FUNCTIONAL ANALYSIS IN APPLIED MATHEMATICS

AND ENGINEERING

Test of 25 November 2009

Duration: approx. 60 min.

Family and first name:			
Matricola:			
			-
	$\mathbf{CFU}_{:}$		

Exercise 1 [only for 9 CFU]

Consider the function $f:[0,1]\to\mathbb{R}$ defined by:

$$f(x) = \begin{cases} 3 & \text{if } x = \frac{2n}{n^2 + 1} \\ 1 & \text{otherwise,} \end{cases}$$

where $n \in \mathbb{N}$.

- 1. Prove that f is measurable (explain your answer).
- 2. Evaluate $\int_0^1 f(x)dx$ (explain your answer).

Exercise 2 [6 and 9 CFU]

For any $1 , let <math>\{x^k\} \subset \ell_p$ be the sequence defined by:

$$x^k = (0, \dots, 0, \underbrace{1}_{k\text{-th place}}, 0, 0, \dots).$$

Prove that $x_k \rightharpoonup 0$ (weakly) in ℓ_p , but not strongly in ℓ_p .

Exercise 3 [6 and 9 CFU]

Describe the notions of Gateaux and Fréchet derivatives in Banach spaces.

Exercise 4 [only for 9 CFU]

In $L_2(-1,1)$, find the distance between $x(t)=t^2$ and the subspace

$$S = Span \left\{ 1, t \right\}.$$