port in order to be able to play the role of the participant in the
choreography. When third-party participants are involved, usu-
ally black-box services to be reused, one of the main problems to
be solved when realizing choreographies is automatic realizability
enforcement. It can be informally phrased as follows: given a chore-
ography specication and a set of existing services to be reused,
externally coordinate their interaction so to fulll the collaboration
prescribed by the choreography specication. In order to address
this problem from a practical point of view, both coordination and
adaptation issues must be solved automatically (and indeed, also
security and middleware-level communication issues3). Thus, a key
enabler for the actual realization of choreographies is the ability to
automatically compose services, and perform exogenous coordina-
tion and adaptation of their interaction. However, in a distributed
setting, obtaining the coordination and adaptation logic required
to realize a choreography is nontrivial and error prone. As a matter
of fact, automatic support for realizing choreographies is needed.

Towards addressing these challenges, in this paper we briey
describe our overall approach to the automatic synthesis of ser-
vice choreographies. Then, we focus on the novel contribution
and describe in detail the approach we developed to automati-
cally synthesize service Adapters. When needed, adapters permit
to correctly bind concrete services to (abstract) choreography roles.

1www.choreos.eu – www.chorevolution.eu
2http://www.omg.org/spec/BPMN/2.0.2/
3The treatment of these issues is out of scope for this paper. They have been mentioned
here only for completeness with respect to the overall approach (described in Section 2)
we are developing within the CHOReVOLUTION project.
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Specically, adapters solve possible protocol mismatches between
services and choreography roles by employing Enterprise Integra-
tion Patterns [18] (EIP) as adaptation primitives and composing
them to realize the required adaptation logic.

The paper is structured as follow. Section 2 provides a brief
overview of the overall synthesis process we have implemented in
the CHOReVOLUTION project. Section 3 introduces an explanatory
example. Section 4 focus on the novel approach to choreography
adaptation, and Section 5 describes it at work on the explanatory
example. Related work is discussed in Section 6, and conclusions
are given in Section 7.

2 SETTING THE CONTEXT
The synthesis process consists of a set of core code generation phases
(see Figure 1) that take as input a choreography specication to-
gether with a set of concrete services as possible candidates to
play the choreography roles and automatically generates a set of
additional software entities. When interposed among the services
according to a predened architectural style (see Figure 2), these
software entities “proxify” the participant services to externally
coordinate and adapt their business-level interaction, as well as to
bridge the gap of their middleware-level communication paradigms
and enforce security constraints. It is worth to clarify that the ad-
ditional software entities are generated and interposed among the
services only if strictly needed, according to possible coordination
and adaptation issues that have been identied, as well as middle-
ware level binding issues and security requirements.

Figure 1: Synthesis process
For what concerns coordination and adaptation, coordination

entities, called Coordination Delegates (CDs), enforce the collabo-
ration prescribed by the choreography specication through dis-
tributed protocol coordination. Importantly, the CD coordination
logic is concrete service independent, meaning that it is synthesized
by considering the expected interaction protocol specied by the

choreography diagram for the (abstract) participant roles instead of
the one of the concrete services. This allows our approach to realize
separation of concerns, hence possibly reusing the synthesized co-
ordination logic when (late) binding dierent concrete services to
the choreography roles. Thus, when needed, service Adapters are
synthesized in order to correctly bind concrete services to abstract
roles. As already introduced, adapters solve possible protocol mis-
matches between services and choreography roles by employing
Enterprise Integration Patterns [18] (EIP) as adaptation primitives,
and composing them to realize the required adaptation logic.

Concerning middleware-level binding issues and enforcing secu-
rity requirements, additional components are generated, namely,
Binding Components (BCs) and Security Filters (SFs),

Figure 2: Architectural Style (a sample instance of)

In order to better collocate the adapter generation approach
within the overall picture, we now give a step-by-step description
of the overall synthesis process.
Validation – This activity validates the correctness of the choreog-
raphy specication against the constraints imposed by the BPMN2
Standard Specication. The goal is to check practical constraints
concerning both choreography realizability and its enforceability
(see [4, 8] and related work in [9, 10, 15, 17, 20, 27]).
Choreography Projection – Taking as input the BPMN2 Chore-
ography Diagram and the related Messages XML schema, this ac-
tivity automatically extracts all the choreography participants and
applies a model-to-model (M2M) transformation to derive the re-
lated Participant Models, one for each participant. A participant
model is itself a BPMN2 Choreography Diagram. It contains only
the choreography ows that involve the considered participant.
The generated participant models will be then taken as input by
the Coordination Delegate (CD) Generation activity.
Selection – This activity is about querying the Service Inventory
in order to select concrete services that can play the roles of the
choreography participants. Once the right services have been se-
lected, the related description models will be used to generate the
BCs, SFs, Adapters, and CDs, as per the following steps.
BC Generation – BCs are generated when the middleware-level
interaction paradigm of a selected service is dierent from SOAP4,
which is used by the coordination delegates as the middleware-level
interaction paradigm.

4www.w3.org/TR/soap/
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Figure 3: Smart and Mobility Tourism Choreography Specication

SF Generation – SFs are generated for those (selected) services
having security policies associated. SFs lter the services interac-
tions according to the specied security requirements.
Adapter Generation –When needed, adapters allow to bridge the
gap between the interfaces and interaction protocols of the selected
services and the ones of the (respective) participant roles they
have to play, as obtained via projection. Adapters are automatically
synthesized to mediate the end-to-end interaction Service-to-CD
and CD-to-Service, also taking into account possible SFs and BCs
in between (see Figure 2). In other words, adapters solve possible
interoperability issues due to operation names mismatches and I/O
data mapping mismatches.
CD Generation – CDs are in charge of coordinating the interac-
tions among the selected services so as to allow only those (possibly
parallel) sequences of message exchanges that are prescribed by
the choreography specication, in a fully distributed way.

As already anticipated, all the generated artefacts are nally
deployed and connected according to a predened layered archi-
tectural style, a sample instance of which is shown in Figure 2.

While performing all the process phases in Figure 1 (including
the generation of the nal architecture and the nal deployment
step – not shown in the gure), developers are supported by a
wizard that guide them while selecting the required inputs and
producing the corresponding output artefacts. The wizard is oered
as part of a customization of the Eclipse platform that we have
implemented for realizing the overall approach5.

From now on, we focus on the novel contribution of this paper,
which concerns the adapter generation phase.

5www.chorevolution.eu/bin/view/Documentation/Download

3 CASE STUDY
This section introduces a case study from the CHOReVOLUTION
project named Smart and Mobility Tourism (SMT). It will be used
as a running example in the remainder of the paper.

Figure 3 shows the SMT choreography diagram, specied
through the BPMN2 Choreography Diagram. As already introduced,
a choreography diagram species the way the choreography par-
ticipants exchange information (messages) from a global point of
view. The main element of a choreography diagram is the chore-
ography task (e.g., Get Tourist Guide task on top of Figure 3).
Graphically, BPMN2 diagrams uses rounded-corner boxes to denote
choreography tasks. Each of them is labeled with the roles of the
two participants involved in the task. The white box denotes the
initiating participant that decides when the interaction takes place.
A task is an atomic activity that represents an interaction by means
of one or two (request and optionally response) message exchanges
(getTouristGuideRequest) between two participants (STApp and
Tourist Agent).

The main scope of the SMT scenario is to realize a Collaborative
Travel Agent Systems (CTAS) through the cooperation of several
content and service providers, organizations and authorities. The
SMT use case envisages a mobile application as an “Electronic
Touristic Guide”, by exploiting the CTAS in order to provide both
smart mobility and touristic information. The scenario starts with
the mobile application STApp detecting the current position of the
user, and asking which type of point of interest to visit and which
type of transport mode to use. From this information, the choreogra-
phy initiaties two main parallel execution ows in order to retrieve
the information required by the “Electronic Touristic Guide” (see the
parallel branch represented as a rhombus marked with a “+” with
two outgoing arrows after the choreography task Get Tourist
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Message Routing EIP
Name Description Figure

Splitter It splits a message into several ones, and sends the resulting messages
to be processed independently

Aggregator
It receives multiple messages and combines them into a single message.
It is stateful and it must buer the messages to be aggregated and

determine when they are completed

Resequencer It collects and re-orders messages and put them into an output channel
in the specied order. Similarly to the Aggregator, it is stateful

Message Filter It decides whether a message should be passed along or dropped based
on some criteria respect to the header and/or content of the message

Message Transformation EIP
Message
Translator It converts a message from a format to another one

Content Filter It permits to remove some elements from the message content

Table 1: Considered EIP

Guide). In particular, the left-most branch of the choreography is
in charge of the retrieval of smart mobility information according
to the selected transport mode (see the conditional branching rep-
resented as a rhombus marked with a “×”), while the right-most
branch is responsible to gather touristic information. Finally, the
two main parallel ows are joined together on the production of
the data needed for the “Electronic Touristic Guide” (see the merg-
ing branch represented as a rhombus marked with a “+” with two
incoming arrows in the lower part of the choreography), that is
then shown to the user by means of STApp.

4 APPROACH
In this section we describe the proposed model-driven approach,
by presenting the underlying metamodel as rst. Then, the trans-
formation rules to generate the adapters are described.

Adapters are needed when the interaction protocol of the se-
lected concrete services are dierent from the abstract descriptions
of the participants they play in the BPMN2 choreography specica-
tion. Thus, the operations signature plus interaction via messages
exchange, may need to be adapted to the (abstract) interface of the
choreography participants. This requires to implement a suitable
notion of matching between protocols by means of (possibly com-
plex) data mappings over both operation names and I/O messages,
and their ows. The Adapter metamodel is used to represent this
matching. It considers the subset of Enterprise Integration Patterns
(EIPs) [18] that belong to the class of Message Routing Patterns and
patterns from the class Message Transformation, in Table 1. The
former class of patterns is used to decouple a message source from
the ultimate destination of the message following specic message
routing policies while the latter is used to deal with message data
format mismatches.
The considered EIPs permit two types of adaptation.

Flow-driven adaptation – realized by means of Message Rout-
ing EIPs, it is used to adapts sequences of messages by operating at

the granularity of messages, without touching the content of the
messages

Data-driven adaptation – realized by means of Message Trans-
formation EIPs, it is used to adapt the content of a single message
exchange. This type of adaptation operates at the granularity of
the data items constituting the message and their types.

Complex ow-driven and data-driven adaptation policies can be
achieved as chains of both Message Transformation and Message
Routing EIPs.

4.1 Adapter Metamodel
The adapter metamodel in Figure 4 species data mappings be-
tween the messages specied for the choreography tasks and the
request/response messages sent/received through concrete service
operations.

As anticipated in Section 2, adapters are responsible for medi-
ating two kinds of interactions: CD-to-Service and Service-to-CD.
Due to this reason the adapter metamodel has an attribute type in-
side the AdapterModel metaclass. Its possible values can be either
choreography_to_service in case of a CD-to-Service mediation,
or service_to_choreography in case of a Service-to-CD media-
tion. The core of the adapter metamodel is built around four main
concepts, namely operations, messages, data type, and enumeration,
which reect the relations needed to express the aforementioned
EIPs.

Operation and Message Relations – permit to specify Mes-
sage Routing patterns by mapping one or more choreography tasks
to one or more service operations, together with their messages.
The Splitter EIP is realized by a one-to-many operation and mes-
sage mapping, i.e., one choreography task is mapped to more than
one concrete service operation. The Aggregator EIP is realized by
a many-to-one mapping. Consequently, the Resequencer EIP is
realized by a many-to-many mapping. The desired order of the
permutation realized by the resequencer can be specied by using
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Figure 4: Service-Role Adapter metamodel

a property of the message relation (not shown in the gure). The
Message Filter EIP can be realized by a many-to-many operation
mapping, combined with a many-to-zero message mapping. The
latter relation serves to drop the messages that must be ltered out.

MessageData Type and Enumeration ItemRelations – per-
mit to specify Message Transformation patterns by associating
choreography message data items with the related service mes-
sage data items. The Message Translator EIP can be realized by
means of plain correspondences among the involved data items
or transformation rules that convert choreography message data
items into service message data items. Enumeration item relations
are specically used to map the entries of an enumerated type to
the entries of another enumerated type. Finally, the absence of a
DataItemRelation on a specic message item denotes a Content
Filter that drops the message item.

4.2 Rule–based adapter generation
The adapter generation phase is carried on by applying a num-
ber of rules, capable of realizing both Flow-driven adaptation and
Data-driven one. In particular, the former is realized through Rule
1 to Rule 7; the latter is realized by means of Rule 8 and Rule
9. These rules are applied by navigating an adapter model in a
top-down fashion. This means that the rules involving the Op-
eration and Message Relations are applied rst, resulting in the
Flow-driven adaptation. The rules involving Message Data Type
and Enumeration Item Relations are applied only after, resulting in
the Data-driven adaptation.

In the following, all the rules are described by considering their
possible situations as reported in Figure 5.

Figure 5: Choreographies reference scenarios
The situation in Figure 5.(a) underlies the denition of the rules 1

to 3. Suppose that, during the selection phase, a concrete service has
been selected to play the role of the participant B. Let us also suppose
that this concrete service has n > 1 operations, op_1, . . . ,op_n, that
match the choreography task T1. Referring to Figure 6.(a), in the
resulting adapter model, the OperationRelation associates the
task T1 to the service operations op_1, . . . ,op_n. Note that the
value of the attribute type is set to choreography_to_service.
Exploiting this adapter model, rules 1 to 3 can be described as
follows.
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Figure 6: Adapter model – rules 1 and 2

[Rule 1] Splitter choreography_to_service – A Splitter is
generated if the OperationRelation has n MessageRelations in-
volving the initiating message CMin_1 of T1, and the input mes-
sagesMin_1, . . . ,Min_n of the Operations op_1, . . . ,op_n, respec-
tively (see Figure 6.(b)). The generated Splitter receives the chore-
ography message CMin_1 as input and splits it into the messages
Min_1, . . . ,Min_n.

[Rule 2] Aggregator choreography_to_service – An Aggre-
gator is generated if the OperationRelation has 1 < i ≤ n
MessageRelations that involve the returnmessageCMout_1 ofT 1,
and the output messages Mout_1, . . . ,Mout_i of the Operations
op_1, . . . ,op_i (see Figure 6.(c)). The generated Aggregator receives
the messages Mout_1, . . . , Mout_i as input and aggregates them
into CMout_1.

Still considering the choreography task in Figure 5.(a), let us
suppose that, during the selection phase, a concrete service has
been selected to play the role of the participant A. The concrete
service has n > 1 operations, op_1, . . . ,op_n, that match the chore-
ography task T 1. Figure 7 shows the related adapter model where
the OperationRelation associates the task T1 to the operations
op_1, . . . ,op_n. Note that now the value of the attribute type is set
to service_to_choreography. Rule 3 follows.

Figure 7: Adapter model – rule 3

[Rule 3] Aggregator service_to_choreography – An Aggre-
gator is generated if the OperationRelation has 1 < i ≤ n
MessageRelations that involve the initiating message CMin_1 of
T1, and the input messages Min_1, . . . ,Min_i of the Operations

op_1, . . . ,op_i . The generated Aggregator receives the messages
Min_1, . . . ,Min_i as input and aggregates them into CMin_1.

Figure 8: Adapter model – rule 4

Referring to the sequence in Figure 5.(b), let us suppose that
a concrete service has been selected to play the role of the par-
ticipant B. Let us suppose that the concrete service has an op-
eration op_1 that matches the ChoreographyTasks T1, . . . ,Tn.
The related adapter model in Figure 8, whose type is now
choreography_to_service, has an OperationRelation that as-
sociates the ChoreographyTasksT 1, . . . ,Tn to op_1. Note that only
the task Tn can have a return message, otherwise it would be prac-
tically impossible to generate an adapter. Rule 4 follows.

[Rule 4] Aggregator choreography_to_service – An
Aggregator producing the Min_1 out of the messages
CMin_1, . . . ,CMin_i is generated if the OperationRelation has
1 < i ≤ n MessageRelations that involve the initiating messages
CMin_1, . . . ,CMin_i of T1, . . . ,Ti , respectively, and the input
messageMin_1 of the Operation op_1.

Figure 9: Adapter model – rules 5 and 6
Consider the sequence in Figure 5.(c) and focus on the participant

A. The concrete service selected for playing the role of A has an op-
eration op_1 that matches the choreography tasks T 1, . . . ,Tn. The
related service_to_choreography adapter model, containing the
OperationRelation that associates T1, . . . ,Tn to op_1, is shown
in Figure 9. The description of rules 5 and 6 follows.

[Rule 5] Splitter service_to_choreography – Refer-
ring to Figure 9.(b), a Splitter producing the messages
CMin_1, . . . ,CMin_n out of the message Min_1 is gener-
ated if the OperationRelation has n MessageRelations that
involve the initiating messagesCMin_1, . . . ,CMin_n and the input
messageMin_1 of the Operation op_1.

[Rule 6] Aggregator service_to_choreography – Re-
ferring to Figure 9.(c), an Aggregator is generated if the
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OperationRelation has 1 < i ≤ n MessageRelations
that involve the return messages CMout_1, . . . ,CMout_i of
T1, . . . ,Ti , respectively, and the output message Mout_1 of the
Operation op_1. The Aggregator receives as input the messages
CMout_1, . . . ,CMout_i and combine them intoMout_1.

Figure 10: Adapter model – rule 7

Still considering Figure 5.(c), and focussing on the participant B,
let us assume that a concrete service playing the role of B has the
operations op_1, . . . ,op_n matching the tasksT 1, . . . ,Tn. Figure 10
shows the related choreography_to_service adapter model that
associates T1, . . . ,Tn to op_1, . . . ,op_n, respectively. The same
holds when the concrete service plays the role of the participant A.

[Rule 7] Resequencer choreography_to_service and ser-
vice_to_choreography – a Resequencer is generated if the
OperationRelation has MessageRelations involving the initi-
ating messages CMin_1, . . . ,CMin_n of T1, . . . ,Tn, and the input
messages CMin_1, . . . ,CMin_n of op_1, . . . ,op_n. The generated
Resequencer receives as input the messages CMin_1, . . . ,CMin_n
and re-orders them into a permutation (e.g., CMin_n, . . . ,CMin_1
as shown in Figure 10).

Figure 11: Adapter model – rule 8

Rules 8 and 9 concern data-driven adaptation. They can be
applied to the data items of the messages involved in a single
message relation. Thus, given a MessageRelation between one
ChoreographyMessage CM and one MessageM , the descriptions
of the rule 8 and 9 follow.

[Rule 8] Message Translator – a Message Translator is
generated by considering each DataItemRelation, between
the ChoregraphyDataItems of CM and the DataItems of M .

The conversion performed by the Message Translator can in-
volve either the plain correspondence between the data items
of CM to the ones of M (see Figure 11.(a)), or their trans-
formation applying the transformationRules specied in the
DataItemRelations (see Figure 11.(b)). Moreover, in case of
a DataItemRelation, involving a ChoreographySimpleItem
with ChoreographyEnumerationItems and a SimpleItem with
EnumerationItems, the conversion is realized by means of the
related EnumerationItemRelations (see Figure 11.(c)).

Figure 12: Adapter model – rule 9
[Rule 9] Content Filter – As shown in the example in

Figure 12, Content Filter is generated by considering each
DataItemRelation involving one ChoregraphyDataItem of CM
and no DataItem ofM , or viceversa. The generated Content Filter
removes the unmapped data items, i.e., the ones not involved in
any DataItemRelation.

5 ADAPTERS GENERATION ATWORK
This section describes how the Adapters generation phase of the
synthesis process (see Figure 1) realizes a set of possible adaptations
by exploiting the related adapter model.

With the purpose of showing the adapters generation at work,
we briey recall some characteristics of the case study that serves as
basis for the running example used in the remainder of the section.
As described in Section 3, the main scope of the SMT scenario is
to realize a CTAS through the cooperation of several content and
service providers, organizations and authorities. To this extent, the
key issue is to deal with the heterogeneity of the involved concrete
service data types and to adapt them to the choreography message
data types format. Regarding the smart mobility information, one
of the involved participant is the Journey Planner participant. It is
in charge of providing trips information to the Mobility Informa-
tion Planner. This is accomplished through the choreography task
Get Trips Information, whose initiating participant, Mobility
Information Planner, starts the interaction by sending the message
tripsRequest to the receiving participant Journey Planner. Then,
the latter replies with the tripsResponse message.

During the selection activity of the synthesis process, the Service
Inventory is queried in order to select a concrete service capable of
playing the role of the Journey Planner participant. The inventory
contains a reference to an external third-party service whose inter-
face does not perfectly match the abstract interface specied for
Journey Planner, i.e., the messages specied for it in the BPMN2
choreography diagram. An Adapter is needed. Thus, upon selecting
the concrete third-party service available in the inventory, the user
is guided through a sequence of steps that lead to the denition of
an adapter model conforming to the metamodel in Figure 4. The
dened model is then used to automatically generate the code of an
adapter capable of bridging the gap between the abstract interface
of Journey Planner participant and the concrete one of the third-
party service. Moreover, as said above, the Journey Planner is the
receiving participant of the considered choreography task. Thus,
the adapter is needed to mediate the interaction CD-to-Service.
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In the following, the messages related to the choreography
task Get Trips Information are used to describe the adapters
generation at work. For the sake of clarity, we only consider
some mapping relations between the choreography return mes-
sage tripsResponse and the response messages of the selected
third-party service. As stated above, the interaction prescribed by
this choreography task is required to provide trip information to
the Mobility Information Planner. Thus, the mapping between the
messages concerns the trip information representation. Specically,
the response messages of the selected third-party service has more
details than the related return message in the choreography. For
example, the selected third-party service provides map information
that is not used by the choreography. In addition, the transport
type is encoded as an integer value, whereas in the choreography
message it is represented with the name (a string) of the transporta-
tion means. Furthermore, the starting point of a trip is represented
by the data items name, latitude, and longitude, whereas in the
choreography only the starting point name is needed. Finally, in
case of public transport, drop-in and drop-o bus stop names are
represented through dierent data items with respect to the ones
required in the choreography.

Figures 13, 14 and 15 depict an excerpt of the resulting
adapter model. In particular, the right-hand side of Figure 13
shows the detailed denition of the choreography message
tripsResponse. Regarding this message, we consider the message
data items from, dropInNode, dropOffNode, and transportType,
all of type string. Indeed, the latter enumerates the values
{Walk,Bicycle, PublicTransport ,Car }. Referring to the left-hand
side of metamodel in Figure 4, the concepts instantiated are
ChoreographySimpleItem, StringEnumerationItem, and hence
ChoreographyEnumerationItem.

Figure 13: Choreography return message
The concrete service selected to play the Journey Plan-

ner role has an interface with two operations: getTrips
and getVehicleInformation. The former involves the mes-
sages getTripRequest and getTripsResponse; the latter
involves the messages vehicleInformationRequest and
vehicleInformationResponse. We focus on the messages
getTripsResponse and vehicleInformationResponse,
whose details are framed in Figure 14. Regarding the mes-
sage getTripsResponse, we consider the data items: name of
type string, a child of the complex type from; modality of
type integer, a child of the complex type trips, whose value
is restricted to the set {1, 2, 4, 8}. Concerning the message
vehicleInformationResponse the data items of interest are
alightNode and ascendNode, children of the complex type

Figure 14: Output message

vehicleInformation, both of type string. Referring to the
right-hand side of the metamodel in Figure 4, the involved concepts
are ComplexItem, SimpleItem, IntegerEnumerationItem, and
hence EnumerationItem.

Figure 15: Adapter model mappings
Figure 15 shows the mappings between the choreogra-

phy message tripsResponse and the concrete messages
getTripsResponse and vehicleInformationResponse. First,
the choreography task Get Trips Information is associated
with the operations getTrips and getVehicleInformation
(relation 1). Then, the choreography message tripsResponse
is related to both the message getTripsResponse (relation 2)
and the message vehicleInformationResponse (relation 9) (see
MessageRelation in the metamodel).

Regarding the message data type relations (see
DataItemRelation in the metamodel), we only describe
the most representative mappings with respect to the generation
of the Message Translator and the Content Filter required for
adapting the task Get Trips Information considered in our
example. In particular, the Message Translator is synthesised
by considering the following pairs of choreography simple
types and concrete service simple types, and hence the pairs
{ChoreographySimpleItem, SimpleItem} in the metamodel:
{dropInNode, ascendNode} (relation 10) and {dropOffNode,
alightNode} (relation 11) that concern the message relation
9 (tripsResponse, vehicleInformationResponse); {from,
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Figure 16: Journey Planner Adapter

name} (relation 3) and {transportType, modality} (relation
4) that concern the message relation 2 (tripsResponse,
getTripsResponse). The last mapping {transportType,
modality} is further detailed by means of the enumeration
type relations (EnumerationItemRelation in the metamodel):
{Walk, 1} (relation 5), {Bicycle, 2} (relation 6), {Public Transport,
4} (relation 7), {Car, and 8} (relation 8).

Starting from the adapter model and applying the adapters gen-
eration rules dened in Section 4.2, the adapter generation activ-
ity of the synthesis process (Section 2) generates the adapter. Fig-
ure 16 shows the adapter that, according to the architectural style
in Figure 2, is interposed between the CD and the related con-
crete service Journey Planner. Via the inbound channel, the re-
sulting adapter receives as input the message tripsRequest that,
after being split, is translated into the messages getTripsRequest
and vehicleInformationRequest. Upon receiving the mes-
sages getTripsResponse and vehicleInformationResponse
through the outbound channel, the adapter creates the message
tripsResponse. For the sake of space, in the following, we focus
on describing the outbound channel only.

The adapter model has two MessageRelations associating the
message getTripsResponse and vehicleInformationResponse
to the same choreography message tripsResponse, together with
their data items. This results in both Flow-Driven and Data-driven
adaptation.

Data-driven adaptation is obtained through Rule 8 and Rule 9.
In particular, by applying Rule 9, two Content Filters are gener-
ated to delete the data items of the messages getTripsResponse
and vehicleInformationResponse that are not involved in any
of the message data type relations. Then, by applying Rule 8, two
Message Translators are realised in order to convert the remaining
data items to the data items of the message tripsResponse. Finally,
by applying Rule 2, an Aggregator is derived. It takes as input the
messages produced by the translators and combines them into the
message tripsResponse.

6 RELATED WORK
Themediation/adaptation of protocols have received attention since
the early days of networking. Indeed, many eorts have been done
in several directions including for example formal approaches to
protocol conversion, like in [13, 21].

Spitznagel and Garlan propose an approach to formally spec-
ify adapter wrappers as protocol transformations, modularizing

them, and reasoning about their properties, with the aim to resolve
component mismatches [28].

Passerone et al. use a game theoretic approach for checking
whether incompatible component interfaces can be made compati-
ble by inserting a converter between them which satises specied
requirements. This approach is able to automatically synthesize the
converter [25]. In contrast to our method, their method needs as
input a deadlock-free specication of the requirements that should
be satised by the adapter, by delegating to the user the non-trivial
task of specifying that. Our validation phase, automatically achieve
deadlock freeness in the choreography specication.

Recently, Bennaceur and Issarny presented an approach that,
exploiting ontology reasoning and constraint programming, al-
lows for automatically inferring mappings between components
interfaces [11]. Importantly, these mappings guarantee semantic
compatibility between the operations and data. Although valuable
and powerful, this approach does not account for development
eort whose aim is to bring the adoption of choreographies to the
development practices currently adopted by IT companies.

In [14] the authors present a generic schema match system called
COMA, which provides an extensible library of simple and hybrid
match algorithms and supports a powerful framework for combin-
ing match results. This framework can be used for systematically
evaluate dierent aspects of match processing, match direction,
match candidate selection, and computation of combined similarity,
and dierent matcher usages.

Paolucci et al. propose a base algorithm [24] for semantic match-
ing between service advertisements and service requests based on
DAML-S, a DAML-based language for service description. The al-
gorithm proposed dierentiate between four degrees of matching
and can be used for automatic dynamic discovery, selection and
inter-operation of web services.

In [22] the authors discuss an extensions of the Jolie orchestra-
tion language [23], namely JoRBA framework that allows to develop
dynamically adaptable service oriented applications. In [26] the
AIOCJ choreography language is presented, where leveraging on
adaptability features of JoRBA, allows for developing adaptable
choreographies.

In [16], the authors propose an approach to enforce synchroniz-
ability and realizability of a choreography. The approach is able
to automatically generate monitors, which act as local controllers
interacting with their peers and the rest of the system in order to
make the peers respect the choreography specication. Our notion
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of CD is “similar” to the notion of monitor used in [16]. However,
the two synthesis methods are dierent.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we presented the model-based approach used within
the CHOReVOLUTION project to achieve choreography adaptation.
The approach is that of automatically generating adapters by com-
bining dierent EIPs according to a notion of protocol mediation
and data similarity.

Our approach supports patterns belonging to the Message Rout-
ing and Message Transformation EIP classes [18]. The former pat-
terns allow to decouple a message source from the ultimate desti-
nation of the message according to message routing policies. The
latter patterns oer a general solution to possible dierences in the
data format of the exchanged messages enabling a ner form of
adaptation concerning mismatches at the level of the semantics of
the exchanged messages.

Furthermore, the ability to deal with these patterns allows to
support two types of choreography adaptation: (i) Flow-driven adap-
tation that operates at the granularity of messages adapting the ow
of messages among participants, and (ii) Data-driven adaptation
that operates at the granularity of the data items constituting the
message adapting the content of messages among participants.

An explanatory example, taken from the Smart and Mobility
Tourism use case of the CHOReVOLUTION project, has been used
to show the Message Translator pattern and Content Filter pat-
tern. They allowed to mediate the interaction with a third-party
service, which uses a data format dierent from the one dened for
a choreography message.

As future work, we plan to add support to the automated identi-
cation of interoperability issues in order to automatically infer data
mappings between dierent messages, and then automatically de-
rive the adapter model. In this direction, we can exploit Strawberry
tool [12] that through a testing phase, based on an ad-hoc oracle,
is able to infer the semantic correlation between two messages.
An alternative way to check message semantic correlation would
be to exploit ontological information in a way similar to what is
described in [19].
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