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Exercise 1

Consider the linear system

ẋ = Ax, A =

(
1 2
2 2

)
.

1. Reduce the matrix A in Jordan canonical form.

2. Find the solution of the linear system with initial condition x(0) = x0.

3. Draw the phase portrait both in the coordinates for which A is reduced in Jordan
canonical form and in the original coordinates (be as specific as possible).

4. Classify the origin x = 0 according to the previous discussion (be as specific as
possible).

Exercise 2

Consider the system

Ẋ = f(X), X =

(
x
y

)
, f(X) =

(
−4y + 3x5

4x + 3yx4

)
.

Justifying all answers:

1. Write the linearization of that system about the origin; classify the origin and draw
the phase portrait for the linearized system. Using only the linearization, what can
we say about the nature of the origin for the nonlinear system?

2. Study the nature of the origin for the nonlinear system in polar coordintates (be as
specific as possible, that is, deduce stability properties and classify it).

3. Draw the phase portrait for the nonlinear system.


