Complex Analysis
July 7, 2016
Duration 120 min.
Cognome e nome: \qquad
Matricola: \qquad
e-mail: \qquad

Exercise 1 [8 points]

Determine the number of zeros of the polynomial $P(z)=4 z^{2}-z^{5}+1$ in the region $C=\{z \in \mathbb{C}: 1<|z|<2\}$. Justify all answers.

Exercise $2{ }_{[6 \text { points] }}$

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function such that $\operatorname{Re} f(z)>2$. Prove that f is a constant function. Justify all answers.

Exercise 3 [9 points]

Compute the following integral

$$
\int_{\gamma_{R}}(z-2)^{2}\left(e^{\frac{2}{z-2}}+\frac{\sin (z)}{(z(z-1))^{2}}\right) d z
$$

where $\gamma_{R}=\{z \in \mathbb{C}:|z|=R ; R>0, R \neq 1,2\}$ oriented in the positive sense.
Justify all answers.

Exercise 4 [9 points]
Using Laplace transform, solve the following Cauchy problem

$$
y^{\prime \prime \prime}+4 y^{\prime}=1 ; \quad y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=-1 .
$$

Justify all answers.

