Complex analysis

January 24, 2017
Duration 120 min
Cognome e nome: \qquad
Matricola: \qquad
e-mail: \qquad

Exercise 1 [8 points]

Classify the isolated singularities of the following functions and compute the corresponding residues:

1) $f(z)=\frac{1}{\cos (z)-1}-\frac{2}{z^{2}}$;
2) $f(z)=\sin \left(\frac{z+2}{z}\right)$.

Justify all answers.

Exercise $2{ }_{[6 \text { points] }}$

Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function such that $\operatorname{Im} f(z)>1$. Prove that f is a constant function. Justify all answers.

Exercise 3 [8 points]

Find a conformal transformation which maps the set $A=\{z \in \mathbb{C}: \operatorname{Re} z<0, \operatorname{Im} z>0\}$ into the set $B=\{z \in \mathbb{C}:|z-1|<2\}$.
Do not use known formulas/transformations, but compute them explicitly and draw all needed sets. Justify all answers.

Exercise $4{ }_{[10 \text { points] }}$
Let

$$
f(x)=\frac{1}{1+x^{2}} \quad \text { and } \quad g(x)=\frac{\sin x}{x}
$$

Compute their Fourier transform $\hat{f}(k), \hat{g}(k)$ and then compute

$$
\int_{-\infty}^{+\infty} \frac{\sin x}{x\left(1+x^{2}\right)}
$$

Do not use known formulas/transformations, but compute them explicitly.
Justify all answers.

