Complex analysis

February 10, 2017
Duration 120 min.
Cognome e nome: \qquad
Matricola: \qquad
e-mail: \qquad

Exercise 1 [8 points]
Find the number of solutions (counted with multiplicity) of the equation $\mathrm{e}^{z}=4 z^{2}-1$ such that $|z|<1$. Justify all answers.

Exercise $2{ }_{\text {[8 points] }}$

Using complex analysis techniques, compute the following integral:

$$
\int_{-\infty}^{+\infty} \frac{\sin x}{x^{2}+2 x+2} d x
$$

Justify all answers.

Exercise $3{ }_{[8}$ points]

Consider the real valued function $u(x, y)=x \cos x\left(e^{y}+e^{-y}\right)+y \sin x\left(e^{y}-e^{-y}\right)$. Verify that u is the real part of an analytic function and then find the corresponding imaginary part $v(x, y)$. Finally, write down the complete function $u(x, y)+i v(x, y)$ as a function $f(z)$ of the complex variable $z=x+i y$. Justify all answers.

Exercise $4{ }_{\text {[8 points] }}$

Using Laplace transform, solve the following Cauchy problem:

$$
y^{\prime \prime \prime}+y=2 e^{-t}, \quad y(0)=1, y^{\prime}(0)=2, y^{\prime \prime}(0)=-3 .
$$

Justify all answers.

