1.

a) Give the definition of a contraction mapping. (2)
b) Prove that any contraction mapping is continuous. (2)
c) Is it true that any continuous mapping of a Banach space to itself is a contraction?

If "yes", prove it, if "no", give an example. (2)
2.
a) Prove that the algebraic equation $x=(1+x)^{\frac{1}{5}}$ has a root inside the segment $[1,2]$. (3)
b) Find any three successive approximations to this root (only algebraic expressions, without evaluation). (2)
3. A function $f(x):[0,1] \rightarrow \mathbb{R}$ is measurable with respect to the usual σ - additive measure defined on the σ - algebra of all measurable subsets of $[0,1]$. Prove that $e^{f(x)}$ is also measurable. (3)
4. Evaluate the Lebesque integral $\int_{\mathbb{R}_{+}} f(x) d \mu$, where

$$
f(x)= \begin{cases}e^{-x}, & x \in \mathbb{R}_{+} \backslash \mathbb{N} \\ e^{x}, & x \in \mathbb{N}\end{cases}
$$

Explain your answer. (3)
5. Given

$$
f(x)=\left\{\begin{aligned}
1, & x \in[0,1] \cap \mathbb{Q} ; \\
-2, & \text { otherwise }
\end{aligned}\right.
$$

evaluate
a) $\|f(x)\|_{L_{\infty}(0,1)},(2)$
b) $\|f(x)\|_{L_{2}(0,1)} \cdot(2)$

Explain your answer.
6. Consider the operator

$$
T(x(t))=\int_{0}^{t} x(\tau) d \tau
$$

from $C[0,2]$ to $C[0,2], \quad\|x(t)\|_{C[0,2]}=\sup _{0 \leq t \leq 2}|x(t)|$.
Prove that the operator is
a) linear (2)
b) bounded (2)
c) continuous. (1)
d) Evaluate its norm. (2)
7. Let $A: X \rightarrow Y$ be a linear bounded invertible operator, where both X and Y are Banach spaces.
a) Prove that the inverse operator A^{-1} is linear. (3)
b) Is A^{-1} necessarily bounded? Explain your answer. (3)
8.
a) Give the definition of the dual space of a normed linear space X. (2)
b) Describe the space l_{3}. (2)
c) What space is dual to l_{3} ? (Only answer, without proof). (2)

