FUNCTIONAL ANALYSIS IN APPLIED MATHEMATICS

AND ENGINEERING

Test of 24 February 2010

Duration: approx. 60 min.

CFU: _____

Exercise 1 [only for 9 CFU]

Using contraction mapping theorem, prove existence and uniqueness of solutions $f \in C([a, b])$ for the following Fredholm integral equation:

$$f(x) = \lambda \int_{a}^{b} k(x, y) f(y) dy,$$

where $k \in C([a, b] \times [a, b])$ and $\lambda \in \mathbb{R}$ is sufficiently small.

Exercise 2 [6 and 9 CFU]

Prove that $L^2([-1,1]) \subset L^1([-1,1])$. Hint: use in an appropriate way the Schwarz inequality.

Exercise 3 [only for 9 CFU]

Evaluate $D\chi_{[-1,1]}(x)$ in the sense of distributions, where $\chi_{[-1,1]}(x)$ denotes the characteristic function of the interval [-1,1]:

$$\chi_{[-1,1]}(x) = \begin{cases} 1, & \text{if } x \in [-1,1], \\ 0, & \text{otherwise.} \end{cases}$$

Exercise 4 [6 and 9 CFU]

Give the definition of Hilbert spaces and introduce the notion of Fourier series in Hilbert spaces.