Functional analysis in applied mathematics and Engineering - First part

Test of 27 January 2009
Duration: 60 min .
Family and first name: \qquad
Matricola: \qquad

Exercise 1

Using contraction mapping theorem, prove existence and uniqueness of solutions for the following Cauchy problem:

$$
\left\{\begin{array}{l}
x^{\prime}=f(x, t) \\
x(0)=x_{0}
\end{array}\right.
$$

under suitable hypotheses on the function $f(x, t)$.

Exercise 2

Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined by:

$$
f(x)= \begin{cases}n+3 n^{2} & \text { if } x=\frac{n}{n+1} \\ 0 & \text { otherwise }\end{cases}
$$

where $n \in \mathbb{N}$.

1. Prove that f is measurable (explain your answer).
2. Prove that $f=0$ almost everywhere in $[0,1]$ (explain your answer).

Exercise 3

In the space $C[0,2]$ with the usual sup norm, consider the operator

$$
T(x(t))=t \int_{0}^{t} x(\tau) d \tau
$$

Prove that the operator is linear, bounded, continuous and evaluate its norm.

Exercise 4

Let $\left\{x^{k}\right\}$ be the sequence (of sequences!) defined by:

$$
x^{k}=(0, \ldots, 0, \underbrace{1}_{k \text {-th place }}, 0,0, \ldots) .
$$

1. Prove that $\left\{x^{k}\right\} \subset \ell_{p}$ for any $1 \leq p \leq \infty$.
2. Prove that $x_{k} \rightharpoonup 0$ in ℓ_{p} for any $1<p<\infty$.
