Analisi Numerica e Complementi di Matematica

$Prova\ di\ variabile\ complessa$

17 febbraio 2014

Durata della prova: 90 minuti

Cognome e nome: Matricola:
Esercizio 1 [12 punti]
Mediante le tecniche dell'analisi complessa, calcolare
$\int_0^{2\pi} \frac{5\cos(t)}{5 - 2\cos(t)} dt.$
Giustificare opportunamente tutte le affermazioni.
Esercizio 2 [12 punti]
Utilizzando la trasformata di Laplace, risolvere il problema di Cauchy:
$\begin{cases} X' = Y - 3X \\ Y' = Y - 4X \\ X(0) = Y(0) = 1. \end{cases}$
Nel calcolo dell'antitrasformata, utilizzare la formula di antitrasformazione, opportunamente commentata.
Domanda [4 punti]
Scrivere la definizione di funzione olomorfa ed enunciare le formule di Cauchy–Riemann, fornendone un cenno di dimostrazione.
Risposta

Analisi Numerica e Complementi di Matematica

Prova di analisi numerica

17 febbraio 2014

Durata della prova: 90 minuti

Cognome e nome:	
Matricola:	

Sia dato il sistema lineare $A_p x = b_p$:

$$\begin{pmatrix} 3 & -9 & p & 0 \\ -9 & 0 & 0 & 0 \\ 0 & 3 & -9 & -1 \\ 0 & 0 & 3 & -9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 6 - p \\ 9 \\ 7 \\ 6 \end{pmatrix}, \ p \in \mathbb{R}.$$

- 1. Si spieghi perché non è possibile applicare il metodo di Jacobi al sistema $A_p x = b_p$.
- 2. Dopo aver scambiato la prima riga con la seconda di A_p , trovare dei valori di p tali che il metodo di Jacobi, applicato al nuovo sistema permutato $\widetilde{A}_p x = \widetilde{b}_p$, sia convergente.
- 3. Si costruisca un file Matlab: Cognome_studente_matricola.m che, una volta avviato:
 - faccia visualizzare una schermata con i dati personali ed una breve presentazione del problema;
 - contenga le istruzioni relative alla costruzione della matrice A_p con p = -1 mediante i comandi Matlab diag, ones ed eye;
 - risolva il sistema lineare $\widetilde{A}_p x = \widetilde{b}_p$ con p = -1 utilizzando il metodo di Jacobi con tolleranza 10^{-7} , nmax = 40 e $x_0 = (0, 0, 0, -1)^T$ (si costruisca x_0 con una modalità compatta per i vettori);
 - faccia visualizzare una tabella riassuntiva che riporti:

 intestazione: iter soluzione residuo
 dove iter è il vettore delle iterazioni eseguite dal metodo, soluzione è la matrice contenente, su ogni riga, la soluzione approssimata corrispondente e residuo è il vettore dei residui in norma, ad ogni iterazione del metodo.
- 4. Si commentino i risultati.