Functional analysis in applied mathematics
 AND ENGINEERING

Test of 25 November 2009
Duration: approx. 60 min .

Family and first name: \qquad
Matricola: \qquad
CFU: \qquad

Exercise 1 [only for 9 CFU]

Consider the function $f:[0,1] \rightarrow \mathbb{R}$ defined by:

$$
f(x)= \begin{cases}3 & \text { if } x=\frac{2 n}{n^{2}+1} \\ 1 & \text { otherwise, }\end{cases}
$$

where $n \in \mathbb{N}$.

1. Prove that f is measurable (explain your answer).
2. Evaluate $\int_{0}^{1} f(x) d x$ (explain your answer).

Exercise 2 [6 and 9 CFU]

For any $1<p<+\infty$, let $\left\{x^{k}\right\} \subset \ell_{p}$ be the sequence defined by:

$$
x^{k}=(0, \ldots, 0, \underbrace{1}_{k-\text { th place }}, 0,0, \ldots) .
$$

Prove that $x_{k} \rightharpoonup 0$ (weakly) in ℓ_{p}, but not strongly in ℓ_{p}.

Exercise 3 [6 and 9 CFU]

Describe the notions of Gateaux and Fréchet derivatives in Banach spaces.

Exercise 4 [only for 9 CFU]

In $L_{2}(-1,1)$, find the distance between $x(t)=t^{2}$ and the subspace

$$
S=\operatorname{Span}\{1, t\} .
$$

