Functional analysis in applied mathematics
 AND ENGINEERING

Test of 12 October 2009
Duration: approx. 60 min .
Family and first name: \qquad
Matricola: \qquad
CFU: \qquad

Exercise 1 [only for 9 CFU]

1. Using the function $F_{1}(x)=\sqrt[3]{1+x}$ and the Contraction (Fixed Point) Theorem, prove the existence of a zero of the function $f(x)=x^{3}-x-1$ in $[1,2]$.
2. Find that zero with an error less than $1 / 100$.
3. Explain why the following choises are not useful to apply the above technique:
(a) $F_{2}(x)=x^{3}-1$ in \mathbb{R}.
(b) $F_{3}(x)=\frac{1}{x^{2}-1}$ in $[1+\delta,+\infty)$, for a $\delta>0$ sufficiently small.

Exercise 2 [6 and 9 CFU]

Consider the operator $F: L_{1}(0,1) \rightarrow L_{1}(0,1)$ defined by $(F u)(t)=t u(t), t \in[0,1]$. Prove F is linear, bounded, and evaluate its norm.
Hint: to evaluate the norm, consider the sequence

$$
u_{n}(t)= \begin{cases}0, & \text { for } 0 \leq t \leq 1-\frac{1}{n} \\ n, & \text { for } 1-\frac{1}{n}<t \leq 1\end{cases}
$$

Exercise 3 [6 and 9 CFU]

Describe the notions of dual spaces and adjont operators in Hilbert spaces.

Exercise 4 [only for 9 CFU]

Consider the operator $A: L_{2}((a, b) ; \mathbb{C}) \rightarrow L_{2}((a, b) ; \mathbb{C})$ defined by $(A x)(t)=i x(t)$. Prove that A is a linear, bounded, normal operator.

