Functional analysis in applied mathematics and ENGINEERING - SECOND PART

Test of 10 February 2009
Duration: 60 min.

Family and first name: \qquad
Matricola: \qquad

Exercise 1

Evaluate $D^{3} H(x)$ in the sense of distributions, where $H(x)$ denotes the Heaviside function

$$
H(x)= \begin{cases}1 & x>0 \\ 0 & x \leq 0\end{cases}
$$

Exercise 2

In the space $L_{2}([0,2 \pi] ; \mathbb{R})$, Find the projection of the vector $x(t)=t-1$ into the linear subspaces \mathcal{S} and \mathcal{S}^{\perp}, where

$$
\mathcal{S}=\operatorname{Span}\left\{\frac{1}{\sqrt{\pi}} \sin (t), \frac{1}{\sqrt{\pi}} \sin (2 t)\right\}
$$

Exercise 3

Define the spectrum of a bounded operator and then describe the eigenvalues and eigenvector spaces of a self-adjoint, compact operator on an Hilbert space.

Exercise 4

Define the notion of adjoint operator for a linear and bounded operator $A \in \mathcal{L}(H), H$ being an Hilbert space (explain why the definition is well-posed, using in an appropriate way the Riesz Representation Theorem).

How the above definition must be modified if A is an unbounded operator defined in $D(A) \subset H$?

