Analisi Matematica 2, Edile-Architett	cura — A. Durata della prova: 2 ore	20.07.12
Cognome:	Nome:	
Matricola:	Corso di Laurea:	
Domanda 1 [3 punti]		
Definire i concetti di punto critico, punto $f: \mathbb{R}^2 \to \mathbb{R}$.	di massimo locale, minimo locale, sella per	una funzione
Risposta		
Domanda 2 [2 punti]		
Enunciare il teorema che fornisce condizion funzione $f: \mathbb{R}^2 \to \mathbb{R}$.	ni sufficienti per la classificazione dei punti d	critici di una
Risposta		

Esercizio 1 [7 punti]

Studiare il seguente problema di Cauchy:		$y' = 6t^2\sqrt{4 - y}$ $y(0) = 2.$
--	--	-------------------------------------

Risoluzione	

Esercizio 2 [7 punti]	
Verificare la formula di Gauss–Green per l'insieme $\Omega=\langle$	$\left\{ (x,y) \in \mathbb{R}^2 : \left(x - \sqrt[4]{2} \right)^4 - 2 \le y \le 2 - \left(x - \sqrt[4]{2} \right)^4 \right\}$

Verificare la formula di Gauss–Green per l'insieme $\Omega = \left\{ (x,y) \in \mathbb{R}^2 : \left(x - \sqrt[4]{2} \right)^4 - 2 \le y \le 2 - \left(x - \sqrt[4]{2} \right)^4 \right\}$
e il campo vettoriale $F(x,y)=(y^2,1)$.
Risoluzione

Esercizio	3	7	punti
-----------	---	---	-------

Sia data la funzione $f(x) = \begin{cases} 2-2x, & \text{per } 0 < x \leq \frac{1}{2}, \\ 1, & \text{per } \frac{1}{2} < x \leq 1. \end{cases}$ Estendere f pari a [-1,0] e quindi 2-periodica. Determinare la serie di Fourier della funzione così

ottenuta e studiarne la convergenza puntuale e uniforme.

Risoluzione	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_