Functional analysis in applied mathematics and engineering — First part

Test of 27 January 2009

Duration: 60 min.

Exercise 1

Using contraction mapping theorem, prove existence and uniqueness of solutions for the following Cauchy problem:

$$\begin{cases} x' = f(x,t) \\ x(0) = x_0, \end{cases}$$

under suitable hypotheses on the function f(x, t).

Exercise 2

Consider the function $f:[0,1] \to \mathbb{R}$ defined by:

$$f(x) = \begin{cases} n+3n^2 & \text{if } x = \frac{n}{n+1} \\ 0 & \text{otherwise,} \end{cases}$$

where $n \in \mathbb{N}$.

- 1. Prove that f is measurable (explain your answer).
- 2. Prove that f = 0 almost everywhere in [0, 1] (explain your answer).

Exercise 3

In the space C[0,2] with the usual sup norm, consider the operator

$$T(x(t)) = t \int_0^t x(\tau) \, d\tau.$$

Prove that the operator is linear, bounded, continuous and evaluate its norm.

Exercise 4

Let $\{x^k\}$ be the sequence (of sequences!) defined by:

$$x^k = (0, \ldots, 0, \underbrace{1}_{k\text{-th place}}, 0, 0, \ldots).$$

- 1. Prove that $\{x^k\} \subset \ell_p$ for any $1 \le p \le \infty$.
- 2. Prove that $x_k \rightarrow 0$ in ℓ_p for any 1 .