Complex analysis

November 7, 2016
Duration 120 min.
Cognome e nome: \qquad
Matricola: \qquad
e-mail: \qquad

Exercise 1 [8 points]

Let consider $P(z)=z^{4}-6 z+3$. Find the number of zeros (counted with their multiplicity) of $P(z)$ contained in the annulus $1 \leq|z|<2$.
Justify all answers.

Exercise 2 [8 points]

Given $\gamma \in \mathbb{R}$, compute

$$
\int_{-\infty}^{+\infty} \frac{\mathrm{e}^{i \gamma x}}{\cosh x} d x
$$

We suggest to use the rectangular path joining the points $(R, 0),(R, \pi),(-R, \pi),(-R, 0)$.
Justify all answers.

Exercise 3 [8 points]

Find a conformal transformation which maps the disk $A=\{z \in \mathbb{C}:|z-2 i|<1\}$ into the halfspace $B=\{z \in \mathbb{C}: \operatorname{Im} z<\operatorname{Re} z\}$. Do not use known formulas/transformations, but compute them explicitly and draw the sets A and B.
Justify all answers.

Exercise $4{ }_{\text {[8 points] }}$

Using Laplace transform, solve the following Cauchy problem

$$
\left\{\begin{array}{l}
x^{\prime}=3 x-4 y \\
y^{\prime}=2 x-3 y
\end{array} \quad ; \quad x(0)=1, y(0)=-1\right.
$$

Justify all answers.

