Functional analysis in applied mathematics and ENGINEERING - SECOND PART

Test of 12 January 2009
Duration: 60 min .
Family and first name: \qquad
Matricola: \qquad

Exercise 1

Let $f(x)=\operatorname{sign}\left(x^{3}-x\right)$.

1. Can this function be considered as a regular distribution (regular generalized function)? Explain your answer.
2. Find the derivative of $f(x)$ in the sense of distributions.
3. Can $f^{\prime}(x)$ be considered as a regular distribution (regular generalized function)? Explain your answer.

Exercise 2

In the space $L_{2}([0,2] ; \mathbb{R})$, consider the closed subspace

$$
\mathcal{S}=\operatorname{Span}\left\{1, t^{2}\right\}
$$

1. Using the Projection Theorem, find the projection of the vector t on that subspace.
2. Find the same projection, but applying in advance the Gram-Schmidt orthogonalization to $\left\{1, t^{2}\right\}$ and then the Fourier expansion.

Exercise 3

Let $W(t, \tau):[0, T] \times[0, T] \rightarrow \mathbb{R}$ a continuous function. Let $\mathcal{W}: L_{2}((0, T) ; \mathbb{R}) \rightarrow$ $L_{2}((0, T) ; \mathbb{R})$ the linear and bounded operator defined by

$$
(\mathcal{W} u)(t)=\int_{0}^{t} W(t, \tau) u(\tau) d \tau
$$

for any $u \in L_{2}((0, T) ; \mathbb{R})$. Find the adjont operator \mathcal{W}^{*}.
Hint: you shall use in an appropriate way the Fubini Theorem...

Exercise 4

1. Give the definition of a positive operator and provide an example of a positive operator.
2. Assuming a positive operator has a basis of eigenvectors, describe its eigenvalues. Explain your answer.
