Functional analysis in applied mathematics and Engineering - First Part

Test of 12 January 2009
Duration: 60 min .
Family and first name: \qquad
Matricola: \qquad

Exercise 1

1. Using contraction mapping theorem, prove the following Cauchy problem has an unique solution:

$$
\left\{\begin{array}{l}
x^{\prime}=2 x \\
x(0)=-1
\end{array}\right.
$$

2. Find this unique solution by means of successive approximations technique.

Exercise 2

Consider the measurable function $f:[0,1] \rightarrow \mathbb{R}$ defined by:

$$
f(x)= \begin{cases}n & \text { if } x=\frac{1}{2 n+1} \\ 5 & \text { otherwise }\end{cases}
$$

where $n \in \mathbb{N}$.

1. Is $f \in L_{\infty}[0,1]$? Evaluate $\|f\|_{L_{\infty}[0,1]}$.
2. Using theoretical results, prove from point 1 . that $f \in L_{1}[0,1]$ (explain your answer).
3. Evaluate $\|f\|_{L_{1}[0,1]}$.

Exercise 3

In the space $L_{2}[0,1]$, consider the operator

$$
(A u)(t)= \begin{cases}u(t), & \text { for } 0 \leq t \leq \lambda, \\ 0, & \text { for } \lambda<t \leq 1\end{cases}
$$

for a fixed $\lambda \in(0,1)$. Prove that the operator is linear, bounded, continuous and evaluate its norm.

Exercise 4

1. Give the definition of weak and ${ }^{*}$-weak convergence in a normed linear space X.
2. Describe these notions in the space ℓ_{5} (only answers, without proofs).
3. Is this space reflexive? If yes, recast results of point 2 .
