FUNCTIONAL ANALYSIS IN APPLIED MATHEMATICS

AND ENGINEERING

Test of 12 October 2009

Duration: approx. 60 min.

Family and first name: ______ Matricola:

CFU: _____

Exercise 1 [only for 9 CFU]

- 1. Using the function $F_1(x) = \sqrt[3]{1+x}$ and the Contraction (Fixed Point) Theorem, prove the existence of a zero of the function $f(x) = x^3 - x - 1$ in [1,2].
- 2. Find that zero with an error less than 1/100.
- 3. Explain why the following choises are not useful to apply the above technique:
 - (a) F₂(x) = x³ 1 in ℝ.
 (b) F₃(x) = 1/(x² 1) in [1 + δ, +∞), for a δ > 0 sufficiently small.

Exercise 2 [6 and 9 CFU]

Consider the operator $F: L_1(0,1) \to L_1(0,1)$ defined by $(Fu)(t) = tu(t), t \in [0,1]$. Prove F is linear, bounded, and evaluate its norm.

Hint: to evaluate the norm, consider the sequence

$$u_n(t) = \begin{cases} 0, & \text{for } 0 \le t \le 1 - \frac{1}{n}, \\ n, & \text{for } 1 - \frac{1}{n} < t \le 1. \end{cases}$$

Exercise 3 [6 and 9 CFU]

Describe the notions of dual spaces and adjont operators in Hilbert spaces.

Exercise 4 [only for 9 CFU]

Consider the operator $A : L_2((a,b); \mathbb{C}) \to L_2((a,b); \mathbb{C})$ defined by (Ax)(t) = ix(t). Prove that A is a linear, bounded, normal operator.