Functional analysis in applied mathematics and Engineering - SECOND PART

Test of 27 January 2009
Duration: 60 min .
Family and first name: \qquad
Matricola: \qquad

Exercise 1

Let $f(x)$ be defined by:

$$
f(x)= \begin{cases}0, & \text { if } x \leq-1 \\ x^{2}, & \text { if }-1<x \leq 1 \\ 2-x, & \text { if } 1<x \leq 2 \\ 0, & \text { if } x>2\end{cases}
$$

1. Can this function be considered as a regular distribution (regular generalized function)? Explain your answer.
2. Find the derivative of $f(x)$ in the sense of distributions.

Exercise 2

In the space $L_{2}([0,1] ; \mathbb{R})$, prove that the set of vectors $\left\{t, t^{3}, t^{5}\right\}$ is linearly independent and then apply to it the Gram-Schmidt orthogonalization.

Exercise 3

In $H=L_{2}([a, b] ; \mathbb{C})$ wiht the usual inner product, consider the operator $T: H \rightarrow H$ defined by:

$$
(T u)(t)=\int_{a}^{b} k(t, s) u(s) d s,
$$

where $k(t, s) \in L_{2}((a, b) \times(a, b) ; \mathbb{C})$. Find the adjoint T^{*} of T.

Exercise 4

1. Define the notion of eigenvalues and eigenvectors for a linear operator $A: D(A) \subset$ $H \rightarrow H, H$ being an Hilbert space.
2. Find eigenvalues and eigenvectors of the operator $A: D(A) \subset L_{2}([0, \pi] ; \mathbb{R}) \rightarrow L_{2}([0, \pi] ; \mathbb{R})$ defined by:

$$
\begin{aligned}
& A(u)(t)=u^{\prime \prime}(t) \\
& D(A)=\left\{u \in L_{2}([0, \pi] ; \mathbb{R}): u^{\prime}, u^{\prime \prime} \in L_{2}([0, \pi] ; \mathbb{R}) \text { and } u(0)=0=u(\pi)\right\}
\end{aligned}
$$

