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Chapter 1

Signals and Systems

1.1 INTRODUCTION

The concept and theory of signals and systems are needed in almost all electrical
engineering fields and in many other engineering and scientific disciplines as well. In this
chapter we introduce the mathematical description and representation of signals and
systems and their classifications. We also define several important basic signals essential to
our studies.

1.2 SIGNALS AND CLASSIFICATION OF SIGNALS

A signal is a function representing a physical quantity or variable, and typically it
contains information about the behavior or nature of the phenomenon. For instance, in a
RC circuit the signal may represent the voltage across the capacitor or the current flowing
in the resistor. Mathematically, a signal is represented as a function of an independent
variable . Usually ¢ represents time. Thus, a signal is denoted by x(¢).

A. Continuous-Time and Discrete-Time Signals:

A signal x(t) is a continuous-time signal if ¢ is a continuous variable. If ¢ is a discrete
variable, that is, x(¢) is defined at discrete times, then x(¢) is a discrete-time signal. Since a
discrete-time signal is defined at discrete times, a discrete-time signal is often identified as
a sequence of numbers, denoted by {x,} or x[n], where n =integer. Illustrations of a
continuous-time signal x(¢) and of a discrete-time signal x[n] are shown in Fig. 1-1.

x(1) x[n]

\\/ i

0 t 5-4-3-2-10123435°%6 n

(a) (b)
Fig. 1-1 Graphical representation of (@) continuous-time and (b) discrete-time signals.

A discrete-time signal x[n] may represent a phenomenon for which the independent
variable is inherently discrete. For instance, the daily closing stock market average is by its
nature a signal that evolves at discrete points in time (that is, at the close of each day). On
the other hand a discrete-time signal x[n] may be obtained by sampling a continuous-time

1



2 SIGNALS AND SYSTEMS [CHAP. 1

signal x(¢) such as
x(ty), x(t,),..., x(t,),...
or in a shorter form as
x[0], x[1],..., x[n],...

or Xy Xpseroy Xysonn
where we understand that

x,=x[n] =x(1,)
and x,’s are called samples and the time interval between them is called the sampling
interval. When the sampling intervals are equal (uniform sampling), then

x, =x[n] =x(nT))

where the constant 7 is the sampling interval.
A discrete-time signal x[n] can be defined in two ways:

1. We can specify a rule for calculating the nth value of the sequence. For example,

1\
x[n] =x,= (2) nz0

0 n<0

or ()= {154 (3) )

2. We can also explicitly list the values of the sequence. For example, the sequence
shown in Fig. 1-1(b) can be written as

{x,}) =(...,0,0,1,2,2,1,0,1,0,2,0,0,...}
or {x,)=(1,2,2,1,0,1,0,2)

We use the arrow to denote the n =0 term. We shall use the convention that if no
arrow is indicated, then the first term corresponds to n = 0 and all the values of the
sequence are zero for n <0.

The sum and product of two sequences are defined as follows:
{c.} ={a,} +{b,} >¢c,=a,+b,
{C’l} = {all}{bﬂ} - C’l = anb"

{c,} =afa,} —c,=aa, « = constant

B. Analog and Digital Signals:

If a continuous-time signal x(¢) can take on any value in the continuous interval (a, b),
where a may be —« and b may be +, then the continuous-time signal x(¢) is called an
analog signal. If a discrete-time signal x[n] can take on only a finite number of distinct
values, then we call this signal a digital signal.

C. Real and Complex Signals:

A signal x(¢) is a real signal if its value is a real number, and a signal x(¢) is a complex
signal if its value is a complex number. A general complex signal x(¢) is a function of the

CHAP. 1] SIGNALS AND SYSTEMS 3

form
x(t) =x,(1) +jx,(1) (1.1)

where x(¢) and x,(¢) are real signals and j=v—1.
Note that in Eq. (1.1) t represents either a continuous or a discrete variable.

D. Deterministic and Random Signals:

Deterministic signals are those signals whose values are completely specified for any
given time. Thus, a deterministic signal can be modeled by a known function of time ¢.
Random signals are those signals that take random values at any given time and must be
characterized statistically. Random signals will not be discussed in this text.

E. Even and Odd Signals:

A signal x(¢) or x[n] is referred to as an even signal if

x(=1)=x(1)

1.2
x(=n] =x[n] 12
A signal x(¢) or x[n] is referred to as an odd signal if
x(—t)=—x(t
(—1)= =x(0) )
x[—n] = —x[n]
Examples of even and odd signals are shown in Fig. 1-2.
x(1) x{n]
[
0 o 3200123 ¢ "
(a) b)
x(1) x[n)
. -3 _2 -l l l l & -
0 ' -4 l l l 123 4 n

© (@)
Fig. 1-2 Examples of even signals (a and b) and odd signals (¢ and d).
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Any signal x(¢) or x[n] can be expressed as a sum of two signals, one of which is even
and one of which is odd. That is,

x(r) =x,(t) +x,(t)

1.
x{n] =x,(n] +x,[n] 09
where x,(t)=3{x(t) +x(-1)) even part of x(t) /s
x,[n] = 3{x[n] +x[—n]} even part of x[n] (19)
x,(t) = 3{x(t) =x(—1)} odd part of x(t) (16)
x,[n] = 3{x[n] —x[—n]} odd part of x[n]

Note that the product of two even signals or of two odd signals is an even signal and
that the product of an even signal and an odd signal is an odd signal (Prob. 1.7).

F. Periodic and Nonperiodic Signals:

A continuous-time signal x(¢) is said to be periodic with period T if there is a positive
nonzero value of T for which

x(t+T)=x(1) all ¢ (1.7)

An example of such a signal is given in Fig. 1-3(a). From Eq. (1.7) or Fig. 1-3(a) it follows
that

x(t+mT)=x(t) (1.8)

for all + and any integer m. The fundamental period T, of x(t) is the smallest positive
value of T for which Eq. (1.7) holds. Note that this definition does not work for a constant

x(1)

-2T -T 0 T 2T

(a)

xn]

Aimiminin

2N -N 0 N

[ ]

(b)
Fig. 1-3 Examples of periodic signals.
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signal x(¢) (known as a dc signal). For a constant signal x(¢) the fundamental period is
undefined since x(t) is periodic for any choice of T (and so there is no smallest positive
value). Any continuous-time signal which is not periodic is called a nonperiodic (or
aperiodic) signal.

Periodic discrete-time signals are defined analogously. A sequence (discrete-time
signal) x[n) is periodic with period N if there is a positive integer N for which

x[n+N]=x[n] all n (1.9)

An example of such a sequence is given in Fig. 1-3(b). From Eq. (1.9) and Fig. 1-3(b) it
follows that

x[n+mN] =x[n] (1.10)

for all n and any integer m. The fundamental period N, of x[n]is the smallest positive
integer N for which Eq. (1.9) holds. Any sequence which is not periodic is called a
nonperiodic (or aperiodic) sequence.

Note that a sequence obtained by uniform sampling of a periodic continuous-time
signal may not be periodic (Probs. 1.12 and 1.13). Note also that the sum of two
continuous-time periodic signals may not be periodic but that the sum of two periodic
sequences is always periodic (Probs. 1.14 and 1.15).

G. Energy and Power Signals:

Consider v(t) to be the voltage across a resistor R producing a current i(t). The
instantaneous power p(t) per ohm is defined as

v(t)i(t
p(ry = 2Dy (1.11)
R
Total energy E and average power P on a per-ohm basis are
E=[ i*t)dt joules (1.12)
R 22
P=lim — i?(t)dt watts (1.13)

T-= T/ 1,

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) is
defined as

E=fi°|x(t)|2 dr (1.14)

The normalized average power P of x(t) is defined as

-

1 .72 2
P= lim =
Jim Tf_T/zlx(t)| dt (1.15)

Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is
defined as

)

E= Y |x[n] (1.16)

n=-—o
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The normalized average power P of x[n]is defined as
N

L lx[n]f? (1.17)

=N

P= lim
No=2N+1

Based on definitions (1.14) to (1.17), the following classes of signals are defined:

1. x(¢) (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E < o, and
so P=0.

2. x(t) (or x[n]) is said to be a power signal (or sequence) if and only if 0 < P <, thus
implying that E = .

3. Signals that satisfy neither property are referred to as neither energy signals nor power
signals.

Note that a periodic signal is a power signal if its energy content per period is finite, and
then the average power of this signal need only be calculated over a period (Prob. 1.18).

1.3 BASIC CONTINUOUS-TIME SIGNALS
A. The Unit Step Function:

The unit step function u(t), also known as the Heaviside unit function, is defined as

u(t) = {(’) ;zg (1.18)

which is shown in Fig. 1-4(a). Note that it is discontinuous at ¢t = 0 and that the value at
t = 0 is undefined. Similarly, the shifted unit step function u(t —t,) is defined as

1 1>t
u(t_t0)={0 t<tg (119)

which is shown in Fig. 1-4(b).

u(t) u(t - 1)

0

0 t

(@) (b)
Fig. 1-4 (a) Unit step function; (b) shifted unit step function.

B. The Unit Impulse Function:

The unit impulse function 8(¢), also known as the Dirac delta function, plays a central
role in system analysis. Traditionally, 8(¢) is often defined as the limit of a suitably chosen
conventional function having unity area over an infinitesimal time interval as shown in

CHAP. 1] SIGNALS AND SYSTEMS 7
SRER é
e—0
—~ e |- .
Fig. 1.5

Fig. 1-5 and possesses the following properties:

0 t+0
5(t)={°° t=0

f_ 8(t)dt=1

But an ordinary function which is everywhere 0 except at a single point must have the
integral 0 (in the Riemann integral sense). Thus, 8(¢) cannot be an ordinary function and
mathematically it is defined by

f_:(b(t)s(z) dt = $(0) (1.20)

where ¢(¢) is any regular function continuous at ¢ = 0.
An alternative definition of 8(¢) is given by

b #(0) a<0<b
J #()s(t)dr = {0 a<b<0 or 0<a<b (1.21)
4 undefined a=0 or b=0
Note that Eq. (1.20) or (1.21) is a symbolic expression and should not be considered an
ordinary Riemann integral. In this sense, 8(¢) is often called a generalized function and
(1) is known as a testing function. A different class of testing functions will define a

different generalized function (Prob. 1.24). Similarly, the delayed delta function (¢ —t,) is
defined by

| 6(008( — tg) dt = (1) (1.22)

where ¢(t) is any regular function continuous at ¢ = t,,. For convenience, §(¢) and (¢ — ¢)
are depicted graphically as shown in Fig. 1-6.
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8(1) 8(r - 1,)

0 t 0 ty

@ &)
Fig. 1-6 {(a) Unit impulse function; (b) shifted unit impulse function.

Some additional properties of 8(¢) are

6(at)=1(17|6(t) (1.23)
8(—t)=28(1) (1.24)
x(t)8(t) =x(0)8(¢) (1.25)
if x(¢) is continuous at ¢ = 0.
x(1)8(t —ty) =x(t,)8(t — 1) (1.26)

if x(¢) is continuous at 1 =1,.
Using Egs. (1.22) and (1.24), any continuous-time signal x(¢) can be expressed as

x(1) =f;x(f)a(z —1)dr (1.27)

Generalized Derivatives:

If g(¢) is a generalized function, its nth generalized derivative g"(¢) =d"g(t)/dt" is
defined by the following relation:

| sgm(ydi=(=1)" [ $m(0)g()at (1.28)

where (1) is a testing function which can be differentiated an arbitrary number of times
and vanishes outside some fixed interval and ¢"(¢) is the nth derivative of ¢(¢). Thus, by
Eqgs. (1.28) and (1.20) the derivative of 8(¢) can be defined as

[ e ydi= -4 (1.29)

where ¢(7) is a testing function which is continuous at ¢ =0 and vanishes outside some
fixed interval and ¢'(0) = d(t)/dt|,-o. Using Eq. (1.28), the derivative of u(f) can be
shown to be 8(7) (Prob. 1.28); that is,

du(t)

S(1)y=u'(t)= 7

(1.30)
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Then the unit step function u(¢) can be expressed as

u(r) =f_’wa(r)df (1.31)

Note that the unit step function u(t) is discontinuous at ¢ = 0; therefore, the derivative of
u(t) as shown in Eq. (1.30) is not the derivative of a function in the ordinary sense and
should be considered a generalized derivative in the sense of a generalized function. From
Eq. (1.31) we see that u(¢) is undefined at ¢t = 0 and

_J1 t>0
”(’)‘{0 t<0

by Eq. (1.21) with ¢(¢) = 1. This result is consistent with the definition (1.18) of u(t).

C. Complex Exponential Signals:
The complex exponential signal
(1.32)

AN x()

&)
Fig. 1-7 (a) Exponentially increasing sinusoidal signal; (b) exponentially decreasing sinusoidal signal.
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is an important example of a complex signal. Using Euler’s formula, this signal can be
defined as

x(t) = e/®' = cos Wyl +jsin wyt (1.33)

Thus, x(¢) is a complex signal whose real part is cos w,t and imaginary part is sin w,f. An
important property of the complex exponential signal x(¢) in Eq. (1.32) is that it is
periodic. The fundamental period T, of x(z) is given by (Prob. 1.9)

2 !
Ty=— (1.34)

Wy

Note that x(¢) is periodic for any value of w.

General Complex Exponential Signals:
Let s =0 + jw be a complex number. We define x(¢) as
x(t)=e" =el7MN = e (cos wt +jsin wt) (1.35)

Then signal x(¢) in Eq. (1.35) is known as a general complex exponential signal whose real
part e”'cos wt and imaginary part e”’'sinwt are exponentially increasing (o> 0) or
decreasing (o < 0) sinusoidal signals (Fig. 1-7).

Real Exponential Signals:
Note that if s =0 (a real number), then Eq. (1.35) reduces to a real exponential signal
x(t)y=e" (1.36)

x(1)

(@)

x(1)

\

b)
Fig. 1-8 Continuous-time real exponential signals. (a) o > 0; (b) o < 0.

~yY
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As illustrated in Fig. 1-8, if o > 0, then x(¢) is a growing exponential; and if o <0, then
x(t) is a decaying exponential.

D. Sinusoidal Signals:
A continuous-time sinusoidal signal can be expressed as
x(t) =Acos(wyt +0) (1.37)

where A is the amplitude (real), w, is the radian frequency in radians per second, and 6 is
the phase angle in radians. The sinusoidal signal x(¢) is shown in Fig. 1-9, and it is periodic
with fundamental period

T i 1.38
= (1.38)

The reciprocal of the fundamental period T, is called the fundamental frequency f,:

fo= -71,— hertz (Hz) (1.39)

1]
From Egs. (1.38) and (1.39) we have
wy=27f, (1.40)

which is called the fundamental angular frequency. Using Euler’s formula, the sinusoidal
signal in Eq. (1.37) can be expressed as

Acos(wyt + 6) =A Rele/' 9} (1.41)

where “Re” denotes “real part of.” We also use the notation “Im” to denote “imaginary
part of.” Then

A lIm{e/ @ *9) = 4sin(w,t + ) (1.42)
x(1)
At To=5
A cos e}
; v
1-4

Fig. 1-9 Continuous-time sinusoidal signal.
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1.4 BASIC DISCRETE-TIME SIGNALS
A. The Unit Step Sequence:

The unit step sequence u[n] is defined as

anl={y 120 (1.43)

which is shown in Fig. 1-10(a). Note that the value of u[n] at n =0 is defined [unlike the
continuous-time step function u(¢) at r = 0] and equals unity. Similarly, the shifted unit step
sequence u[n — k] is defined as

u[n—k]=<(1) Zilz (1.44)

which is shown in Fig. 1-10(b).

uln)

[ ]
=X J
-

(a) ®)
Fig. 1-10 (a) Unit step sequence; (b) shifted unit step sequence.

B. The Unit Impulse Sequence:

The unit impulse (or unit sample) sequence 8[n] is defined as

8[n] ={(1) ;:3 (1.45)

which is shown in Fig. 1-11(a). Similarly, the shifted unit impuise (or sample) sequence
8[n — k] is defined as
o)t n=k
5(n k]—{o n-k (1.46)
which is shown in Fig. 1-11(b).

8n| dfn - k]

2-1 01 23 n 2 -1 01 k n

(a) (b)
Fig. 1-11 (a) Unit impulse (sample) sequence; (b) shifted unit impulse sequence.
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Unlike the continuous-time unit impulse function 8(z), §[n] is defined without mathe-
matical complication or difficulty. From definitions (1.45) and (1.46) it is readily seen that

x[n]8[n] =x[0]8]n] (1.47)
x[n]8[n —k] =x[k]é[n —k] (1.48)
which are the discrete-time counterparts of Eqgs. (1.25) and (1.26), respectively. From
definitions (1.43) to (1.46), 8[n] and u[n] are related by
8[n) =u[n] —u[n—1] (1.49)
uln] = i 8[k] (1.50)
k=—w

which are the discrete-time counterparts of Egs. (1.30) and (1.31), respectively.
Using definition (1.46), any sequence x[n] can be expressed as

©

x[n]= Y x[k]8[n—k] (1.51)

k= —c

which corresponds to Eq. (1.27) in the continuous-time signal case.

C. Complex Exponential Sequences:

The complex exponential sequence is of the form

x[n] = e/bn (1.52)
Again, using Euler’s formula, x[#n] can be expressed as
x[n] = e’ =cos Qyn +jsin Qyn (1.53)

Thus x[n] is a complex sequence whose real part is cos Qyn and imaginary part is sin Q7.

Periodicity of e/™";
In order for e/™" to be periodic with period N (> 0), 2, must satisfy the following
condition (Prob. 1.11):
O _m itive i 1.54
=N m = positive integer (1.54)
Thus the sequence e/%" is not periodic for any value of Q,. It is periodic only if Q,/27 is
a rational number. Note that this property is quite different from the property that the
continuous-time signal e’/“’ is periodic for any value of w, Thus, if Q, satisfies the
periodicity condition in Eq. (1.54), Q,# 0, and N and m have no factors in common, then
the fundamental period of the sequence x[x] in Eq. (/.52) is N, given by

N 27
0=m(0—0) (1.55)

Another very important distinction between the discrete-time and continuous-time
complex exponentials is that the signals e’“* are all distinct for distinct values of w, but
that this is not the case for the signals e/®”,
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e

(@)

e

(b)

IIIIII f
]||[11

lllllll‘
1111

Fig. 1-12 Real exponential sequences. (a) a> 1; ()1 >a>0;(c)0>a> - 1;;(d)a < —1.
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Consider the complex exponential sequence with frequency (Q, + 27k), where & is an
integer:
ej(ﬂa+2-rrk)n = ejﬂonejZ-rrkn = ejﬂon (156)
since e/2™" =1, From Eq. (1.56) we see that the complex exponential sequence at
frequency ), is the same as that at frequencies (Qy+27), (Q,+47), and so on.
Therefore, in dealing with discrete-time exponentials, we need only consider an interval of
length 27 in which to choose . Usually, we will use the interval 0 < Q, <27 or the
interval —m < Q, <.

General Complex Exponential Sequences:
The most general complex exponential sequence is often defined as
x[n] =Ca” (1.57)

where C and « are in general complex numbers. Note that Eq. (1.52) is the special case of
Eq. (1.57) with C=1 and a = e/%,

x[n) = cos(g n)

x[n]= cos(%)

“l1 llg 6 ill[“ll :
I[lll ,,) 1[“1

Fig. 1-13  Sinusoidal sequences. (a) x[n] = cos(mn /6); (b) x[n] = cos(n/2).

o
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Real Exponential Sequences:

If C and a in Eq. (1.57) are both real, then x[n] is a real exponential sequence. Four
distinct cases can be identified: a > 1,0<a <1, —1 <a <0, and a < —1. These four real
exponential sequences are shown in Fig. 1-12. Note that if a =1, x[n] is a constant
sequence, whereas if « = —1, x[n] alternates in value between +C and —C.

D. Sinusoidal Sequences:

A sinusoidal sequence can be expressed as
x[n] =Acos(Qyn +6) (1.58)

If n is dimensionless, then both Q, and 6 have units of radians. Two examples of
sinusoidal sequences are shown in Fig. 1-13. As before, the sinusoidal sequence in Eq.
(1.58) can be expressed as

Acos(Qyn + 8) =A Re{e/ o +9) (1.59)

As we observed in the case of the complex exponential sequence in Eq. (1.52), the same
observations [Eqs. (1.54) and (1.56)] also hold for sinusoidal sequences. For instance, the
sequence in Fig. 1-13(a) is periodic with fundamental period 12, but the sequence in Fig.
1-13(b) is not periodic.

1.5 SYSTEMS AND CLASSIFICATION OF SYSTEMS
A. System Representation:

A system is a mathematical model of a physical process that relates the input (or
excitation) signal to the output (or response) signal.

Let x and y be the input and output signals, respectively, of a system. Then the system
is viewed as a transformation (or mapping) of x into y. This transformation is represented
by the mathematical notation

y=Tx (1.60)

where T is the operator representing some well-defined rule by which x is transformed
into y. Relationship (1.60) is depicted as shown in Fig. 1-14(a). Multiple input and/or
output signals are possible as shown in Fig. 1-14(b). We will restrict our attention for the
most part in this text to the single-input, single-output case.

X Vi
" s y — e
ystem . .
]| T bt . System .
X, Y
(a) (b

Fig. 1-14 System with single or multiple input and output signals.
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B. Continuous-Time and Discrete-Time Systems:

If the input and output signals x and y are continuous-time signals, then the system is
called a continuous-time system [Fig. 1-15(a)]. If the input and output signals are discrete-time
signals or sequences, then the system is called a discrete-time svstem [Fig. 1-15(b)].

x(n Syst ¥ x{n] S vin]
> ysTem ’ § yf]{em
(a) »

Fig. 1-15 (a) Continuous-time system; (b) discrete-time system.

C. Systems with Memory and without Memory

A system is said to be memoryless if the output at any time depends on only the input
at that same time. Otherwise, the system is said to have memory. An example of a
memoryless system is a resistor R with the input x(r) taken as the current and the voltage
taken as the output y(¢). The input-output relationship (Ohm’s law) of a resistor is

y(1) = Re(1) (1.61)

An example of a system with memory is a capacitor C with the current as the input x(r)
and the voltage as the output y(¢); then

1
y(O) =G [ x(ndr (1.62)

A second example of a system with memory is a discrete-time system whose input and
output sequences are related by

n

yinl= L x[k] (1.63)

k= —x

D. Causal and Noncausal Systems:

A system is called causal if its output y(¢) at an arbitrary time ¢ =1, depends on only
the input x(¢) for ¢+ < t,. That is, the output of a causal system at the present time depends
on only the present and /or past values of the input, not on its future values. Thus, in a
causal system, it is not possible to obtain an output before an input is applied to the
system. A system is called noncausal if it is not causal. Examples of noncausal systems are

y(t)=x(t+1) (1.64)
y[n] =x[-n] (1.65)

Note that all memoryless systems are causal, but not vice versa.
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E. Linear Systems and Nonlinear Systems:

If the operator T in Eq. (1.60) satisfies the following two conditions, then T is called a
linear operator and the system represented by a linear operator T is called a linear system:

1. Additivity:
Given that Tx, =y, and Tx, =y,, then
T{x, +x) =y, +y, (1.66)
for any signals x, and x,.

2. Homogeneity (or Scaling):

T{ax}=ay (1.67)

for any signals x and any scalar a.
Any system that does not satisfy Eq. (1.66) and/or Eq. (1.67) is classified as a
nonlinear system. Equations (/.66) and (1.67) can be combined into a single condition as
T{a,x, + o, x,} =a,y, + 2,y (1.68)

where a, and «, are arbitrary scalars. Equation (1.68) is known as the superposition

property. Examples of linear systems are the resistor [Eq. (1.61)] and the capacitor [Eq.
(1.62)). Examples of nonlinear systems are

y=x’ (1.69)

y = COS X (1.70)

Note that a consequence of the homogeneity (or scaling) property [Eq. (1.67)] of linear

systems is that a zero input yields a zero output. This follows readily by setting a = 0 in Eq.
(1.67). This is another important property of linear systems.

F. Time-Invariant and Time-Varying Systems:

A system is called time-invariant if a time shift (delay or advance) in the input signal
causes the same time shift in the output signal. Thus, for a continuous-time system, the
system is time-invariant if

T{x(t — 7)) =y(t — 1) (1.71)
for any real value of 7. For a discrete-time system, the system is time-invariant (or
shift-invariant) if

T{x[n - k]}=y[n—k] (1.72)
for any integer k. A system which does not satisfy Eq. (/.71) (continuous-time system) or
Eq. (1.72) (discrete-time system) is called a time-varying system. To check a system for

time-invariance, we can compare the shifted output with the output produced by the
shifted input (Probs. 1.33 to 1.39).

G. Linear Time-Invariant Systems

If the system is linear and also time-invariant, then it is called a linear time-invariant
(LTI) system.
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H. Stable Systems:

A system is bounded-input /bounded-output (BIBO) stable if for any bounded input x
defined by

lx| <k, (1.73)
the corresponding output y is also bounded defined by
lyl<k, (1.74)

where k, and k, are finite real constants. Note that there are many other definitions of
stability. (See Chap. 7.)

I. Feedback Systems:

A special class of systems of great importance consists of systems having feedback. In a
feedback system, the output signal is fed back and added to the input to the system as
shown in Fig. 1-16.

x() yn
System ;

Fig. 1-16 Feedback system.

Solved Problems
SIGNALS AND CLASSIFICATION OF SIGNALS
1.1. A continuous-time signal x(¢) is shown in Fig. 1-17. Sketch and label each of the

following signals.

(a) x(1 = 2); (b) x(20); () x(t/2); (d) x(—1)

x(1)

[ " AT N >

-2-101 2 3 45 t
Fig. 1-17




20 SIGNALS AND SYSTEMS [CHAP. 1
(a) x(t—2)is sketched in Fig. 1-18(a).
(b) x(2t) is sketched in Fig. 1-18(b).
(¢) x(t/2)is sketched in Fig. 1-18(c).
(d) x(—1)is sketched in Fig. 1-18(d).
x(t-2) x(21)
3 3
L1 1 A L1 > L1 1 L -
101 23 45 6 7 ' 2-101 2 3 v
(a) (b)
x(1/2) x(-1)
3 3

R . o N T W T A —— L1 01 1 N
-0 1 23 456 789 !

1 1

S5-4-32-101 2

-~y

(e) (d)
Fig. 1-18

1.2. A discrete-time signal x[n] is shown in Fig. 1-19. Sketch and label each of the
following signals.

(a) x[n —2); (b) x[2n]; (¢) x[—n); (d) x[—n + 2]

x{n]

-1 01 2 3 405 n
Fig. 1-19
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(a) x[n— 2] is sketched in Fig. 1-20(a).
(b) x[2n] is sketched in Fig. 1-20(b).

(c¢) x[—n]is sketched in Fig. 1-20(c).
(d) x[—n+ 2] is sketched in Fig. 1-20(d).

x{n-2) x[2n)
3 3 I
6 1 2

w @
<
=y

0123 4567 n
(a) )
x[-n} x[-n+2)
3 3
5-4-32-10 1 n 3-2-1 01 2 n
(c) )
Fig. 1-20

Given the continuous-time signal specified by

x(t) = {(l)—ltl

determine the resultant discrete-time sequence obtained by uniform sampling of x(¢)
with a sampling interval of (a) 0.25 s, () 0.5 s, and (c) 1.0 s.

-1<1<1
otherwise

It is easier to take the graphical approach for this problem. The signal x(¢) is plotted in
Fig. 1-21(a). Figures 1-21(b) to (d) give plots of the resultant sampled sequences obtained for
the three specified sampling intervals.

(a) T,=0.25s. From Fig. 1-21(b) we obtain
x[n]=1{...,0,0.25,0.5,0.75,1,0.75,0.5,0.25,0, ...}

!

(b) T,=05s. From Fig. 1-21(c) we obtain
x[n]=(...,0,05,1,05,0,...}
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x(1) x|n] = x(n/4)
! 1
I 0 ! r 432101 234 T
(@) (b)
x[n] = x(n/2) x[n] = x(n)
14 ]
2 a4 0 1 2 n it 0 1 n
(©) ()
Fig. 1-21

(¢) T,=1s. From Fig. 1-21(d) we obtain

x[n]=1{(...,0,1,0,...} = 8[n]

1.4. Using the discrete-time signals x,[n] and x,[n] shown in Fig. 1-22, represent each of

the following signals by a graph and by a sequence of numbers.

(a) y,inl=x[n]+x,[n]; (b) y,[n]=2x [n]; (c) yjln]=x [nlx,[n]

x,[n] x,[n]
3 3 F
4
I I ] -2 -1 ] 3 & -
3 'l 0 1 2 -3 4 5 6 17 n -3 l L 1 2 l 4 n

Fig. 1-22
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(a) y,[n]is sketched in Fig. 1-23(a). From Fig. 1-23(a) we obtain
winl=1{...,0,-2,-2,3,4,3,-2,0,2,2,0, ...)
1
(b) y,[n] is sketched in Fig. 1-23(b). From Fig. 1-23(b) we obtain

valnl=1{...,0,2,4,6,0,0,4,4,0, ...)

(¢) y,[n]is sketched in Fig. 1-23(¢). From Fig. 1-23(c) we obtain

yiln] = {...,0,%,4,0, )

yilnl = x,[nlx,|n]

Fig. 1-23

LS. Sketch and label the even and odd components of the signals shown in Fig. 1-24.

yilnl = x,[n] + xln] ya[nl = 2x,[n]
6 F
R
4
-
2@
L
2001234567 n
b

23

Using Egs. (1.5) and (1.6), the even and odd components of the signals shown in Fig. 1-24

are sketched in Fig. 1-25.
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x(1) x(1)
4 4
4e'051
012345 I 0 x>
(a) (b)
x{n] x{n]
4 4
l l | I['
0123456 n 1012345 n
(© (d)
Fig. 1-24
1.6. Find the even and odd components of x(¢) = e’".
Let x,(¢) and x,(t) be the even and odd components of e’, respectively.
el =x,(t) +x,(t)
From Eqgs. (1.5) and (1.6) and using Euler’s formula, we obtain
x,(t)=3(e"+e") =cost
x,(1)=3z(e"—e7)=/sint
1.7.  Show that the product of two even signals or of two odd signals is an even signal and

that the product of an even and an odd signal is an odd signal.

Let x(r)=x,(1)x,(1). If x(¢t) and x,(¢) are both even, then
x(=1) =x,(~0)xy(~1) =x,(1)xy(1) =x(1)

and x(¢) is even. If x (¢) and x,(¢) are both odd, then

x(=1) =x(=0)xy(=1) = —x()[ =x,()] =x (1) x5(1) =x(1)

and x(7) is even. If x (1) is even and x,(¢) is odd, then

(=) =x(=0)x( —1) =x ([ —x;(1)] = —x,(£) x(1) = —x(1)

and x(¢) is odd. Note that in the above proof, variable ¢ represents either a continuous or a

discrete variable.
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X0
4 bk
2 -
.5 B
> i 1 1 i 1 1 1 i -
5 0 5 t 5 t
- 2
(a)
x,(0
\
0 7 \ T
2
(b)
x,|n) x,{n]
4 4}
-
2 2 F
5432 012345 n lllll 12345 n
-2
()
x,[n] x,[n]
4 4
2 2
432a | I I I
-4-3-2-1 01234 n 1 2 3 4 n
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Show that

(a) If x(¢) and x[n] are even, then

/ x(t)dt=2[ x(¢)dr (1.75a)
—a 0
k k
Y x[n]=x[0] +2 ¥ x[n] (1.75b)
n=—k n=1
(b) If x(¢) and x[n] are odd, then
x(0)=0 and x[0] =0 (1.76)
a k
[ x(r)dr=0  and Y x[n]=0 (1.77)
—a n=—k
(a) We can write
a 0 a
dt = d d
f—ax([) t f—ax(t) t+/(;x(t) t
Letting r = —A in the first integral on the right-hand side, we get
] 1} a
dr = —A)(—dA) = —A)dA
[ x(0yde= [x(=0)(=dr) = [x(=)
Since x(t) is even, that is, x(—A) =x(A), we have
“e(=Aydr=["x(A)dr= ["x(t)dr
[x(=Ayda=[Cx(a)ydr = [x(r)
Hence,
“x(yde=["x(tydi+ ["x(rydr=2["x(1) d
f_ax(t) t fox(t) ' fﬂx(z) t fox(l) 1
Similarly,
k -1 k
Y x[nl= X x[n]+x[0]+ X x[n]
n=-k n=—-k n=1
Letting n = —m in the first term on the right-hand side, we get
-1 k
Y x[nl= ¥ x[-m]
n= -k m=1
Since x[n] is even, that is, x[ —m] =x[m], we have
k k k
L x[-m]= ¥ x[m]= ¥ x[n]
m=1 m=1 n=1
Hence,
k k k k
Y x[n]= X x[n]+x[0]+ X x[n]=x[0]+2 X x[n]
n=-k n=1 n=1 n=1
(b) Since x(t) and x[n] are odd, that is, x(—t) = —x(¢) and x[—n]= —x[n], we have

x(—0)=—x(0) and x[-0] = —x[0]
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Hence,
x(=0) =x(0) = —x(0) =x(0) =0
x[ -0} =x[0] = —x[0] =x[0] =0
Similarly,
a 0 a a a
f_ax(t)dt=f_ux(t)dt+f0x(1)dt=fox(—/\)d}\ +f0x(1)dt
= —fox(/\)d/\+f0x(t)dt= —/Ox(t)dt+f0x(r)dr=0
and
k -1 k k k
Ekx{n]= ka[n]+X[0]+ Y x[n]= ¥ x[-m]+x[0]+ X x[n]
n=— n=— n=1 m=1 n=1
k k k k
== Y alm]+x[0]+ ¥ x[n]=— ¥ x[n] +x[0] + X x[n]
m=1 n=1 n=1 n=1

1.9.

1.10.

=x[0]=0
in view of Eq. (1.76).

Show that the complex exponential signal
x(1) =el
is periodic and that its fundamental period is 27 /w,,.
By Eq. (1.7), x(1) will be periodic if
gf@oi+T) = giwot

Since

eja)ﬂ(r +7T) — ejwaejqu

we must have

eel =1 (1.78)
If wy =0, then x(¢) = 1, which is periodic for any value of T. If w, # 0, Eq. (1.78) holds if
2%
w,T=m2w  or T=m— m = positive integer

Wy

Thus, the fundamental period T, the smallest positive T, of x(¢) is given by 27 /w,.

Show that the sinusoidal signal
x(t) = cos(wgyt + 0)
is periodic and that its fundamental period is 27 /w,.
The sinusoidal signal x(1) will be periodic if
cos[wo(t + T) + 8] = cos( wot + 8)
We note that
cos|wg(t + T) + 8] = cos{wgt + 8 + w,T] = cos( wyt + 8)
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if
2
w,I'=m2m  or T=m— m = positive integer
Wo

Thus, the fundamental period T, of x(¢) is given by 27 /w,.

. Show that the complex exponential sequence

x[n] = e/om
is periodic only if Q,/2 is a rational number.

By Eq. (1.9), x[n] will be periodic if
eino(""’N) = elnu"efnuN = elnu"

or
e/t = 1 (1.79)

Equation (1.79) holds only if

QN=m2nw m = positive integer
or
—(19 T rational number (1.80)
2m N

Thus, x[n] is periodic only if Q,/2 is a rational number.

Let x(¢) be the complex exponential signal
x(t) =el

with radian frequency , and fundamental period T,=2m/w,. Consider the
discrete-time sequence x[n] obtained by uniform sampling of x(¢) with sampling
interval T,. That is,

x[n] =x(nT,) = e/“o"T:
Find the condition on the value of T, so that x[n] is periodic.
If x[n] is periodic with fundamental period N, then
elwoln +NOT, — e]“’U"TserUNUTs = glwonT;

Thus, we must have

) 2
e/l =1 = w N, T, = ?NOTS =m2 m = positive integer
o
or
S ional numb 1.81
— = — = rational number .
- (181)

Thus x[n] is periodic if the ratio T, /T, of the sampling interval and the fundamental period of
x(t) is a rational number.
Note that the above condition is also true for sinusoidal signals x(1) = cos(w, + 6).
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Consider the sinusoidal signal
x(t) = cos 15¢

(a) Find the value of sampling interval 7, such that x[n]=x(nT,) is a periodic
sequence.
(b) Find the fundamental period of x[n]=x(nT,) if T,=0.17 seconds.

(@) The fundamental period of x(¢) is Ty=2m/wy=2m/15. By Eq. (1.81), x[n}=x(nT)) is

periodic if
T, T, m
TO= /15 =F0 (1.82)
where m and N, are positive integers. Thus, the required value of T, is given by
m m 2m
T’=ET°=VOE (1.83)

(b) Substituting T, = 0.17 = 7 /10 in Eq. (1.82), we have
7, w=/10 15 3

T, 2m/15 20 4

Thus, x[n]=x(nT,) is periodic. By Eq. (1.82)

The smallest positive integer N, is obtained with m = 3. Thus, the fundamental period of
x[n]=x(0.17n) is N,=4.

Let x,(¢) and x,(¢) be periodic signals with fundamental periods T, and T,, respec-
tively. Under what conditions is the sum x(7) =x,(¢) + x,(¢) periodic, and what is the
fundamental period of x(¢) if it is periodic?

Since x,(¢) and x,(¢) are periodic with fundamental periods T, and T,, respectively, we
have
x () =x,(t+T)) =x,(t+mT)) m = positive integer
x,(t) =x,(t + T,) =x,(t +kT,) k = positive integer
Thus,
x(t) =x,(t +mT)) +x,(t +kT,)
In order for x(z) to be periodic with period T, one needs
x(+T)=x,(t+T)+x,(t + T) =x,(t + mT)) +x,(t + kT,)
Thus, we must have
mT,=kT,=T (1.84)
or
T, Kk .
Fz == rational number (1.85)

In other words, the sum of two periodic signals is periodic only if the ratio of their respective
periods can be expressed as a rational number. Then the fundamental period is the least
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common multiple of 7, and T,, and it is given by Eq. (1.84) if the integers m and k are relative
prime. If the ratio T, /7, is an irrational number, then the signals x,(1) and x,(¢) do not have a
common period and x(¢) cannot be periodic.

Let x,[n] and x,[n] be periodic sequences with fundamental periods N, and N,,
respectively. Under what conditions is the sum x[n]=x,[n]+ x,{n] periodic, and what
is the fundamental period of x[n] if it is periodic?

Since x,[n] and x,[n] are periodic with fundamental periods N, and N,, respectively, we
have

x[nl=x[n+N]=x,[n+mN]

xy(n]=x,[n+ N} =x,[n +kN,]

m = positive integer
k = positive integer
Thus,
x[n]=x,[n+mN,]+x,[n+kN,]
In order for x[n] to be periodic with period N, one needs
x[n+N]=x,[n+N]+x,[n+N]=x,[n+mN;] +x,[n+kN,]
Thus, we must have
mN, =kN,=N (1.86)

Since we can always find integers m and k to satisfy Eq. (1.86), it follows that the sum of two
periodic sequences is also periodic and its fundamental period is the least common multiple of
N, and N,.

Determine whether or not each of the following signals is periodic. If a signal is
periodic, determine its fundamental period.

T 2
(a) x(t)=cos(t+z) (b) x(t)=sin—3—t
(¢) x(t)=cos§t+sin;t (d) x(t)=cost+sinvV2t
(e) x(t)=sin?t (f) x(t)=elm/Di-1
(g) x[n]=eitm/om (k) x[n)=cosin
T T T
. _T s . a2
(i) x[n) c053n+s1n4n (j) x[n]=cos %

T o
(a) x(1)=cos(l + Z)=cos(wot+ 7 ) —w,=1

x(1) is periodic with fundamental period T, = 27 /w, = 2.
o2 2
(b) x(¢)=sin TI —wy = _T
x(1) is periodic with fundamental period T, = 27 /w, = 3.
™ T
(c) x(1)=cos—3—t+sin Zl=x,(t)+x2(l) ,
where x,(t) = cos(mr/3)t = cos w,t is periodic with T, =27/w, =6 and x,(1) =
sin(r/4)t = sin w,¢ is periodic with T, =2m/w,=38. Since T,/T,=$= 3 is a rational
number, x(¢) is periodic with fundamental period T, = 4T, = 3T, = 24.
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(d) x(1)=cost+sinv2t=ux,(t)+x,(t)
where x,(t) = cost =cosw,? is periodic with T, =2m/w, =27 and x,(t)=siny2t=
sin w,¢ is periodic with T, =27 /w, = V2. Since T,/T, = V2 is an irrational number,
x(t) is nonperiodic.

(e) Using the trigonometric identity sin?§ = (1 — cos 28), we can write

x(t)=sin?t=1%—}cos2t=x,(t) +x,(¢)

where x,(t) = } is a dc signal with an arbitrary period and x,(t) = — } cos 2t = ~ ; cos w,!
is periodic with T, = 27 /w, = 7. Thus, x(¢) is periodic with fundamental period T, = 7.
™
x(1) = Mm/Di=11 2 gmighm /0 = g=Jgiwol _y 4 = —
x(¢) is periodic with fundamental period T, = 27 /w, = 4.
. : T
(g) xln]=e/m/m =/ () = 7

Since Q,/2m = % is a rational number, x[n] is periodic, and by Eq. (1.55) the fundamen-
tal period is N, =8.

(h) x[n)=cosin=cos Qon — Q,=1
Since Q,/2m =1/8m is not a rational number, x[n] is nonperiodic.

T T
(i) x[n]=cos 3” + sin zn =x,[n]+x,[n]

where

o
x,[n] =cos 31 = cos Qn—0, =

3 w|3

™
x,[n] =sin 2 =cos Q,n—Q, = 7

Since 2, /2 = % (= rational number), x,[n] is periodic with fundamental period N, =6,
and since 02/21r=§ (= rational number), x,[n] is periodic with fundamental period
N, = 8. Thus, from the result of Prob. 1.15, x[n] is periodic and its fundamental period is

given by the least common multiple of 6 and 8, that is, N, = 24.
(/) Using the trigonometric identity cos? 8 = $(1 + cos 28), we can write
o

T 1 1
x[n] = cos? gn= gt yeosyn =x,[n) +x,[n)

where x,[n]=}=3()" is periodic with fundamental period N,=1 and x,[n]=

3 cos(mr/Mn = }cos Qy,n — O, =7/4. Since Q,/2m =+ (= rational number), x,[n] is
periodic with fundamental period N, = 8. Thus, x[n] is periodic with fundamental period
N, = 8 (the least common multiple of N, and N,).

1.17. Show that if x(t + T) =x(¢), then

[oxyde= [ ety d (1.87)

[OTx(z)dt=/a"”x(t)d¢ (1.88)

for any real «, B, and a.
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If x(¢t + T)=x(t), then letting t =7 — T, we have
xX(r=T+T)=x(1)=x(7-T)
and

fa"x(z)dr= /ﬂ:"rx(T—T)dT= fn‘*:r"}c(r)dmfa":r"x(r)dr

o+

Next, the right-hand side of Eq. (1.88) can be written as

fa”x(t)dz = fox(t)dt + fna”}c(z)dt

a

By Eq. (1.87) we have

f”x(t)dt=fr+rx(t)dt
Thus,
:)d:+[ x(1) dt

/'a+'llr(t)d' _ fT

a a+T

x(t)de+ x(r)dz Tx(t)dt
=[x |7 J;

. Show that if x(z) is periodic with fundamental period T, then the normalized average

power P of x(1) defined by Eq. (1.15) is the same as the average power of x(z) over
any interval of length T, that is,

o7, 2
P=— [ "|x(&)] at (1.89)
Ty’o
By Eq. (/.15)
1o 2
pP= rll_rpm? ~ ~I,n:(1)| dt

Allowing the limit to be taken in a manner such that T is an integral multiple of the
fundamental period, T = kT, the total normalized energy content of x(¢) over an interval of
length 7 is k times the normalized energy content over one period. Then

= lim [—ka“lx(t)l dt
0

k—o

=T / (o)) di

The following equalities are used on many occasions in this text. Prove their validity.

N-1 1-a”

(@) La={T-q a*l (1.90)
0 N a=1
d 1

() Y a"= Jal <1 (1.91)
n=0 l-a
% ak

(c) Y a"= lal <1 (1.92)
n=k l-a
o a

(d) ) na"= 5 lal <1 (1.93)

CHAP. 1]

(a)

(b)

(c)

(d)

SIGNALS AND SYSTEMS
Let
N-1
S= Z a"=14+a+at+ - +aV !
n=0
Then
N-1
aS=a ) a"=a+at+a’+ - +a
n=0

Subtracting Eq. (1.95) from Eq. (1.94), we obtain
(l-a)S=1-a"

Hence if a # 1, we have

= l—a
g l-a
If @ =1, then by Eq. (1.94)
N-1
Yat=1+1+1+ - +1=N
n=0

For |al <1, Ijim a™ = 0. Then by Eq. (1.96) we obtain

1-—a¥ 1

o
Y a"= lim Z a” 11m =
n=0

Noo Now | —a 1-a

Using Eq. (1.91), we obtain
Y a"=a*+attl taktiy

ak

o
=a*(l+a+e’+ - )=a* )y a"=

o0 l1-a

Taking the derivative of both sides of Eq. (1.91) with respect to a, we have

%(,,goa")=;;(lia)=—(l—-la—)z

and
d o o d © 1 £
w| o) Eggerm Eperri=; Ene
Hence,
1 2= 1 d a
— ¥ na"= 2 or na” = 3
@0 (]"d) n=0 (1_‘1)
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(1.94)

(1.95)

(1.96)

1.20. Determine whether the following signals are energy signals, power signals, or neither.

(a)
(c)
(e)

(b) x(t) =Acos(wyt +6)
(d) x[n]=(-0.5)"uln]
(f) x[n]=2e""

x(t)=e "u(t), a>0
x(t) = tu(t)
x[n]=uln]
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) o 1
(a) E=f lx(t)yzdr=f e“Z“'dr=z<w
— 0 0

Thus, x(¢) is an energy signal.

(b) The sinusoidal signal x(¢) is periodic with Ty=2mw/w, Then by the result from
Prob. 1.18, the average power of x(¢) is

1 Ty 2 Wy r27/wg 2 2
p=?0/0 [x()] dt_ﬁfo A% cos?(w,t + 0) dt

2

Azwo zﬂ/wol A
- [U S [1+ cos(2wyt +20)] dr = — <o

2

Thus, x(¢) is a power signal. Note that periodic signals are, in general, power signals.

T/2)’°
@ E=lim [ |x(t)Pdr=tim [7*2dr= lim 172 _,
T==’-7/2 T—xJy Toa
3
; 172 2 Yorn, o1 (T/2)
pP= lim — t = lim = [1%dt = lim = -
TTLT - /2lx( W le»nx ng Tl_ﬂ,r 3

Thus, x(¢) is neither an energy signal nor a power signal.
(d) By definition (1.16) and using Eq. (1.91), we obtain
= 4

= I
2

E- ¥ = Y025 = - =<

<]l it -0z 3°7

n=—x

Thus, x[n] is an energy signal.
(e) By definition (1.17)
N

P= i :
N 2N+ 1 ”Ele[n]I
I : )’i 2= i N+1)=2
= = + = —
Ry v Y T AR Al S
Thus, x[n] is a power signal.
(f) Since [x(n]l=2e’" =2e/3| = 2,
N , N
P lim — _ 2
Ny g S L Ly v i D
= lim 4Q2N+1)=4<
Now 2N+ 1
Thus, x[n] is a power signal.
BASIC SIGNALS
1.21. Show that
_J0 t>0
a-0={3 1% (1.97)
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Let r = —t. Then by definition (7.18)

wensn-fl 72

Since 7> 0 and 7 < 0 imply, respectively, that ¢+ <0 and 7 > 0, we obtain

t>0
<0

u(—t)={(l)

which is shown in Fig. 1-26.

uf(-)

i 4

Fig. 1-26

1.22. A continuous-time signal x(t) is shown in Fig. 1-27. Sketch and label each of the
following signals.

(@) x(Du(1 = 1); (b) x()[u(t) —ult — D (¢) x()&(t — 3)

x(t)

Fig. 1-27
(a) By definition (1.19)

1 1<1
u(l—t)={0 1>1

and x(£)u(l — 1) is sketched in Fig. 1-28(a).
(b) By definitions (1.18) and (1.19)

1 0<r<1
u(t) —u(r=1) = {O otherwise

and x()[u(s) — u(t — 1)] is sketched in Fig. 1-28(b).
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(¢) By Eq. (1.26)

x(0)8(1 = 3) =x(3)8(s = 3) =28(¢ - 3)

which is sketched in Fig. 1-28(c).

x(u(l-1)

x(1) [u(t)-u(1-1)]

[CHAP. 1

(a)

x(1)8(:-3/2)

(b)

1 A —
0 1 2 !
(9]
Fig. 1-28

1.23. A discrete-time signal x[a] is shown in Fig. 1-29. Sketch and label each of the

following signals.
(a) x[nJull —nl; (b) x[nfuln + 2] —ulnl}; (c) x[n]é[n — 1]

x[n]
3
It ,rl| L
432 01 2345 n
Fig. 1-29
(a) By definition (1.44)
_f1 n<l
ull "]‘{0 n>1

and x[nlu[l — n) is sketched in Fig. 1-30(a).
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(b) By definitions (1.43) and (1.44)
uln+2]~u[n]= {(1)

and x[nKuln + 2} — u[n]} is sketched in Fig. 1-30(b).
(c) By definition (1.48)

-2<n<0
otherwise

1 n=
x[n]ﬁ[n—1]=x[1]6[n—1]=8[n—1]={0 n
which is sketched in Fig. 1-30(c).
Hnluf1-n] x(n{uln+2}-uin))
I | 1}
4320 01 2 3 S -3.2-1;|2l; n>
(@) (b)

x[njd[n-1]

1.24. The unit step function u(¢) can be defined as a generalized function by the following

relation:
f:¢(t)u(t)dt = fowzb(t)dt (1.98)

where ¢(¢) is a testing function which is integrable over 0 <t <. Using this
definition, show that

1 >0
“(’)={0 120

Rewriting Eq. (1.98) as

N o - .
f_m¢(t)u(t)dt=fim¢(t)u(t)dt+‘/; ¢(:)u(z)d:=[0 é(1) dt
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we obtain

[° sutyai= [“a()[1 - u(o)) &

This can be true only if

ffmd)(t)u(t) dt=0 and ]:4;(:)[1 —u(t)]dt=0

These conditions imply that

d(Hu(t)=0,1<0 and  ¢(t)[1-u(1)] =0,1>0

Since ¢(¢) is arbitrary, we have

u(t)=0,1<0 and 1 —u(t)=0,t>0

that is,

(1 t>0
u(t)_{o t<0

Verify Egs. (1.23) and (1.24), that is,

1
(a) 8(at) = —58(1); (b) 6(—1t)=5(¢)

|al

The proof will be based on the following equivalence property:
Let g,(¢) and g,(¢) be generalized functions. Then the equivalence property states that
g(1) =g,(¢) if and only if

[ e di= [ a(ng1) (1.99)

for all suitably defined testing functions ¢(¢).

(a) With a change of variable, at =7, and hence t=1/a, dt =(1/a)dr, we obtain the
following equations:

If a>0,

[~ b(e)s(ary ai = %fm(p(%)a(f)dﬁ 3¢(£)‘ - %«b(())

If a<o0,
f_:¢(t)6(at)dt - %Lwtp(g)a(f) dr= - %/j;d)(';;)ﬁ(‘r)d‘r

I

=0 lal

Thus, for any a

[ o(6(ar) di= a(0)

CHAP. 1]
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Now, using Eq. (1.20) for ¢(0), we obtain

o 1 1
[ $(d(aydi= (0 = o [ (1)8(1)

® 1
= [ (1) =81y
—» lal
for any ¢(¢). Then, by the equivalence property (1.99), we obtain
1
8(at) = —68(t
(b) Setting a = —1 in the above equation, we obtain
1
§(—t)= =] ll6(:) =5(1)

which shows that 8(¢) is an even function.

(a) Verify Eq. (1.26):
x(2)8(t = 1) =x(1,)8(1 — t,)
if x(¢) is continuous at ¢ = ¢,.
(b) Verify Eq. (1.25):
x(2)8(¢) =x(0)8(r)
if x(¢) is continuous at ¢ = 0.

(a) If x(1) is continuous at ¢ =t,, then by definition (1.22) we have

[ #0081 de= [ [#(0)x(D)](1 = 1) dr = (1) x(1,)
=x(t) [~ &(1)8(t ~ 1) dt

= [ #Olx(t)8(1 = 10)] ar

for all ¢(¢) which are continuous at ¢ = ;. Hence, by the equivalence property (1.99) we
conclude that

x(1)8(t—t9) =x(t,)8(1 — ;)
(b) Setting t; =0 in the above expression, we obtain

x(1)8(1) =x(0)8(r)

Show that

(a) t8()=0

(b) sintd(t)=0

(¢) costd(t—m)= —86(t—1)
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Using Eqgs. (1.25) and (1.26), we obtain
(a) t8(t)=(@s(t)=0
(b) sintd(t) =(sin0)8(¢) = (0)6(¢) =0
() costé(t —m)=(cosm)o(t —m)=(-D6(t — )= —-8(t — =)

Verify Eq. (1.30):
du(t)
dt

s(ty=u'(1)=
From Eq. (1.28) we have
" d(uyde=~ [~ #(yu(r) di (1.100)

where ¢(t) is a testing function which is continuous at ¢ =0 and vanishes outside some fixed
interval. Thus, ¢'(¢) exists and is integrable over 0 <t < « and ¢(«) = 0. Then using Eq. (1.98)
or definition (1.18), we have

Lo [¢(=) ~ 6(0)]

[ ety (eydi= = ["¢(1)di = = (1)
- 0

~6(0) = [~ 6(1) 5(1) di
Since ¢(¢) is arbitrary and by equivalence property (1.99), we conclude that

du
8(t)y=u'(t)= T

Show that the following properties hold for the derivative of 8(¢):
dé(t)
dt

where ¢'(0) = (1.101)

=0

@ [ ¢80 di= -0

(b) t8(t)= —8(1)
(a) Using Egs. (1.28) and (1.20), we have

(1.102)

[ e8(ydi= - [ g (ns(r)dr = -¢(0)
(b) Using Egs. (1.101) and (1.20), we have
fim¢(t)[t5’(t)]dl=f:[l¢(1)]5’(t)dt=—%[uﬁ(l)]'l:o
== [8(1) +16/(1)]].o = ~6(0)
= - [ smsar= [ (n)[-8(1)) a

Thus, by the equivalence property (1.99) we conclude that
t&'(t) = ~8(¢t)
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1.30. Evaluate the following integrals:

1.31.

(@ [ @2+ Ds()di
-1
(b) ]2(3z2+1)5(z)dt
1
(¢) fw (£2+ cos t)8(t — 1) dt

©

(@) j e '5(2t — 2) dt

—®

(e) fw e='&(1) dt

—x

(a) By Eq. (1.2]), with a = —1 and b =1, we have
f_‘l(3:2+ 1)8(t)dt =312+ 1)|,_o=1
(b) By Eq. (1.21), with @ =1 and b =2, we have
[Iz(3r2+ 1)8(t) dt =0
(¢) ByEq.(1.22)
f_m (t>+cosmt)d(t — 1) de=(1>+cos wt)|,_,

=1l4+cosm=1—-1=0

(d) Using Egs. (1.22) and (1.23), we have

fm e '8(2t —2) dt = fm e™'8[2(t — 1)) dr

"ot L= 1ydt = me :
= _ t — It = — = —
e poU —Ddr=ze™ =52
(e) By Eq. (1.29)
fwe"ﬁ'(t)dt=—i(e"’) e "_g=1
B dt ' —o =0

Find and sketch the first derivatives of the following signals:

(@) x()=u(t)-u(t—a), a>0
b)) x()=tlult)—u(t—a)), a>0

t>0

(¢) x(t)=sgnt={1_1 (<0

(a) Using Eq. (1.30), we have

u'(t)=26(t) and U(t—a)=68(t-a)
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Then
X()y=u(t)y—-u'(t—a)=8(t)—-56(t—a)

Signals x(¢) and x’(¢t) are sketched in Fig. 1-31(a).
Using the rule for differentiation of the product of two functions and the result from part
(a), we have

X' (1) =[u(t) —u(t—a)] +t[8(1) - 8(t —a)]
But by Egs. (1.25) and (1.26)
t8(t) =(0)8(t)=0 and té(t —a) =ad(t —a)
Thus,
x'(t) =u(t) —u(t—a)—ad(t—a)

Signals x(¢) and x'(¢) are sketched in Fig. 1-31(b).

(¢) x(t)=sgnt can be rewritten as

x(t)y=sgnt=u(t) —u(—t)
Then using Eq. (1.30), we obtain
X()y=w(t)y—w(-t)=8(t) - [-8(+)] =25(¢)

Signals x(¢) and x'(t) are sketched in Fig. 1-31(c).

x(1) x(1) x(1)
a
| |——————
0 a T 0 a 7 0 T
——— |
x'(1) x'(1) X0
28(%1)
8(1) 1
a
0 1 t 0 a IV 0 ,—
-8(t-a) ‘
-ad(1-a)
(a) (b) (c)
Fig. 1-31
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SYSTEMS AND CLASSIFICATION OF SYSTEMS

1.32. Consider the RC circuit shown in Fig. 1-32. Find the relationship between the input
x(1) and the output y(r)

(@) If x(¢)=v,(t) and y(1) =v(1).
(b) If x(£)=vt) and y(1) = i(1).
(a) Applying Kirchhoff’s voltage law to the RC circuit in Fig. 1-32, we obtain
v(t) =Ri(t) +u.(t) (1.103)
The current (1) and voltage v (1) are related by

dv.(1)

i(t)=C 1.104
(1) -c= (1.104)
Letting v,(¢) = x(¢) and v (1) = y(¢) and substituting Eq. (1.04) into Eq. (1.103), we obtain
dy(t
RC v(t) +y(t) =x(1)
or
dy(t) 1 1
+ [—— = — .
= 2 (0) = () (1.105)

Thus, the input-output relationship of the RC circuit is described by a first-order linear
differential equation with constant coefficients.
(b) Integrating Eq. (1.104), we have
1

UC(1)=Ef:mi(T) dr (1.106)

Substituting Eq. (1.106) into Eq. (1.103) and letting ¢ (1) = x(¢) and i(r) = y(1), we obtain
R L d
t — =
y(1) + & [ v(r)dr=x(1)

or

1 . 1
y(’)+EE _wY(T)dT=Ex(1)

R
AAAA—
. ) T
V(1) i(n cCZ= v

Fig. 1-32 RC circuit.
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Differentiating both sides of the above equation with respect to ¢, we obtain
dy(t) 1 1 dx(t)
+—y(1) ==
ar " RC’ R ar

Thus. the input-output relationship is described by another first-order linear differential
equation with constant coefficients.

(1.107)

1.33. Consider the capacitor shown in Fig. 1-33. Let input x(¢) = i(¢) and output y(¢) = ¢ (2).

(@) Find the input-output relationship.
(b) Determine whether the system is (/) memoryless, (ii) causal, (iif) linear, (iv) time-
invariant, or (¢') stable.

(a) Assume the capacitance C is constant. The output voltage y(z) across the capacitor and
the input current x(¢) are related by [Eq. (1.106)]

I
y(t)=T{x(r)}=Efﬂx(-r)dr (1.108)

(b) (i) From Eq. (1.108) it is seen that the output y(z) depends on the past and the
present values of the input. Thus, the system is not memoryless.

(i) Since the output y(r) does not depend on the future values of the input, the system
is causal.
(i) Let x(1) =0, x (1) + a,x,(t). Then

L
(1) =T(x(0)) = 2 [ [exi(7) + apxy(r)] dr

1, [
:al['cfj;mxl('r) d‘r] +a2[Efﬂxx2('r) dT]

=a;y(1) tazy,(1)

Thus, the superposition property (1.68) is satisfied and the system is linear.

(it) Let y(t) be the output produced by the shifted input current x(#) =x(r —¢,).

Then

[
yi(1) =T{x(t—1,)} = E_/_nx("'_’o)d"'

1 t—1y
=Ef.m X(A)dr=y(t—1,)

ALl
|4

Hence, the system is time-invariant.

%o

Fig. 1-33
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r(f) = tu(t)

~y

0
Fig. 1-34  Unit ramp function.

(v) Let x(¢) = k,u(s), with k, # 0. Then
1 . ki Kk k,
y(t)—E[_wk,u(r)dr—zjodr—zru(r)-Er(x) (1.109)

where r(t) = tu(t) is known as the unit ramp function (Fig. 1-34). Since y(¢) grows
linearly in time without bound, the system is not BIBO stable.

1.34. Consider the system shown in Fig. 1-35. Determine whether it is (@) memoryless, (b)
causal, (c) linear, (d) time-invariant, or (e) stable.
(a) From Fig. 1-35 we have
y(£) =T{x(t)} =x(t)cos w.t
Since the value of the output y(¢) depends on only the present values of the input x(¢),
the system is memoryless.

(b) Since the output y(t) does not depend on the future values of the input x(¢), the system
is causal.

(c) Let x(¢) =a,x(t) + a,x(+). Then
y(1) =T{x(1)} = [ex,(1) + @, x,(1)] cos w1
=a,;x,(t)cosw.t +a,x,(t)cos w.t
=a,yy(1) +ayy,(1)
Thus, the superposition property (1.68) is satisfied and the system is linear.

Multiplier
x(1)

YO = x(1) cos w1

4

9

L
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(d) Let y(¢) be the output produced by the shifted input x,(¢) = x(z — ¢,). Then
yi(1) = T{x(t —tp)}) =x(t — ty) cos w ¢
But
y(t=1ty) =x(t = ty) cos w (£~ t5) #y (1)
Hence, the system is not time-invariant.
(e) Since |cos w | < 1, we have
ly()I=1x(1)cos w 1] <]x(1))

Thus, if the input x(¢) is bounded, then the output y(r) is also bounded and the system is
BIBO stable.

A system has the input-output relation given by
y=T{x}=x? (1.110)

Show that this system is nonlinear.

T{x, +x,} = (x, +x,) =x2+x2+2x,x,
#T{x,} + T{x,} =x?+x2

Thus, the system is nonlinear.

The discrete-time system shown in Fig. 1-36 is known as the unit delay element.
Determine whether the system is (a) memoryless, (b) causal, (¢) linear, (d) time-
invariant, or (e) stable.

(a) The system input-output relation is given by
y[n]=T{x[n]} =x[n-1] (1.111)

Since the output value at n depends on the input values at n — 1, the system is not
memoryless.

(b) Since the output does not depend on the future input values, the system is causal.
(¢) Let x|n]=a,x,[n] + a,x,[n]. Then
y[n]= T{"lxl["] +a2x2[n]} =ax|[n—1]+a,x,[n—1]
=a,y [n] + a,y,[n]

Thus, the superposition property (1.68) is satisfied and the system is linear.

(d) Let y,[n] be the response to x,[n]=x[n —n,). Then
yiln] =T{x1[n]} =x[n-1]=x[n~-1-n]
and y[n—ny)=x[n—ny,—1]=x[n-1-ny)=y,[n)

Hence, the system is time-invariant.

x[n] Unit yln] = x(n-1]
L — delay p——————--

Fig. 1-36 Unit delay element
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(e) Since

ly[nll=Ix[n-1)l<k if [x[n]l<k forall n

the system is BIBO stable.

Find the input-output relation of the feedback system shown in Fig. 1-37.

Unit
delay

From Fig. 1-37 the input to the unit delay element is x[n] — y[n]. Thus, the output y[n] of
the unit delay element is [Eq. (1.111)]

y[n]=x[n-1]-y[n-1]
Rearranging, we obtain
y[n)+y[n—-1]=x[n-1] (1.112)

Thus the input-output relation of the system is described by a first-order difference equation
with constant coefficients.

A system has the input-output relation given by

y[n] = T{x[n]} = nx[n] (1.113)

Determine whether the system is (a) memoryless, (b) causal, (c) linear, (d) time-in-
variant, or (e) stable.

(a) Since the output value at n depends on only the input value at n, the system is
memoryless.

(b) Since the output does not depend on the future input values, the system is causal.
(¢) Let x[n]=a,x[n]+a,x,[n]. Then

y[n]=T{x[nl} =n{a,x1[n] +a,x,[n])
=anx;[n] +a,nxy[n] =,y [n] +a,y,[n]

Thus, the superposition property (/.68) is satisfied and the system is linear.
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vln] = nuin]

Fig. 1-38

yi[n] =T{x[" _"0]} =nx[n—n,)
But yln—nyl=(n—ny)x[n—nyl#y,[n]

(e) Let x[n]=uln]. Then y[n]=nuln). Thus, the bounded unit step sequence produces an
output sequence that grows without bound (Fig. 1-38) and the system is not BIBO stable.

y[n] =T{x[n]} =x[kqn] (1.114)

where k, is a positive integer. Is the system time-invariant?

yiln] =T{x1[”]} =x,[kon] =x[kon —ny]
But Y[”—”0]=x[k0(”_”0)]*yl[”]

Hence, the system is not time-invariant unless k, = 1. Note that the system described by Eq.
(1.114) is called a compressor. It creates the output sequence by selecting every k th sample of
the input sequence. Thus, it is obvious that this system is time-varying.

Consider the system whose input-output relation is given by the linear equation
y=ax+b (1.115)

where x and y are the input and output of the system, respectively, and @ and b are

If b # 0, then the system is not linear because x =0 implies y =b # 0. If b =0, then the
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l x{n) = uln)
1
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(d) Let y[n] be the response to x,[n] =x[n —ngy]. Then
Hence, the system is not time-invariant.
1.39. A system has the input-output relation given by
Let y,[n] be the response to x,[n]=x[n —n,l. Then
1.40.
constants. Is this system linear?
system is linear.
1.41.

The system represented by T in Fig. 1-39 is known to be time-invariant. When the
inputs to the system are x,[n], x,[n], and x,[n], the outputs of the system are y,[n],
y,[n], and y;[n] as shown. Determine whether the system is linear.

From Fig. 1-39 it is seen that

ln]=x[n] +xaln -2]
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Thus, if T is linear, then
T{xs[n]) = T{x,[n]} + T{x,[n - 2]} =y, [n] +y,[n - 2]
which is shown in Fig. 1-40. From Figs. 1-39 and 1-40 we see that
yilnl#y\[n]+y,[n—-2]

Hence, the system is not linear.

viln] + ysln - 2]

nlnl yln-2]

+
2-1 01 2 3 4 n 2-1 01 2 34 n 2-1 01 2 3 4 n

Fig. 1-40

1.42. Give an example of a system that satisfies the condition of additivity (1.66) but not the
condition of homogeneity (1.67).
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1.43.

1.44.
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Consider a discrete-time system represented by an operator T such that
y[n]=T{x[n]} =x*[n]
where x*[n}is the complex conjugate of x{n]. Then
T{x,[n] +x,[n]} = {x,[n] + x[n]}* =x¥[n] +xF[n] =y,[n] +y,[n]
Next, if o is any arbitrary complex-valued constant, then
T{ax[n]} = {ax[n]}* =a*x*[n] =a*y[n] #ay[n]

Thus, the system is additive but not homogeneous.

(1.116)

(a) Show that the causality for a continuous-time linear system is equivalent to the
following statement: For any time ¢, and any input x(z) with x(z) =0 for r < ¢,
the output y(¢) is zero for ¢ < ¢,.

(b) Find a nonlinear system that is causal but does not satisfy this condition.
(¢) Find a nonlinear system that satisfies this condition but is not causal.

(a) Since the system is linear, if x(¢) =0 for all ¢, then y(¢) = 0 for all ¢. Thus, if the system is
causal, then x(¢+)=0 for ¢ <t implies that y(¢) =0 for ¢ <¢,. This is the necessary
condition. That this condition is also sufficient is shown as follows: let x,(¢) and x,(¢) be
two inputs of the system and let y,(¢) and y,(s+) be the corresponding outputs. If
x ) =x,(1) for t <1y, or x(¢) =x,(1) —x,(t) =0 for t <t,, then y (1) =y,(¢) for 1t <t,,
or y(t) =y (t) —y,(t) =0 for t <1,

(b) Consider the system with the input-output relation

y(£) =x(2) +1

This system is nonlinear (Prob. 1.40) and causal since the value of y(z) depends on only
the present value of x(¢). But with x(¢) =0 for ¢ <, y(1)=1 for ¢t <t,.

(¢) Consider the system with the input-output relation
y(£)=x(t)x(t+1)
It is obvious that this system is nonlinear (see Prob. 1.35) and noncausal since the value of

y(¢) at time ¢ depends on the value of x(¢ + 1) of the input at time ¢ + 1. Yet x(¢) =0 for
t <t, implies that y(¢) =0 for t < ¢,.

Let T represent a continuous-time LTI system. Then show that

T{e*'} = Ae* (1.117)
where s is a complex variable and A is a complex constant.

Let y(1) be the output of the system with input x(¢) = e*’. Then

T{e"} = y(1)

Since the system is time-invariant, we have
T(e ) = (1 +1,)
for arbitrary real ¢,. Since the system is linear, we have
T{e* W} = T{e* e*'v} = e*T{e"} = e*"oy(1)

Hence, y(t+1ty) =eoy(t)
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1.45.

1.46.
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Setting ¢ = 0, we obtain

y(1g) =y(0)e’™ (1.118)
Since 1, is arbitrary, by changing ¢, to ¢, we can rewrite Eq. (1.118) as
y(1) =y(0)e" = re*
or T{e*} = Ae”
where A =y(0).
Let T represent a discrete-time LTI system. Then show that
T{z"} =Az" (1.119)
where z is a complex variable and A is a complex constant.
Let y[n] be the output of the system with input x[n]=z". Then
T{z"} =y[n]
Since the system is time-invariant, we have
T(z" "} =y[n +n,)
for arbitrary integer n,. Since the system is linear, we have
T{z"*"} =T{z"z"0} =z"T{z"} =z"0y[n}
Hence, y[n +ng]=z"y[n]
Setting n = 0, we obtain
y[ny] =y[0])z™ (1.120)
Since n, is arbitrary, by changing n, to n, we can rewrite Eq. (1.120) as
y[n]=y[0]z" =Az"
or T{z"} = Az"
where A = y[0].
In mathematical language, a function x(-) satisfying the equation
T{x(*)} =Ax(") (1.121)

is called an eigenfunction (or characteristic function) of the operator T, and the constant A is
called the eigenvalue (or characteristic value) corresponding to the eigenfunction x(-). Thus
Eqs. (1.117) and (1.119) indicate that the complex exponential functions are eigenfunctions of
any LTI system.

Supplementary Problems

Express the signals shown in Fig. 1-41 in terms of unit step functions.

Ans. (a) x(t)=%[u(t)—u(t—2)]
(B) x(y=u(t+ D+ 2u(t) —u(t — 1) —u(t — 2) — u(t — 3)
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x(1) :
1.48. Determine the even and odd components of the following signals:

x(0 3 (@) x(1)=u(t)
b) x(t)=sin(wt+z)
( ot

2 ¥
(c) x[n)=e/Qom*m/D
I ! (d) x[n)=8[n]
N , . . L L —> Ans. (a) x(1)=7,x,(t)=14sgnt
e ' e et ) x ()= (1= s
x,(1) = —=cos wyt, x (1) = —=sin wy!
(@) &) V2 ’ V2 ’
Fig. 1-41 (c) x[In]l=jcos Qyn, x [n]= —sin Qyn
(d) x[In]l=8[n},x,[n]=0
1.49. Let x(t) be an arbitrary signal with even and odd parts denoted by x,(¢) and x,(1),
1.47. Express the sequences shown in Fig. 1-42 in terms of unit step functions. respectively. Show that
Ans. (@) x[n)=uln]—uln - (N+1)] 2 2 = 2
x“(t)ydt=| xi(t)ydt+ | x;(t)at
3 dlnl= —adon 1 [pwas [ s ] 2m
() xln)=uln+2]—uln—4] Hint:  Use the results from Prob. 1.7 and Eq. (1.77).

1.50. Let x[n] be an arbitrary sequence with even and odd parts denoted by x[n] and x_[n],
in) respectively. Show that

Y nl= X xn]+ X xi[n]

n=—ow n=—ow n=—o

Hint:  Use the results from Prob. 1.7 and Eq. (1.77).

1.51. Determine whether or not each of the following signals is periodic. If a signal is periodic,
determine its fundamental period.

fo———

fo————

@mememm—

—]

.

- ~ ¢
N
[
=y

T
(a) x(t)= cos(2t + 7 )

(b) x(1)=cos?t

(@) (b) (¢) x(£)=(cos2mt)ult)
(d) x(t)=e™

() x[n]=el/9-7l

x{n}
wn?
(f) x[n] = COS ( "8— )
] (g) x[n]=cos(§)cos(%n)
0 3

mn mn wn
e oL - (h) x[n]=cos(7)+sin(T)—ZCOS(T)
-4 -3 2 -} ] 45 n .
Ans.  (a) Periodic, period =7 (b) Periodic, period =7
© (¢) Nonperiodic (d) Periodic, period = 2
Fig, 1-42 (e) Nonperiodic (f) Periodic, period = 8

(g) Nonperiodic (h) Periodic, period = 16
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1.52.

1.53.

1.54.

1.55.

1.56.

1.57.

1.58.
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Show that if x[n] is periodic with period N, then

n n+N N nyg+N
(a) Y xlk]= X x[k]; (&) L xlkl= ¥ x[k]
k=n k=ny,+N k=0 k=n,

Hint:  See Prob. 1.17.

(a) What is 8(21)?
(b) What is 8[2n]?

Ans. (a) 820 = 18(1)
(b)Y 8[2n)=8[n)

Show that
§(—t)= —8(t)
Hint:  Use Eqs. (1.101) and (1.99).

Evaluate the following integrals:

(a) f’ (cos u(r)dr (b) fl (cos 1) 8(r)dr

» o t
@ [ (cos ult — D5(1) dt () fztsingﬁ('rr—l)dt
—x 0

Ans. (a) sint
(b) 1 for t >0 and 0 for ¢ <0; not defined for t =0
(¢) 0
d) =

Consider a continuous-time system with the input-output relation
1 t+T/2
y(t) =T{x(0)) = = [ "x(r)dr
T)_1p
Determine whether this system is (a) linear, (b) time-invariant, (c¢) causal.

Ans. (a) Linear; (b) Time-invariant; (¢) Noncausal

Consider a continuous-time system with the input-output relation

=3

y()=T{x()} = ¥ x(1)8(t-kT,)

k=-x
Determine whether this system is (a) linear, (b) time-invariant.

Ans.  (a) Linear; (b) Time-varying

Consider a discrete-time system with the input-output relation
y[n]=T{x[n]} =x*[n]
Determine whether this system is () linear, (b) time-invariant.

Ans.  (a) Nonlinear; (b) Time-invariant
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1.59.

1.60.

1.61.

Give an example of a system that satisfies the condition of homogeneity (1.67) but not the
condition of additivity (1.66).

Ans.  Consider the system described by

y(1) =T{x(1)} = [f:[X(T)]ZdT] '

Give an example of a linear time-varying system such that with a periodic input the correspond-
ing output is not periodic.

Ans.  y[n]=T{x[n]} = nx[n]

A system is called invertible if we can determine its input signal x uniquely by observing its
output signal y. This is illustrated in Fig. 1-43. Determine if each of the following systems is
invertible. If the system is invertible, give the inverse system.

* M Inverse
D —— System ——
system

Fig. 1-43

(a) y(t)=2x(1)
) y()=x%1)

(c) y(z)=f’ x(r)dr

—~ %
n

(d) ylnl= Y x[k]

k= -

(e) ylnl=nxln]

Ans. (a) Invertible; x(¢) = 1y(r)
(b) Not invertible

d
(¢) Invertible; x(¢) = y(r)

(d) Invertible; x[n]=y[n] - yln —1]
(e) Not invertible



Chapter 2

Linear Time-Invariant Systems

2.1 INTRODUCTION

Two most important attributes of systems are linearity and time-invariance. In this
chapter we develop the fundamental input-output relationship for systems having these
attributes. It will be shown that the input-output relationship for LTI systems is described
in terms of a convolution operation. The importance of the convolution operation in LTI
systems stems from the fact that knowledge of the response of an LTI system to the unit
impulse input allows us to find its output to any input signals. Specifying the input-output
relationships for LTI systems by differential and difference equations will also be dis-
cussed.

2.2 RESPONSE OF A CONTINUOUS-TIME LTI SYSTEM AND
THE CONVOLUTION INTEGRAL

A. Impulse Response:

The impulse response h(t) of a continuous-time LTI system (represented by T) is
defined to be the response of the system when the input is §(¢), that is,

h(1) = T{3(1)) (2.1)

B. Response to an Arbitrary Input:
From Eq. (1.27) the input x(¢) can be expressed as

x(1)= [ x(r)8(t~7)dr (2.2)
Since the system is linear, the response y(¢) of the system to an arbitrary input x(¢) can be

expressed as

— o

y(1) =T{x(1)) =T{f° x(7)8(t —T)df}

= [ x(r)T{o(t ~ 7)) dr (2.3)
Since the system is time-invariant, we have
h(t—7)=T{8(t — 1)) (2.4)
Substituting Eq. (2.4) into Eq. (2.3), we obtain
y(1) = [ x(r)h(t =) dr (2.5)
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Equation (2.5) indicates that a continuous-time LTI system is completely characterized by
its impulse response A(t).

C. Convolution Integral:

Equation (2.5) defines the convolution of two continuous-time signals x(z) and h(t)
denoted by

y() = x(1)* h(1) =/_:x(7)h(t—'r)d7' (2.6)

Equation (2.6) is commonly called the convolution integral. Thus, we have the fundamental
result that the output of any continuous-time LTI system is the convolution of the input x(t)
with the impulse response h(t) of the system. Figure 2-1 illustrates the definition of the
impulse response A(t) and the relationship of Eq. (2.6).

8(1) LTI h(1)
——-
X1 system (1) = x(t) % h(0)

Fig. 2-1 Continuous-time LTI system.

D. Properties of the Convolution Integral:
The convolution integral has the following properties.

1. Commutative:

x(t)y*h(t)=h(t)*x(t) (2.7)

2. Associative:
{x(e)* hy(t))* hy(t) = x(t)*{h (1) * hy(1)) (2.8)

3. Distributive:
x(t)x{hy ()} +hy()) =x(t)* hy(t) +x(2)* hy(1) (2.9)

E. Convolution Integral Operation:

Applying the commutative property (2.7) of convolution to Eq. (2.6), we obtain
y(t)=h(t)* x(t)=f h(t)x(t—7)dr (2.10)

which may at times be easier to evaluate than Eq. (2.6). From Eq. (2.6) we observe that
the convolution integral operation involves the following four steps:

1. The impulse response h(7) is time-reversed (that is, reflected about the origin) to
obtain A(—7) and then shifted by ¢ to form A(t — 7) = [ — (7 — ¢)] which is a function
of v with parameter ¢.

2. The signal x(7) and A(¢ — r) are multiplied together for all values of 7 with ¢ fixed at
some value.
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3. The product x(7)Ah(r — 1) is integrated over all 7 to produce a single output value
y(1).

4. Steps 1 to 3 are repeated as ¢ varies over — o to © to produce the entire output y(r).

Examples of the above convolution integral operation are given in Probs. 2.4 to 2.6.

F. Step Response:

The step response s(t) of a continuous-time LTI system (represented by T) is defined to
be the response of the system when the input is u(t); that is,

s(t) = T{u(r)) (2.11)

In many applications, the step response s(t) is also a useful characterization of the system.
The step response s(¢) can be easily determined by Eq. (2.10); that is,

t

s(t)=h(ysu(t)= [ h(ryu(t =) dr = [ h(r)dr (2.12)

—x —x

Thus, the step response s(¢) can be obtained by integrating the impulse response A(t).
Differentiating Eq. (2.712) with respect to ¢, we get

h(1) =s'(1) = — (2.13)

Thus, the impulse response h(t) can be determined by differentiating the step response
s(1).

2.3 PROPERTIES OF CONTINUOUS-TIME LTI SYSTEMS

A. Systems with or without Memory:

Since the output y(r) of a memoryless system depends on only the present input x(¢),
then, if the system is also linear and time-invariant, this relationship can only be of the
form

v(1) = Kx(1) (2.24)
where K is a (gain) constant. Thus, the corresponding impulse response h(¢) is simply
h(t) = Ks(t) (2.15)

Therefore, if h(z,) # 0 for ¢, # 0, the continuous-time LTI system has memory.

B. Causality:

As discussed in Sec. 1.5D, a causal system does not respond to an input event until that
event actually occurs. Therefore, for a causal continuous-time LTI system, we have

h(t)=0 <0 (2.16)

Applying the causality condition (2.16) to Eq. (2.10), the output of a causal continuous-time
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LTI system is expressed as

y(1)= [ h(r)x(t=7)dr (2.17)
0
Alternatively, applying the causality condition (2.16) to Eq. (2.6), we have
y(t)= [ x(r)h(t=7)d7 (2.18)

Equation (2.18) shows that the only values of the input x(¢) used to evaluate the output
y(t) are those for 7 <1.
Based on the causality condition (2.16), any signal x(¢) is called causal if

x(t1)=0 t<0 (2.19a)
and is called anticausal if
x(t)=0 t>0 (2.19)

Then, from Egs. (2.17), (2.18), and (2.19a), when the input x(t) is causal, the output y(¢)
of a causal continuous-time LTI system is given by

y(t)=j;)rh(r)x(t—r)d1-=f0[x(~r)h(t—7)d1- (2.20)

C. Stability:

The BIBO (bounded-input /bounded-output) stability of an LTI system (Sec. 1.5H) is
readily ascertained from its impulse response. It can be shown (Prob. 2.13) that a
continuous-time LTI system is BIBO stable if its impulse response is absolutely integrable,
that is,

[j h(r)l d7 < oo (2.21)

2.4 EIGENFUNCTIONS OF CONTINUOUS-TIME LTI SYSTEMS

In Chap. 1 (Prob. 1.44) we saw that the eigenfunctions of continuous-time LTI systems
represented by T are the complex exponentials e*‘, with s a complex variable. That is,

T{e*) = Ae* (2.22)
where A is the eigenvalue of T associated with e*. Setting x(t) =¢e*' in Eq. (2.10), we have

W0 =) = [ hiry e de=| [ hiryean e
=H(s)e" = re" (2.23)
where A=H(s)= [ h(r)e " dr (2.24)

Thus, the eigenvalue of a continuous-time LTI system associated with the eigenfunction e*
is given by H(s) which is a complex constant whose value is determined by the value of s
via Eq. (2.24). Note from Eq. (2.23) that y(0) = H(s) (see Prob. 1.44).

The above results underlie the definitions of the Laplace transform and Fourier
transform which will be discussed in Chaps. 3 and 5.
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2.5 SYSTEMS DESCRIBED BY DIFFERENTIAL EQUATIONS
A. Linear Constant-Coefficient Differential Equations:

A general Nth-order linear constant-coefficient differential equation is given by

NoodRy(t) M dRx(1)

ay X Z b, %
k=0 dt k=0 dt

(2.25)

where coefficients a, and b, are real constants. The order N refers to the highest
derivative of y(t) in Eq. (2.25). Such differential equations play a central role in describing
the input-output relationships of a wide variety of electrical, mechanical, chemical, and
biological systems. For instance, in the RC circuit considered in Prob. 1.32, the input
x(1)=uv,(1) and the output y(¢)=v () are related by a first-order constant-coefficient
differential equation [Eq. (1.105)]

dy(t) 1 1

a T reY = Re*

(1)
The general solution of Eq. (2.25) for a particular input x(¢) is given by
y(1) =y, (1) +yu(t) (2.26)

where y (1) is a particular solution satisfying Eq. (2.25) and y,(1) is a homogeneous
solution (or complementary solution) satisfying the homogeneous differential equation

N dhy,(t
Y a, yhk( ) _¢ (2.27)
k=0 dt

The exact form of y,(¢) is determined by N auxiliary conditions. Note that Eq. (2.25) does
not completely specify the output y(z) in terms of the input x(z) unless auxiliary
conditions are specified. In general, a set of auxiliary conditions are the values of

dy(1) d¥y(1)
di 7 deV

y(1),

at some point in time.

B. Linearity:

The system specified by Eq. (2.25) will be linear only if all of the auxiliary conditions
are zero (see Prob. 2.21). If the auxiliary conditions are not zero, then the response y(t) of
a system can be expressed as

y(t)=yu'(t)+yzs(t) (228)

where y, (1), called the zero-input response, is the response to the auxiliary conditions, and
y,(1), called the zero-state response, is the response of a linear system with zero auxiliary
conditions. This is illustrated in Fig. 2-2.

Note that y, (1) #y,(t) and y,(1) #y,(1) and that in general y,(¢) contains y,(t) and
y,{t) contains both y,(t) and y (1) (see Prob. 2.20).
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x(1) i 3
Linear Ve (1) G pL0)
system +

+

Yul)

Fig. 2-2 Zero-state and zero-input responses.

C. Causality:

In order for the linear system described by Eq. (2.25) to be causal we must assume the
condition of initial rest (or an initially relaxed condition). That is, if x(¢) =0 for ¢ <¢,, then
assume y(f) =0 for ¢ <t, (see Prob. 1.43). Thus, the response for ¢ > ¢, can be calculated
from Eq. (2.25) with the initial conditions

(¢ )_d)’(’o) _dN_ly(to) _
Yo dt drN!
where 4y (1) = (1)

dr* dr* l=l‘,‘

Clearly, at initial rest y,(¢) =0.

D. Time-Invariance:

For a linear causal system, initial rest also implies time-invariance (Prob. 2.22).

E. Impulse Response:

The impulse response A(t) of the continuous-time LTI system described by Eq. (2.25)
satisfies the differential equation

d*h(t) M d*(1)

i::ak 2 by

X %
k=0 ~dt k=0 dt

(2.29)

with the initial rest condition. Examples of finding impulse responses are given in Probs.
2.23 to 2.25. In later chapters, we will find the impulse response by using transform
techniques.

2.6 RESPONSE OF A DISCRETE-TIME LTI SYSTEM AND CONVOLUTION SUM
A. Impulse Response:

The impulse response (or unit sample response) hln] of a discrete-time LTI system
(represented by T) is defined to be the response of the system when the input is 8[n], that
is,

h{n] =T{8]n]} (2.30)
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B. Response to an Arbitrary Input:

From Eq. (1.51) the input x[n] can be expressed as
x[n] = Y x[k]&[n—k] (2.31)
Since the system is linear, the response y[n] of the system to an arbitrary input x[n] can be
expressed as

yin] =Tlalal) =T ¥ slk]aln k]

®

= Y x[k)T{8[n —k]} (2.32)

k= —x
Since the system is time-invariant, we have
hin—k] =T{8[n —k]) (2.33)
Substituting Eq. (2.33) into Eq. (2.32), we obtain

ylnl = ¥ x[k]h[n - k] (2.34)
k= -
Equation (2.34) indicates that a discrete-time LTI system is completely characterized by its
impulse response A[n].

C. Convolution Sum:

Equation (2.34) defines the convolution of two sequences x[n] and h[n] denoted by
y[n) =x[n)xh[n] = Y x[k]h[n—k] (2.35)
k= -x

Equation (2.35) is commonly called the convolution sum. Thus, again, we have the
fundamental result that the output of any discrete-time LTI system is the convolution of the
input x[n] with the impulse response h[n) of the system.

Figure 2-3 illustrates the definition of the impulse response A[n] and the relationship
of Eq. (2.35).

8(n] LT hin]
—_—r] |

x{n]

system vinl = x{n] * hin]

Fig. 2-3 Discrete-time LTI system.

D. Properties of the Convolution Sum:

The following properties of the convolution sum are analogous to the convolution
integral properties shown in Sec. 2.3.
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1. Commutative:

x[n]* h[n] =h[n]* x[n] (2.36)

2. Associative:
{x[n]*hy[n]}x hy[n] =x[n]«{h,[n] * hy[n]} (2.37)

3. Distributive:
x[n]x{h\[n]} +hy[n]} =x[n] = h\[n] +x[n]* hy[n] (2.38)

E. Convolution Sum Operation:

Again, applying the commutative property (2.36) of the convolution sum to Eq. (2.35),
we obtain

y[n] =h[n]*x[n] = ki h{k]x[n—k] (2.39)

which may at times be easier to evaluate than Eq. (2.35). Similar to the continuous-time
case, the convolution sum [Eq. (2.35)] operation involves the following four steps:

1. The impulse response h[k] is time-reversed (that is, reflected about the origin) to
obtain A[—k] and then shifted by n to form hln —k]=h[—(k —n)] which is a
function of k with parameter n.

2. Two sequences x[k] and hln — k] are multiplied together for all values of k with n
fixed at some value.

3. The product x[k]hln — k] is summed over all k to produce a single output sample
ylnl.
4. Steps 1 to 3 are repeated as n varies over — to o to produce the entire output y[n].

Examples of the above convolution sum operation are given in Probs. 2.28 and 2.30.

F. Step Response:

The step response s[n] of a discrete-time LTI system with the impulse response A[n] is
readily obtained from Eq. (2.39) as

s[n]=h[n]*u[n]=k=i_ h[k]u[n—k]=k=i_ hlk] (2.40)
From Eq. (2.40) we have
h(n] =s[n] —s[n-1] (2.41)

Equations (2.40) and (2.41) are the discrete-time counterparts of Eqs. (2.12) and (2.13),
respectively.

2.7 PROPERTIES OF DISCRETE-TIME LTI SYSTEMS
A. Systems with or without Memory:

Since the output y[n] of a memoryless system depends on only the present input x[n],
then, if the system is also linear and time-invariant, this relationship can only be of the
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form

y[n] = Kx{n] (2.42)
where K is a (gain) constant. Thus, the corresponding impulse response is simply

h{n] = Kd[n] (2.43)

Therefore, if Alny]# 0 for n, # 0, the discrete-time LTI system has memory.

B. Causality:

Similar to the continuous-time case, the causality condition for a discrete-time LTI
system is

h[n]=0 n<0 (2.44)

Applying the causality condition (2.44) to Eq. (2.39), the output of a causal discrete-time
LTI system is expressed as

y[n] = X h[k]x[n—k] (2.45)
k=0
Alternatively, applying the causality condition (2.44) to Eq. (2.35), we have
y[n] = Y x[k]h[n-k] (2.46)
k=—o

Equation (2.46) shows that the only values of the input x[n] used to evaluate the output
yln] are those for k <n.
As in the continuous-time case, we say that any sequence x[n] is called causal if
x[n] =0 n<0 (2.47a)
and is called anticausal if
x[n] =0 n=0 (2.47b)

Then, when the input x[n] is causal, the output y[n] of a causal discrete-time LTI system
is given by

y[n]=ki:0h[k]x[n—k]=ké)x[k]h[n—k] (2.48)
C. Stability:

It can be shown (Prob. 2.37) that a discrete-time LTI system is BIBO stable if its
impulse response is absolutely summable, that is,

o

Y ih[k]l< o (2.49)

k= —-=

2.8 EIGENFUNCTIONS OF DISCRETE-TIME LTI SYSTEMS

In Chap. 1 (Prob. 1.45) we saw that the eigenfunctions of discrete-time LTI systems
represented by T are the complex exponentials z", with z a complex variable. That is,

T{z"}=Arz" (2.50)
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where A is the eigenvalue of T associated with z”. Setting x[n] =z" in Eq. (2.39), we have

ol =Tl = T Akl =| T alk]z
k=—x k=-2
=H(z)z"=Az" (2.51)
where A=H(z)= i h[k]z™* (2.52)

k= —=

Thus, the eigenvalue of a discrete-time LTI system associated with the eigenfunction z" is
given by H(z) which is a complex constant whose value is determined by the value of z via
Eq. (2.52). Note from Eq. (2.51) that y[0] = H(z) (see Prob. 1.45).

The above results underlie the definitions of the z-transform and discrete-time Fourier
transform which will be discussed in Chaps. 4 and 6.

2.9 SYSTEMS DESCRIBED BY DIFFERENCE EQUATIONS

The role of differential equations in describing continuous-time systems is played by
difference equations for discrete-time systems.

A. Linear Constant-Coefficient Difference Equations:

The discrete-time counterpart of the general differential equation (2.25) is the Nth-
order linear constant-coefficient difference equation given by

k‘;oaky[n—k] =k§0bkx[n—k] (2.53)

where coefficients a, and b, are real constants. The order N refers to the largest delay of
y[n] in Eq. (2.53). An example of the class of linear constant-coefficient difference
equations is given in Chap. 1 (Prob. 1.37). Analogous to the continuous-time case, the
solution of Eq. (2.53) and all properties of systems, such as linearity, causality, and
time-invariance, can be developed following an approach that directly parallels the
discussion for differential equations. Again we emphasize that the system described by Eq.
(2.53) will be causal and LTI if the system is initially at rest.

B. Recursive Formulation:

An alternate and simpler approach is available for the solution of Eq. (2.53). Rear-
ranging Eq. (2.53) in the form

1 (M N
y[n] = w ,E’obkx[” -k] - k; a,y|n—-k] (2.54)

we obtain a formula to compute the output at time » in terms of the present input and the
previous values of the input and output. From Eq. (2.54) we see that the need for auxiliary
conditions is obvious and that to calculate y[n] starting at n =n,, we must be given the
values of y[n,— 1], ylny—2],..., y[n, — N] as well as the input x[n] for n > n,— M. The
general form of Eq. (2.54) is called a recursive equation since it specifies a recursive
procedure for determining the output in terms of the input and previous outputs. In the
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special case when N =0, from Eq. (2.53) we have
1 (M
y[n]=—{ bkx[n#k]} (2.55)
Ay \ k=0

which is a nonrecursive equation since previous output values are not required to compute
the present output. Thus, in this case, auxiliary conditions are not needed to determine

ylnl.

C. Impulse Response:

Unlike the continuous-time case, the impulse response h[n] of a discrete-time LTI
system described by Eq. (2.53) or, equivalently, by Eq. (2.54) can be determined easily as

1 M N
h(n] =a—0{k2=j0bk5[n—k] —kglakh[n——k] (2.56)

For the system described by Eq. (2.55) the impulse response A[#n] is given by

{b,,/ao O<n<M

) (2.57)
0 otherwise

h[n] = aiokiobk 8[n—k|=

Note that the impulse response for this system has finite terms; that is, it is nonzero for
only a finite time duration. Because of this property, the system specified by Eq. (2.55) is
known as a finite impulse response (FIR) system. On the other hand, a system whose
impulse response is nonzero for an infinite time duration is said to be an infinite impulse
response (IIR) system. Examples of finding impulse responses are given in Probs. 2.44 and
2.45. In Chap. 4, we will find the impulse response by using transform techniques.

Solved Problems

RESPONSES OF A CONTINUOUS-TIME LTI SYSTEM AND CONVOLUTION

2.1. Verify Egs. (2.7) and (2.8), that is,

(a) x()*h(t)=h{t)* x(t)
() {x(O*xh (D) xh() =x()*{h () hy(1))
(a) By definition (2.6)

x(1)xh(1) = [ x(r)h(t=7)dr
By changing the variable ¢ — r = A, we have

x(0)xh(t) = [ x(t=A)h(A)dr= [ R(A)x(t=A)dA =h(c)* x(1)

CHAP. 2]

2.2,

(b)

LINEAR TIME-INVARIANT SYSTEMS

Let x(1)* h(1) =f,(¢) and h (1) * hy(t) = f5(¢). Then
0 =[xyt =7y dr
and  (x() = h(O}eh(0) =f() 2 (D) = [ (@)t~ o) do
=fjm[fj;x(r)h,(0'—'r)d‘r]hz(t—tr)da
Substituting A = o — 7 and interchanging the order of integration, we have

() hi( ) o) = [ 2] [ A= 70y ar

Now, since
£2(0) = [ B0k = 2) d
we have
fat=1) = [ (Dot =7 = 2) da
Thus, (x() (D) ho(1) = [ x(7)fole = 7) dr
=x(1)* (1) =x (1) *{h (1) * hy(1)}
Show that
(@) x(1)*8(t) =x(¢)
(b) x(£)x8(r—ty) =x(t —ty)
(© x(rut)= [* x(r)dr
@ x()rut—19) = [ M) dr
(a) By definition (2.6) and Eq. (1.22) we have
x(z)*5(r)=j_°° x(7)8(1 = 1) dr=x(7)|so =x(1)
(b) By Egs. (2.7) and (1.22) we have
x(1)+8(1 —1g) =8(t = to) x x(1) = [ 8(r~t,)x(t = 7) dr
=x(t = 1) rur,=x(t — 1)
(¢) By Egs. (2.6) and (1.19) we have

x(1) *u(t) = f:x(f)u(r —7)dr= ]_’mx(f)df

. _J1 T<t
since wu(t r)—{o o

67

(2.58)
(2.59)

(2.60)

(2.61)
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(d) In a similar manner, we have
x()xu(t=10) = [ x(nyutt—7-t,)dr= [""x(r) dr

1 T<t—t,

since u(t —t—1,) = .
0 {0 T>t—t,

Let y(t)=x(t)= h(t). Then show that

x(t—t)*xh(t—1;) =y(t —t, - 13) (2.62)

By Eq. (2.6) we have
y(r)=x(z)*h(z)=f_°° x(r)h(1 —1)dr (2.63a)
and x(t=1)sh(t=1) = [ x(r=1)h(t=7~1})dr (2.63b)

Let 7 —t, =A. Then 7 =A + ¢, and Eq. (2.63b) becomes
x(t=t)<h(t=1) = [ x(A)h(t—1t, =1, = A) dA (2.63¢)

Comparing Egs. (2.63a4) and (2.63¢), we see that replacing ¢ in Eq. (2.63a) by t —¢, — t,, we
obtain Eq. (2.63¢). Thus, we conclude that

x(t=t)*h(t=1) =y(t—t,~ 1)

The input x(¢) and the impulse response A(r) of a continuous time LTI system are
given by

x(t)=u(t) h(t)=e “u(t),a>0

(a) Compute the output y(¢) by Eq. (2.6).
(b) Compute the output y(t) by Eq. (2.10).

(a) By Eq. (2.6)
y(1) =x(t)<h(t) = [ x(r)h(t=7)d7
Functions x(7) and hA(t — ) are shown in Fig. 2-4(a) for t <0 and ¢ > 0. From Fig. 2-4(a)
we see that for ¢ <0, x(7) and A(t — 7) do not overlap, while for ¢ > 0, they overlap from

r=0to 7=t Hence, for t <0, y(t) = 0. For ¢t > 0, we have

{ t
y(1) = fe"""‘”d'r=e“"f e dr

0 0
1 1
=e""~(e"" _ 1) - _(1 _e-~m)
a a
Thus, we can write the output y(¢) as

1
y(t) = =(1—e"")u(t) (2.64)
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(b) By Eq.(2.10)
y(1) =h(t)xx(0) = [ h(r)x(t=r)dr

Functions A(7) and x(¢ — 1) are shown in Fig. 2-4(b) for t <0 and ¢ > 0. Again from Fig.
2-4(b) we see that for ¢ <0, h(r) and x(¢ — 7) do not overlap, while for t > 0, they overlap
from 7= 0 to 7 =1. Hence, for 1 <0, y(¢t) = 0. For ¢t > 0, we have

1
y(1) = [lemerdr=—(1-e™)
0 «a
Thus, we can write the output y(t) as

1
y(1) = —(1-e"u(t) (2.65)

which is the same as Eq. (2.64).

x(1) h(T)

0 T 0 T
h(t-T) x(t-T)
t<0 <@
_/]---.1 | N
t [ : t [0} :
h(t - T) x(t-1)
t>0 | t>0
1 a
0 i T 0 ' t
(@) (b

Fig. 2-4
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Compute the. output y(¢) for_ a continuous-time LTI system whose impulse response Combining Eqs. (2.66a) and (2.66b), we can write y(¢) as
h(t) and the input x(¢) are given by
u w 1
h(t) =e"*u(t) x(t)y=eu(=t) a>0 y(t) = —e "l a>0 (2.67)
By Eq. (2.6) 2a

y(1) (1) % (1) = fw *(r)h(t = 7) dr which is shown in Fig. 2-5(b).

Functions x(7) and h(¢ — 7) are shown in Fig. 2-5(a) for t <0 and ¢ > 0. From Fig. 2-5(a) we 2.6. Evaluate y(1) =x(¢) h(1), where x(t) and h(1) are shown in Fig. 2-6, (a) by an
see that for t <0, x(7) and h(¢ — 7) overlap from 7= —o to 7 =t, while for ¢ > 0, they overlap alvtical techni and (’b) b hical thod ) ’
from 7= —o to 7 = 0. Hence, for ¢t <0, we have analytical technique, an Y a graphical method.
1
1] 1
y(t)=[ e e M Idr=e"[ e2dr=_——ex (2.66a)
f‘“’ f" 2a x(r) h(n
For ¢t > 0, we have
1
y(t) =f_omeare~a<r—r)d7.___efa:fj)xezmd1_= Ze—m (2.66b) | |
x o 1 2 3 1 0o 1 2 ‘

Fig. 2-6

—/ : (a) We first express x(¢) and h(t) in functional form:

x(t)=u(t) —u(t—-3) h(t) =u(t) —u(t—2)

Y

0
Then, by Eq. (2.6) we have
h(t-T1)
Y1) y(t)=x(t)*h(t)=f_ x(rYh(t —1)dr
(<0 = [" lu(r) —u(r = 3] [u(t = 7) —u(r = 7= 2)] dr
----l —=
__./] > — =fac u(f)u(r—r)dr~fx u(r)u(t—2—r)dr
t 0 T 0 ! —x _x
A7) (b) —fimu(‘r—3)u(t—‘r)dr+fixt1(7—3)u(t—2—7)d‘r
. 1 0<7<t,t>0
Since u(ryu(t—r)= {0 othe:'wi;e
>0 1 0<r<t—2,1>2
N3 -2- T
-//] u(rju(t =2-1 0 otherwise
0 g 1 3<r<t, >3
0 otherwise

I<r<t—=2,t>5

otherwise

g
u(r = 3)u(t—r) :{
Fig. 2-5 u(‘r—3)u(t-—2—7-)={

o -
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we can express y(t) as

y(t) = (fo’df)u(:) - ([()"zdf)u(:— 2)

[CHAP. 2

—(]:d-r)u(! ~3)+ (/:_zdr)u(t'—S)

=tu(t) = (t=2)u(t—2) - (t—3u(t—3) + (t - S)u(t - 5)

which is plotted in Fig. 2-7.

, (t-5)u(t-5)

)A0) ’
.
’ tu(t)
2+
1 =
1 I Il 1
) Y
0 2N, 3N, 4
1 F \\ N
N
N N
N
- UG- N
Fig. 2-7

=~y

(b) Functions h(7), x(7) and A(t — 1), x(7)h(t — 7) for different values of ¢ are sketched in
Fig. 2-8. From Fig. 2-8 we see that x(r) and h(¢ — 7) do not overlap for t <0 and ¢ > 5,
and hence y(t) =0 for t <0 and ¢ > 5. For the other intervals, x(7) and A(¢t — 7) overlap.
Thus, computing the area under the rectangular pulses for these intervals, we obtain

y(t) =

owvN ™ O

which is plotted in Fig. 2-9.

t<0
0<t<?2
2<t<3
3<t<5
5<t

2.7.  Let h(t) be the triangular pulse shown in Fig. 2-10(a) and let x(¢) be the unit impulse

train [Fig. 2-10(b)] expressed as

x()=5,(1)= L 8(t—nT)

n= -—o

(2.68)

Determine and sketch y(t) =h(t)* x(¢) for the following values of T: (a) T =3, (b)

T=2,(c) T=15.

CHAP. 2]
h(t)
1
_— 1 L L ;
1 ] 1 2 3 4 T
h(t-1)
1<0
- 1
L 'l 1 1 '} P 4>
'-2 1 10 1 2 3 4 T
t-2
h(t-71)
0<1<2
1
L A 1 1 L 1 :
2 1 ' 0 1 12 3 4 T
t-2
h(t-T)
2<t<3
1
L 1 L L 1 ' 1 V;
2 1 0 ' 1 2 3 4 5 T
-2
h(t-T)
3<r<5
]i—
L ' 1 1 i Il L L =
2 1 0 1 t 2 31 4 5 6 T
t-2
h(t-T)
S<t
L F
L 1 L 1 1 L L L 7;
2 1 0 1 2 3 ' 4 5 6 T
-2
Fig. 2-8
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x(T)

73

x(T)h(t - 1)

1<0

Yy

x(T)h(t - T)

O<r<2

Yy

x(Th(r - 1)

2<1<3

Yy

0 I 1
-2
x(T)h(1 - T)

3<t<S

Ay

0 1 ]

-

x(Th(t - T)

2

Yy

Yy
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h(r) 3,(n

(a)

(b)

(¢)

(a) (b)
Fig. 2-10

Using Egs. (2.59) and (2.9), we obtain

Il

y(1) h(r)*ar(t>=h(t)*’ » 5(,_,,r)]

n=—mx

If

)E h(t)*8(t—nT) = f} h(t—nT) (2.69)

n=—-ox n=-o

For T = 3, Eq. (2.69) becomes

()= ¥ h(t-3n)
n=-x
which is sketched in Fig. 2-11(a).
For T =2, Eq. (2.69) becomes

y(t)y= ¥ h(1-2n)
ne o
which is sketched in Fig. 2-11(b).
For T = 1.5, Eq. (2.69) becomes

y(t) = i h(t—1.5n)

which is sketched in Fig. 2-11(c). Note that when T <2, the triangular pulses are no
longer separated and they overlap.
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(0]

~y

B /

2.8.

R ;

()
Fig. 2-11

If x,(t) and x,(¢) are both periodic signals with a common period T, the convolution
of x (1) and x,(t) does not converge. In this case, we define the periodic convolution
of x,(z) and x,(r) as

(a)
(b)

(c)

T
f(1) =x1(t)®x2(:)=f0 x(7)x,(t ~ 7)dr (2.70)
Show that f(¢) is periodic with period T,,.
Show that
a+T,
f() =[xzt = 7)dr (2.71)
for any a.

Compute and sketch the periodic convolution of the square-wave signal x(z)
shown in Fig. 2-12 with itself.
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RID)

0 To To 2Ty

*)
Fig. 2-13

-~y

x(1)
A
>
To Ty 0 Ty T t
2 B
Fig. 2-12
x(1) x(1)
A
> >
> =
oIy 0 oo T o T 0 oo . 1
2 2 2 2
1 ' , . !
' x(r-7) 1 T ' x(r - 7) '
! ! 0<r<? | ' v i<
i 1 2 . . [
1
= T AF =
' 1 ' ) !
1 1 \ 1 !
1 1 h ! !
' 1 \ l !
1 1 | . > " 1 ! >
> T <>
Ty 0 1 noy T T .
5
1o [ (] - 12 [
] ] (' x( ) [ | 1 | 1 [}
x(Tx(-71) . T
o Vo<l Yy x()x(r-7) Y Peicn
L 1 [ 2 [ ' o2
1o 1 1o 1 Al 1
1 L | > | 1 >~
Ty 0 ¢+ T To T Ty 0 Ty To T
2 2 2
(a)
£
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(a) Since x,(1) is periodic with period T, we have
X(t+Ty—71)=x,(t —7)

Then from Eq. (2.70) we have

F(1+T,) = jor"x,(f)xz(z +Ty—1)dr

=fO’°x,(r)xz(z—f)df=f(t)

Thus, f(t) is periodic with period 7.

(b) Since both x,(7) and x,(r) are periodic with the same period Ty, x,(7)x,(t —7) is also
periodic with period T,. Then using property (1.88) (Prob. 1.17), we obtain
(1) =[x =rydr= [T Tx )yt - 1) dr
(1] a
for an arbitrary a.
(c) We evaluate the periodic convolution graphically. Signals x(7), x(t — 7), and x(7)x(t — 1)
are sketched in Fig. 2-13(a), from which we obtain
-1 DTS2 Ty =)
t) = an t+ =f(t
—A%(t—T,) Ty/2<t<T, 0

which is plotted in Fig. 2-13(b).

PROPERTIES OF CONTINUOUS-TIME LTI SYSTEMS

2.9.

2.10.

The signals in Figs. 2-14(a) and (b) are the input x(¢) and the output y(r), respec-
tively, of a certain continuous-time LTI system. Sketch the output to the following
inputs: (a) x(t — 2); (b) ix(¢).

(a) Since the system is time-invariant, the output will be y(¢t — 2) which is sketched in Fig.
2-14(c¢).
(b) Since the system is linear, the output will be 3y(¢) which is sketched in Fig. 2-14(d).

Consider a continuous-time LTI system whose step response is given by

s(t)=e""u(t)
Determine and sketch the output of this system to the input x(¢) shown in Fig.
2-15(a).

From Fig. 2-15(a) the input x(¢) can be expressed as
x()=u(t—1)—u(r-3)
Since the system is linear and time-invariant, the output y(¢) is given by
y(t)y=s(t—1)~s(t-3)
=e U Dy(t—1) —e " Dy(t-3)

which is sketched in Fig. 2-15(b).
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-~y

-y

> a1 1
-1 0 t 1 0 1 2
(a) (b)
y1-2)
2
1
-1 0 1 2 3 4 5 IV -1 0 | 2
(c) (@)
Fig. 2-14
x(1) y()
1 [ o I\'
. M Bl i W
0 1 3 4 t ] 1 2
gl
(a)
®)

2.11. Consider a continuous-time LTI system described by (see Prob. 1.56)

Fig. 2-15

T oors
Y =T} = 5 [ x(r)ar

(a) Find and sketch the impulse response A(t) of the system.
(b) Is this system causal?

(a) Equation (2.72) can be rewritten as

| S 1 w12
vy =7 [T xmydr— o [ k() dr

(2.72)

(2.73)
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Using Egs. (2.61) and (2.9), Eq. (2.73) can be expressed as

y(1) = -IT—x(r)*u(,+ ;) _ lTx(t)*u(t— _g)

1 T T
=x(l)*? u(!+ 3)—u(t—5)]=x(l)*h(t) (2.74)
Thus, we obtain
1 T " (yr ~T/2<t<T/2
h(t)_? u(t+5)—u(t—-5”—{0 otherwise (275)

which is sketched in Fig. 2-16.

(b) From Fig. 2-16 or Eq. (2.75) we see that h(r)# 0 for ¢+ <0. Hence, the system is not
causal.

h(r)

173 0 ™m

Fig. 2-16

2.12. Let y(¢) be the output of a continuous-time LTI system with input x(¢). Find the
output of the system if the input is x'(t), where x'(¢) is the first derivative of x(¢).

From Eq. (2.10)

y(1) =h(1)*x(1) = f:h("r)x(t —7)dr

Differentiating both sides of the above convolution integral with respect to ¢, we obtain
d ® o d
() = — - = — -
y()=— [/_wh(f)x(t 7) d'r] | (a(r)x (1 =) dn)

= [ h(r)x (1 =7y dr = h(1) £ x'(1) (2.76)

which indicates that y'(1) is the output of the system when the input is x'(¢).

2.13. Verify the BIBO stability condition [Eq. (2.21)] for continuous-time LTI systems.
Assume that the input x(¢) of a continuous-time LTI system is bounded, that is,

[x(£)l <k, all 1 (2.77)



80

2.14.

LINEAR TIME-INVARIANT SYSTEMS [CHAP. 2

Then, using Eq. (2.10), we have

@r=|[ h)xa =) as

< /x h(r)x(t—7)ldr

= [Tl = dr <k, [ ()l dr

since |x(t — )l <k, from Eq. (2.77). Therefore, if the impulse response is absolutely inte-
grable, that is,

[ ()l dr =K<

then |y(¢) < k,K = k, and the system is BIBO stable.

The system shown in Fig. 2-17(a) is formed by connecting two systems in cascade. The
impulse responses of the systems are given by h,(t) and h,(t), respectively, and

hy(t)=e *u(t) hy(t) =2e™'u(t)
(a) Find the impulse response h(t) of the overall system shown in Fig. 2-17(b).
(b) Determine if the overall system is BIBO stable.

x(t) w(t) )

(@
x(1) :r—1h(t) 370] -
L

®)
Fig. 2-17

(a) Let w(t) be the output of the first system. By Eq. (2.6)

w(t) =x(t)*h(t) (2.78)
Then we have
y(1) =w(1)xhy(t) = [x(£) = hy(2)] * hy(1) (2.79)
But by the associativity property of convolution (2.8), Eq. (2.79) can be rewritten as
y(t) =x(t) = [A(1) * hy(1)] =x(t) = h(t) (2.80)
Therefore, the impulse response of the overall system is given by
h(t) =hy(1) * hy(1) (2.81)

Thus, with the given & ,(¢) and h,(t), we have
h(o) = [ bt =1y dr= [ e u(r)2eVu(i ~ 1) dr
P t-1)d =2e"[ ‘e d ]ut
e fﬂme u(t)u(t—r)dr j(; Tiu(t)

=2(e " ~e M)u(t)
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(b) Using the above h(t), we have

Cn(n)ldr =2 (e - ’2*d=2[x”d— x*d]
fﬂcl(r)lr '/;(e e *")ydr j(-]e T /Oe T
=2(1—%)=1<oc

Thus, the system is BIBO stable.

EIGENFUNCTIONS OF CONTINUOUS-TIME LTI SYSTEMS

2.15. Consider a continuous-time LTI system with the input-output relation given by

y(0)= [ e x(r)dr (2.82)

(a) Find the impulse response A(t) of this system.
(b) Show that the complex exponential function e*' is an eigenfunction of the system.

(¢) Find the eigenvalue of the system corresponding to e*' by using the impulse
response h(t) obtained in part (a).

(a) From Eq. (2.82), definition (2.7), and Eq. (/.2]) we get
{
h(l)=f e‘“‘”&(f)dT=€/“/T)|‘-:()=€*’ t>0
Thus, h(t)=e 'u(t) (2.83)
(b) Let x(t)=e"". Then

y(y=[ e erdr=e [ et dr

- —x

- 1 esl = pe’!
s+1

ifRes> —1 (2.84)

Thus, by definition (2.22) e* is the eigenfunction of the system and the associated
eigenvalue is

1

A= 2.85
s+1 ( )
(¢) Using Egs. (2.24) and (2.83), the eigenvalue associated with e is given by
A=H(s)= [ h(r)e~dr=[ eu(r)e "dr
=/me"‘“”’d7= ifRes> —1
0 s+
which is the same as Eq. (2.85).
2.16. Consider the continuous-time LTI system described by
1 +v71/2
y(t)== x(r)dr (2.80)
T -1,
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(a) Find the eigenvalue of the system corresponding to the eigenfunction e*'.
(b) Repeat part (a) by using the impulse function A(¢) of the system.
(a) Substituting x(7) =¢e°" in Eq. (2.86), we obtain

1 1+T/2

y(1) e dr

T 1=T/2

1

= 7(6’"7/2 _ e—sT/Z) esl =A E,’”
k)

Thus, the eigenvalue of the system corresponding to e*' is

1 :
A=ﬁ:(e:7/2_e*57‘/2) (2.87)

(b) From Eq. (2.75) in Prob. 2.11 we have

1 T T _
h(t)=—u(t+—)-—u(/——) _yT T/2<t<T/2
T 2 2 0 otherwise
Using Eq. (2.24), the eigenvalue H(s) corresponding to e*' is given by
® I ) 1
H(s) = h Stdr = — STy = — sT/2 _ ,~sT/2
(s) f_m (r)e*7dr ng/[‘/ze T= (e e™sT/?)

which is the same as Eq. (2.87).

2.17. Consider a stable continuous-time LTI system with impulse response A(¢) that is real
and even. Show that cos wt and sin wt are eigenfunctions of this system with the same
real eigenvalue.

By setting s =jw in Egs. (2.23) and (2.24), we see that e/’ is an eigenfunction of a
continuous-time LTI system and the corresponding eigenvalue is

A=H(jw)= [  h(r)e ™ dr (2.88)
Since the system is stable, that is,

[ ()l dr <o

then [ ih(zye s dr= [ h(r)lle 7 dr = [ Ih(r)ldr <
since |e /*7| = 1. Thus, H(jw) converges for any w. Using Euler’s formula, we have

H(jw) = f_°° h(r)e ™ dr = fj’ h(7)(cos wr —jsin wr) d7

= [" h(r)coswrdr—j[  h(r)sinwrdr (2.89)
Since cos wT is an even function of 7 and sin wt is an odd function of 7, and if A(¢) is real and
even, then h(7)cos wr is even and h(7)sin w7 is odd. Then by Eqgs. (1.75a) and (1.77), Eq.
(2.89) becomes

H(jw) =2 h(7)cos wr dr (2.90)
0
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Since cos w7 is an even function of w, changing w to —w in Eq. (2.90) and changing j to —j in
Eq. (2.89), we have

H(—jw) = H(jw)* = 2]:h(r)cos( —wr)dr

=2j:h('r)coswrd'r=H(jw) (2.91)
Thus, we see that the eigenvalue H(jw) corresponding to the eigenfunction e’“’ is real. Let the
system be represented by T. Then by Egs. (2.23), (2.24), and (2.91) we have
T{e®'} =H(jw) e’ (2.92a)
T{e '} =H(—jw) e = H(jo)e ' (2.92b)
Now, since T is linear, we get
T{cos wt} = T{3(e™ +e7/*")} = §T{e™'} + 3T{e '}

=H(jw){3(e™" +e7")} = H(jw) cos wt (2.93a)
and T{sin wt} =T{2ij(e’“” —e""‘”)} = %T{e"‘”} - zijT{e“"“’}
=H(jw){2ij(ei“"—e—"“”)} =H(jw)sin wt (2.93b)

Thus, from Eqgs. (2.93a) and (2.93b) we see that cos wt and sin wt are the eigenfunctions of the
system with the same real eigenvalue H(jw) given by Eq. (2.88) or (2.90).

SYSTEMS DESCRIBED BY DIFFERENTIAL EQUATIONS

2.18. The continuous-time system shown in Fig. 2-18 consists of one integrator and one
scalar multiplier. Write a differential equation that relates the output y(¢) and the
input x(¢).

(1) e f (1)

¢l
Fig. 2-18

Let the input of the integrator shown in Fig. 2-18 be denoted by e(r). Then the
input-output relation of the integrator is given by

y(1) = [ e(r)dr (2.94)
Differentiating both sides of Eq. (2.94) with respect to ¢, we obtain

—dyd(tt) = (1) (2.95)
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Next, from Fig. 2-18 the input e(¢) to the integrator is given by

e(t)y =x(t) —ay(t) (2.96)
Substituting Eq. (2.96) into Eq. (2.95), we get
dy(t
D () et
dy(t
or yd(t ) +ay(t) =x(t) (2.97)

which is the required first-order linear differential equation.

The continuous-time system shown in Fig. 2-19 consists of two integrators and two
scalar multipliers. Write a differential equation that relates the output y(r) and the
input x(¢).

X0 W | f . f 0

Let e(r) and w(r) be the input and the output of the first integrator in Fig. 2-19,
respectively. Using Eq. (2.95), the input to the first integrator is given by

aw(t)
e(t) = 0 = —aw(t) —a,y(t) +x(1) (2.98)
Since w(¢) is the input to the second integrator in Fig. 2-19, we have
dy(1)
1) = 2.99
win) = = (2.99)
Substituting Eq. (2.99) into Eq. (2.98), we get
d’y(t) dy(t)
PE ~a, i —a,y(t) +x(t)
d?y(t) dy(1)
or o a@— +a,y(t) =x(t) (2.100)

which is the required second-order linear differential equation.

Note that, in general, the order of a continuous-time LTI system consisting of the
interconnection of integrators and scalar multipliers is equal to the number of integrators in
the system.
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2.20. Consider a continuous-time system whose input x(¢) and output y(¢) are related by
dy(1)
dt

+ay(t)=x(t) (2.101)

where a is a constant.
(@) Find y(¢) with the auxiliary condition y(0) =y, and
x(t) =Ke *u(t) (2.102)
(b) Express y(t) in terms of the zero-input and zero-state responses.
(a) Let
y(8) =y, (£) +yu(t)

where y,(¢) is the particular solution satisfying Eq. (2.101) and y,(1) is the homogeneous
solution which satisfies

d}’h(’)
dt

+ay,(t) =0 (2.103)

Assume that
y(t) =Ae t>0 (2.104)
Substituting Eq. (2.104) into Eq. (2.101), we obtain

—bAe " +ade " =Ke ™
from which we obtain 4 =K /(a — b), and

yp(t) = —e ™" >0 (2.105)

To obtain y,(t), we assume
yu(t) = Be*
Substituting this into Eq. (2.103) gives
sBe*' +aBe’' = (s +a)Be' =0

from which we have s = —g and
y,(t) =Be
Combining y,(1) and y,(¢), we get
y(t) =Be " + a_be"" t>0 (2.106)
From Eq. (2.106) and the auxiliary condition y(0) =y,, we obtain
B K
=Yo a—-b

Thus, Eq. (2.106) becomes

y(t) = (yo— e b t>0 (2.107)



86

2.21,

LINEAR TIME-INVARIANT SYSTEMS [CHAP. 2

For 1 <0, we have x(¢) =0, and Eq. (2.101) becomes Eq. (2.103). Hence,
y(t) =Be 1 <0

From the auxiliary condition y(0) =y, we obtain
y(t) =y,e t<0 (2.108)

(b) Combining Egs. (2.107) and (2.108), y(1) can be expressed in terms of y,(1) (zero-input
response) and y, (1) (zero-state response) as

y(1) =ype = (e — e~ ul1)

a—b
=yalt) +y,(1) (2.109)
where Va(t)y =y (2.110a)
yalt) = = (e = e u(1) (2.1106)

Consider the system in Prob. 2.20.
(a) Show that the system is not linear if y(0) =y, # 0.
(b) Show that the system is linear if y(0) = 0.

(a) Recall that a linear system has the property that zero input produces zero output (Sec.
1.5E). However, if we let K =0 in Eq. (2.102), we have x(¢) =0, but from Eq. {2.7109) we
see that

y(t)=ye ¥+0 yo#0
Thus, this system is nonlinear if y(0) =y, # 0.

{b) If y(0) =0, the system is linear. This is shown as follows. Let x,(+) and x,(¢) be two input
signals and let y,(¢+) and y,(1) be the corresponding outputs. That is,

dy,(1)
+ay(1) =x(1) (2.111)
dt
dy,(t)
2} +ay,(1) =x,(1) (2.112)
with the auxiliary conditions
yi(0) =y,(0) =0 (2.113)

Consider
x(t) =a;x,(1) +a,x,(1)
where a and «, are any complex numbers. Multiplying Eq. (2.1/1) by «, and Eq. (2.112)
by «, and adding, we see that
y(t) =a;y,(1) +a,y,(1)
satisfies the differential equation
dy(1)
dt

+ay(t) =x(t)

and also, from Eq. (2.113)
y(0) = a,y,(0) +a,y,(0) .=0

Therefore, y(r) is the output corresponding to x(1), and thus the system is linear.
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Consider the system in Prob. 2.20. Show that the initial rest condition y(0) =0 also
implies that the system is time-invariant.

Let y,(¢) be the response to an input x,(t) and

x(t) =0 t<0 (2.119)
dy (¢t
Then y;(t ) +ay (1) =x,(t) (2.115)
and y,(0) =0 (2.116)
Now, let y,(¢) be the response to the shifted input x,(¢) =x (¢t — 7). From Eq. (2.1/4) we have
x,(1) =0 t<7 (2.117)
Then y,(r) must satisfy
dy,(t
;f ) +ay,(t) =x5(1) (2.118)
and y,(r)=0 (2.119)
Now, from Eq. (2.115) we have
dy (t—7)
—‘T~ +ay(t—1)=x,(t—7) =x,()

If we let y,(¢) =y,(t — 7), then by Eq. (2.116) we have
yo(r) =y (r=7)=y,(0)=0
Thus, Egs. (2.118) and (2.119) are satisfied and we conclude that the system is time-invariant.

Consider the system in Prob. 2.20. Find the impulse response h(t) of the system.

The impulse response A(t) should satisfy the differential equation

dh(t)
—— +ah(1) =8(1) (2.120)
The homogeneous solution 4,(¢) to Eq. (2.120) satisfies
dh, (1)
+ah, (1) =0 (2.121)
dt
To obtain h,(1) we assume
h,(t) = ce*
Substituting this into Eq. (2.121) gives
sce*' +ace*' = (s +a)ce® =0
from which we have s = —a and
h,(t) = ce™u(t) (2.122)

We predict that the particular solution 4 ,(¢) is zero since 4,(¢) cannot contain (). Otherwise,
h(t) would have a derivative of 8(¢) that is not part of the right-hand side of Eq. (2.120). Thus,

h(t) =ce "u(t) (2.123)
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To find the constant ¢, substituting Eq. (2.123) into Eq. (2.120), we obtain
d
E[ce"”u(l)] +ace”"u(t) =58(t)

du(t)

at

or —ace “'u(t) +ce” +ace "u(t) =6(t)

Using Eqs. (1.25) and (/.30), the above equation becomes

du(t)
ce™ T =ce " 8(t) =cd(1)=8(1)
so that ¢ = 1. Thus, the impulse response is given by

h(t) =e u(t) (2.124)

Consider the system in Prob. 2.20 with y(0) = 0.

(a) Find the step response s(1) of the system without using the impulse response
h(1).

(b) Find the step response s(f) with the impulse response h(r) obtained in Prob.
2.23.

(¢) Find the impulse response A(t) from s(r).
(a) In Prob. 2.20
x(t) =Ke ®u(t)

Setting K=1,b=0, we obtain x(¢)=u(s) and then y(¢)=s(¢). Thus, setting K =1,
b =0, and y(0) =y, =0 in Eq. (2.109), we obtain the step response

1
s(1) = —(1=e™)u(1) (2.125)
(b) Using Egs. (2.12) and (2.124) in Prob. 2.23, the step response s(¢) is given by

s(t) = [fmh(r) dr = f_’xe-'"u(f) dr

= [j;[e’”*df]u(t) = %(1 —e *)u(1)

which is the same as Eq. (2.125).
(¢) Using Eqs. (2.13) and (2.125), the impulse response h(t) is given by

dJl
(1) =s'(1) = d—[;(l —e"”)u(t)]

t
1
=e Mu(t)+ —(1—e )u'(t)
a
Using Egs. (1.25) and (1.30), we have
1 1 1
;(1 —e (1) = —a—(l —e ) 8(1) = Z(l -1)é(t)=0

Thus, h(t) =e “u(t)
which is the same as Eq. (1.124).

CHAP. 2] LINEAR TIME-INVARIANT SYSTEMS 89

2.25. Consider the system described by

y' (1) +2y(t)=x(t) +x'(1) (2.126)

Find the impulse response A(¢) of the system.
The impulse response A(¢) should satisfy the differential equation

R(t) +2h(1) =8(1) + (1) (2.127)

The homogeneous solution 4,(t) to Eq. (2.127) is see Prob. 2.23 and Eq. (2.122)]
ha(t) =cie™ M u(t)
Assuming the particular solution 4,(r) of the form
hp(t) =c,8(1)
the general solution is
h(t) =ce™2u(1) +c,8(t) (2.128)

The delta function 8(t) must be present so that A'(¢) contributes 8'(¢) to the left-hand side of
Eq. (1.127). Substituting Eq. (2.128) into Eq. (2.127), we obtain

~2cie™2u(t) +cre MU (1) +¢,8'(1) + 2cieFu(t) + 2¢,8(¢)
=8(1) +8'(1)
Again, using Egs. (1.25) and (1.30), we have
(e, +2¢,)8(1) +c,8'(1) =8(t) +6'(1)

Equating coefficients of 8(¢) and 8'(1), we obtain

¢ t+2¢c,=1 ¢, =1
from which we have ¢, = —1 and c, = 1. Substituting these values in Eq. (2.128), we obtain
h(1) = —e~2u(t) +6(1) (2.129)

RESPONSES OF A DISCRETE-TIME LTI SYSTEM AND CONVOLUTION

2.26. Verify Egs. (2.36) and (2.37), that is,

(a) x[n]*hln]=h[n]*x[n]
(b) {x[nlx h\[nl}+ hyln]=x[n}*{h\[n]* h,[n]}}

(a) By definition (2.35)

£

x[n]xh[n)= 3 x[k]h[n k]

k=—w

By changing the variable n — k = m, we have

o

x[n]xh[n)= Y. x[n-m]h[m]= i h[mlx[n—m]=h[n]*x[n]

ms= —w m=—x

(b) Let x[n}* h|ln]l=f[n] and A [n}* h,ln]=f,In). Then

o

Alnl= X x[k)m[n-k]

k= —o
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and  (xlnl*{nl)sholn] =filn]eholnl= 5 fi{mlhsln—m]

m=-—x

- ¥ [ r x(k]hllm—kl]hz[n-ml

m=-—o| k=~

Substituting r = m — k and interchanging the order of summation, we have

(<{n]*m{n])*hyln] = ¥ x[k]( r h,[r]hz[n—k-r])

Now, since
flnl= T mlrihsdn=r]
we have
fln-kl= T lrlhfn—k-r]
Thus, [x[n]*hl[n]}*hz[n]=k§;mx[k]f2[n—k]

=x[n]x foln} =x[n]«{h[n]* h;[n]}

2.27. Show that
(a) x[n}*8(n]=xln]
b) x[n}x8ln —nyl=x[n—n,l

(¢) x[nlxulnl= Y x[k]

(d) x(nlxuln—nyl= Y, x[k]

k= —x
(a) By Eq. (2.35) and property (1.46) of 8{n — k] we have

%

x[n]*8[n)= Y x[k)8[n-k])=x[n]

k=—w
(b) Similarly, we have

%

x[n]*8[n—ny]= Y x[k]8[n—k—ny]l=x[n-ny]

k= -
(c¢) By Eq. (2.35) and definition (/.44) of u[n — k] we have
x[n)*u[n]= ki@x[k]u[n -k]= k:}:‘imx[k]
(d) In a similar manner, we have
x[n)xu[n—ny] = kixx[k]u[n —k—nyl= r:zj:x[k]
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(2.130)
(2.131)

(2.132)

(2.133)
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2.28. The input x{n] and the impulse response h{n] of a discrete-time LTI system are given

by

x[n] =uln] h[n] =a"u[n] 0<a<l

(a) Compute the output y[n] by Eq. (2.35).
(b) Compute the output y[n] by Eq. (2.39).
(a) By Eq. (2.35) we have

o

ylnl=x[n]xh(n]= % x[klh[n—k]

k=—o

Sequences x[k] and h(n — k] are shown in Fig. 2-20(a) for n <0 and n > 0. From Fig.
2-20(a) we see that for n <0, x[k] and A[n — k] do not overlap, while for n > 0, they
overlap from k =0 to k =n. Hence, for n <0, y[n] = 0. For n > 0, we have

y[n]l= i a"k
k=0

Changing the variable of summation k to m =n — k and using Eq. (1.90), we have

0 n ]_an+l
fnl= ¥ a"= T a"=—
m=n m=0 -a
x[k]
-; TO 12 3 ] :
yin)
1
hln - k] Y P - -
| B lll
1
QYIIII= - . — I |
n 0 k 2-1 01234 n
b)
hln - k)
1 n>0
PR, 7”34_ .
0 n k

Fig. 2-20
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Thus, we can write the output y[n] as
l_anﬂ
y[n]=(———)u[n] (2.134)

l-«a

which is sketched in Fig. 2-20(b).
(b) By Eq. (2.39)

y[n1=h[n1*x[n]=k_>§_ Ak ]xln - k]

Sequences h[k] and x[n — k] are shown in Fig. 2-21 for n < 0 and n > 0. Again from Fig.
2-21 we see that for n <0, h[k] and x[n — k] do not overlap, while for n > 0, they overlap
from k =0 to k =n. Hence, for n <0, y[n]=0. For n > 0, we have

l_an+l

yin]= La*=—
k=0 Ta

Thus, we obtain the same result as shown in Eq. (2./34).

h(k]

il

n

x[n - k]
i -
-1 0 n ;
Fig. 2-21

2.29. Compute y[n]=x[n]* h(n], where

(a) x[n)=a"uln], h{n]=B"uln]
(b) x[n)=a™uln), Ainl=a"u[-n),0<a<1

CHAP. 2] LINEAR TIME-INVARIANT SYSTEMS 93

(a) From Eq. (2.35) we have

o

ylnl= L xlklhln-k]= ¥ atulk]B"*u[n k]

k=~ k=—x
= X B ulk]u[n - k]
k=—o
Since ulklu[n-k]= {(1) gtﬁe,;wsisne
we have
n n a\k
y[n]= Za"ﬁ""‘=ﬂ"2(—) n=0
k=0 k=0\B
Using Eq. (1.90), we obtain
"1__(a/B)n+l
yin) =¥ T (aym) 1" a*p (2.135a)
B"(n+1)u[n] a=8
n+l __ _n+l
or yin] = | B=a B o uln] a*p (2.135b)
B"(n+ 1)u[n] a=p
(b)
y[nl= ¥ x[kla[n-kl= ¥ oa*u[kla " Pu[—(n-k)]
k=—o =—
= Y o "a*u[klu[k - n]
k=-—o
For n <0, we have
1
ulkulk —n] = {0 gtﬁel;wise
Thus, using Eq. (1.91), we have
y[n]l=a" ¥ a*=a" ¥ (a?)"= ‘ 3 n<0 (2.136a)
k=0 k=0 I-a
For n > 0, we have
ulk Julk —n] = {(1) gtﬁel:wise

Thus, using Eq. (1.92), we have

2n n

vinl=a" L (a?) =a" = n=0 (2.136b)
k=n -a
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Combining Egs. (2.136a) and (2.136b), we obtain

o

y[n]= . all n (2.137)
which is sketched in Fig. 2-22.
yln]
Q!IIII l]l't! .
2-101 23 n
Fig. 2-22

2.30. Evaluate y[n]=x[n]* hln], where x[n] and h{n] are shown in Fig. 2-23, (a) by an
analytical technique, and (b) by a graphical method.

x(n) hln]

-1 001 2 3 n 1012 n
Fig. 2-23

(a) Note that x[n] and h[n] can be expressed as
x[n]=8[n)+8[n—-11+8[n—-2]+8[n-3]
h[n]=68[n)+8[n—-1]+8[n-2]

Now, using Egs. (2.38), (2.130), and (2.131), we have

x[n)xh[n] =x[n]*{8[n]+8[n~-1])+8[n~2]}
=x[n]*8[n)+x[n]*8[n—-1]+x[n]*8[n-2]}
=x[n]+x[n~-1]+x[n-2]

Thus, y[n]=8[n]+8[n—-1]+8[n-2]+68[n-3]
+8[n—1]1+86[n—-2]+8[n—-3])+6[n—4]
+8[n—-2]+6[n-3]+8[n—4]+6[n-35]

or y[n]=6[n}+28[n-1]+38[n—-2]+38{n—-3]+28[n—-4]+8[n-5]}

or y[n}=1{1,2,3,3,2,1}

CHAP. 2]
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x(k]hln - k]
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012 3 4 k
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0123435 k
x[k}Aln - k)

n=4
—0—0—0—[—]—4—0-4——>
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Fig. 2-24
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x{klaln - k)

-1 01 23 45 k
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(b) Sequences hlk), x[k] and h[n — k], x[k)hln — k] for different values of n are sketched in

Fig. 2-24. From Fig. 2-24 we see that x[k] and h{n — k] do not overlap for n <0 and From Eq. (2.41) the impulse response h[n] is given by

n>5, and hence y[n]=0for n <0and n>5. For 0<n <5, x[k] and h[n — k) overlap. h[n)=s{n]-s[n—-1]=a"u[n] —a" 'u[n-1]
Thus, summing x[kJhln — k] for 0 <n < 5, we obtain
={8[n) +a™u[n—-11) —a" 'u[n-1]
y[0] =1 y[1]=2 y[2]=3 y[3]=3 y[4]=2 y[5]=1 .
=8[n)-(1-a)a" 'u[n—-1]
or

y[n]=1{1,2,3,3,2,1})
L - PROPERTIES OF DISCRETE-TIME LTI SYSTEMS
which is plotted in Fig. 2-25.

2.33. Show that if the input x[n] to a discrete-time LTI system is periodic with period N,

yin) then the output y[n] is also periodic with period N.
3k Let A[n] be the impulse response of the system. Then by Eq. (2.39) we have
2r y[nl= X h[k]x[n-k]
k= -
lr Let n=m + N. Then
—_————o _ 1 _
MR > y[m+N] k:‘:_wh[k]x[m+N k] k;—wh[k]x[(m k) +N]
Fig. 2-25

Since x[n] is periodic with period N, we have
x[(m—-k)+N]=x[m—k]

Thus, ylm+N]= E: hlk]lx[m—k]=y[m]

k=—w

2.31. If x,[n] and x,[n] are both periodic sequences with common period N, the convolu-
tion of x,[n] and x,[n] does not converge. In this case, we define the periodic

convolution of x,[n] and xz[n] as which indicates that the output y[n] is periodic with period N.

N-1
fln] =x,[n] ®x,[n] = ¥ x,[k]x,[n—k] (2.138) 2.34. The impulse response hln] of a discrete-time LTI system is shown in Fig. 2-26(a).
k=0 Determine and sketch the output y[n] of this system to the input x[n] shown in Fig.

Show that f[n] is periodic with period N. 2-26(b) without using the convolution technique.

From Fig. 2-26(b) we can express x[n] as
x[n]=8[n—-2]-8[n-4]

Since x,[n] is periodic with period N, we have
x[(n=k)+N]=x,[n—-k]
Then from Eq. (2.138) we have

N-1 N-1 hin] xln)
fln+N]= kg:ox,[k]xz[n+N—k]= kz_:oxl[k]xz[(n—k)+N]
= T s klnl(n—k)] =f(n]
k=0

Thus, f[n] is periodic with period N.

2.32. The step response s[n] of a discrete-time LTI system is given by
s|n] = a"u[n] O<ax<l
(a) (&)

Find the impulse response h{n] of the system. )
Fig. 2-26
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Since the system is linear and time-invariant and by the definition of the impulse response, we
see that the output y[n] is given by

y[n]=h{n-2]—h{n-4]
which is sketched in Fig. 2-27.

hln - 2]

yln]=hln-2]- hln-4]

h(n-4]

Fig. 2-27

2.35. A discrete-time system is causal if for every choice of n, the value of the output
sequence y[n] at n =n, depends on only the values of the input sequence x[n] for
n < n, (see Sec. 1.5D). From this definition derive the causality condition (2.44) for a
discrete-time LTI system, that is,

h[n]=0 n<0
From Eq. (2.39) we have

yinl= ¥ klxln-k]

k= -

-1 »
=k§ h[k]x[n—k]+k¥0h[k]x[n—k] (2.139)

Note that the first summation represents a weighted sum of future values of x[n]. Thus, if the
system is causal, then

-1
Y h[klx[n—-k]=0

k= -

CHAP. 2]

2.36.

2.37.

2.38.
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This can be true only if
h[n]=0 n<0
Now if h[n] =0 for n <0, then Eq. (2.139) becomes

o0

ylnl= ¥ hlk]x[n k]

k=0

which indicates that the value of the output y[n] depends on only the past and the present
input values.

Consider a discrete-time LTI system whose input x[n] and output y[n] are related by
n

y[n] = Y 2% "x[k+1]

Is the system causal?
By definition (2.30) and Eq. (1.48) the impulse response h[n] of the system is given by
h[n]= )i 2k=ng[k+ 1] = )": 27D §[k + 1] =27 }n: 8[k+1]
k= - k=—» k=-x
By changing the variable k + 1 = m and by Eq. (1.50) we obtain
h[n]=2"(*D ni‘ 8[m]=2""*Yyu[n +1] (2.140)

m=—x

From Eq. (2.140) we have A[ — 1] =u[0] = 1 # 0. Thus, the system is not causal.

Verify the BIBO stability condition [Eq. (2.49)] for discrete-time LTI systems.
Assume that the input x[n] of a discrete-time LTI system is bounded, that is,
Ix[n]l <k, all n (2.141)
Then, using Eq. (2.35), we have
ly[nll=] X hlklx[n—k]|< X |n[klx[n—k]i<k, Y I|n[k]
k=—» k=—ow =—

Since |x[n— k)l <k, from Eq. (2.141). Therefore, if the impulse response is absolutely
summable, that is,
Y Ih[k]l=K <o
k= —oo

we have
Iy[n)l<k K=k,<w
and the system is BIBO stable.

Consider a discrete-time LTI system with impulse response A[n] given by
h[n] =a"u[n]

(a) Is this system causal?
(b) Is this system BIBO stable?
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(a) Since A[n]=0 for n <0, the system is causal.
(b) Using Eq. (1.91) (Prob. 1.19), we have

£

Y kll= ¥ lefuln]l= Llal = ——  lal<1
k=0

k=-m k=—o 1-lal

Therefore, the system is BIBO stable if |a| < 1 and unstable if |af > 1.

SYSTEMS DESCRIBED BY DIFFERENCE EQUATIONS

2.39. The discrete-time system shown in Fig. 2-28 consists of one unit delay element and one
scalar multiplier. Write a difference equation that relates the output y[n] and the
input x[n].

x(n) yln
- ",
+
+
Unit .
vin-1] delay |
Fig. 2-28

In Fig. 2-28 the output of the unit delay element is y[n — 1]. Thus, from Fig. 2-28 we see
that

y[n]=ay[n—1] +x[n] (2.142)
or y[n] —ay[n—1]=x[n] (2.143)

which is the required first-order linear difference equation.

2.40. The discrete-time system shown in Fig. 2-29 consists of two unit delay elements and
two scalar multipliers. Write a difference equation that relates the output y{n] and the

input x[n].
x{n] ¥ln]
G- ) >
+ +

+ +

/2N /4N
Unit L Unit A
yn-2] delay |~ yin-1] delay |

Fig. 2-29
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In Fig. 2-29 the output of the first (from the right) unit delay element is y[n — 1] and the
output of the second (from the right) unit delay element is y[n — 2]. Thus, from Fig. 2-29 we
see that

yln]=a,y[n—1]+a,y[n-2]+x[n] (2.144)
or y[n]—ay[n—1]-ayy[n—2]=x[n] (2.145)

which is the required second-order linear difference equation.

Note that, in general, the order of a discrete-time LTI system consisting of the interconnec-
tion of unit delay elements and scalar multipliers is equal to the number of unit delay elements
in the system.

2.41. Consider the discrete-time system in Fig. 2-30. Write a difference equation that relates
the output y[n] and the input x[n].

x[n]
- (- =
+
+ ‘
Unit
delay
qln-1]
Fig. 2-30

Let the input to the unit delay element be g{n). Then from Fig. 2-30 we see that

a[n]=2q[n - 1] +x[n] (2.146a)
y[n]=qln}+3g[n-1] (2.146b)
Solving Egs. (2.146a) and (2.146b) for g[n] and g[n — 1) in terms of x[n] and y[n], we obtain
gln] = 3y[n] + 3x[n] (2.147a)
aln—1]=3y[n] - 5x[n] (2.147b)

Changing n to (n — 1) in Eq. (2.147a), we have
qgln—1]=3y[n—-11+ &x[n-1] (2.147¢)

Thus, equating Eq. (2.147b) and (Eq. (2.147c), we have
syln] = 3x[n]=3y[n— 1]+ 3x[n - 1]
Multiplying both sides of the above equation by 5 and rearranging terms, we obtain
yn]-2y[n—1]=x[n] +3x[n-1] (2.148)

which is the required difference equation.

2.42. Consider a discrete-time system whose input x[n] and output y[n] are related by

y[n] —ay[n—1] =x(n] (2.149)
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where 4 is a constant. Find y[n] with the auxiliary condition y[—1]=y_, and
x[n] = Kb"u[n] (2.150)
Let yinl=y,[n]+yuln]

where y [n] is the particular solution satisfying Eq. (2./49) and y,[n] is the homogeneous
solution which satisfies

y[n]—ay[n-1]=0 (2.151)
Assume that
y,[n] = Ab" n=0 (2.152)
Substituting Eq. (2.152) into Eq. (2.149), we obtain
Ab" — adb" " = Kb
from which we obtain 4 = Kb/(b — a), and

y,[n]l= b*ab"*' n>0 (2.153)

To obtain y,[n], we assume
yu[n]=Bz"
Substituting this into Eq. (2.151) gives
Bz" —aBz" '=(z-a)Bz"'=0
from which we have z =a and
yu[n]=Ba" (2.154)

Combining y,[n} and y,[n], we get
K
y[n]=Ba" + b——b”+l nz0 (2.155)
- da

In order to determine B in Eq. (2.155) we need the value of y{0]. Setting n =0 in Egs. (2.149)
and (2.150), we have

y[0) —ay[-1] =y[0] —ay_, =x[0] =K
or y[0]=K+ay_, (2.156)
Setting n =0 in Eq. (2.155), we obtain

b

Therefore, equating Egs. (2.156) and (2.157), we have

K+ay_=B+K
ay _ b-a

from which we obtain

a
B=ay_, —Kb s
Hence, Eq. (2.155) becomes
n+l _an+l
y[n]=y_|a"+'+K——bra— n>0 (2158)
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For n <0, we have x[n] =0, and Eq. (2.149) becomes Eq. (2.151). Hence,
y[n]=Ba" (2.159)
From the auxiliary condition y[—1]=y_,, we have
y[-1]=y_,=Ba™'

from which we obtain B =y_,a. Thus,

y[n]=y_ja""! n<0 (2.160)
Combining Egs. (2.158) and (2.160), y[n] can be expressed as
n+1 _an*l
Y["]=y_la"”+Kﬁ“["] (2.161)

Note that as in the continuous-time case (Probs. 2.21 and 2.22), the system described by
Eq. (2.149) is not linear if y[— 1] # 0. The system is causal and time-invariant if it is initially at
rest, that is, y[—1] = 0. Note also that Eq. (2.149) can be solved recursively (see Prob. 2.43).

2.43. Consider the discrete-time system in Prob. 2.42. Find the output y[n] when x[n]=

Kéln]and y[—-1]=y_, =a.

We can solve Eq. (2.149) for successive values of y[n] for n > 0 as follows: rearrange Eq.
(2.149) as

yln)=ay[n—1]+x[n] (2.162)
Then
y[0] =ay[-1] +x[0] =aa + K
y[1) =ay[0] + x[1] =a(aa + K)
y[2] =ay[1]) +x[2] = a*(aa + K)

y[r]=ay[n—1]+x[n]=a"(aa+K) =a""'a +a"K (2.163)

Similarly, we can also determine y[n] for n <0 by rearranging Eq. (2.149) as
1
yin=1]= — (y{n] = x{n]) (2.164)
Then y[-1] =«

1 1
y=21= = (-1 -x[-1)) = ~a=a"'a

W=31= = (y[~2) ~+[~2]} ="

y[—n]=%{y[—n+l]—x[-—n+l]]=a’"”a (2.165)

Combining Egs. (2.163) and (2.165), we obtain
y[n]=a"*'a+ Ka"u[n) (2.166)
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2.44. Consider the discrete-time system in Prob. 2.43 for an initially at rest condition.

2.45.

(a)
(b)
(¢)

(a)

(b)

()

Find in impulse response 4[n] of the system.
Find the step response s[n] of the system.
Find the impulse response A[n] from the result of part (b).

Setting K =1 and y[—1]=a =0 in Eq. (2.166), we obtain
h[n]=a"u[n]
Setting K=1, b=1, and y[-1]=y_, =0 in Eq. (2.161), we obtain

1- n+1

1-a

1= (5

From Egs. (2.41) and (2.168) the impulse response A[n] is given by

n+1 n

nd =)= stn =11 = (1 Jutnd = (125 Jutn - 1

—a
When n =0,
h[0]=(1_a)u[0]=1
1-a
When n > 1,
h[n]= ﬁ[l—a"+l —(1-a")] = % =a”"
Thus, h[n)=a"u[n]

which is the same as Eq. (2.167).

(2.167)

(2.168)

Find the impulse response A[n] for each of the causal LTI discrete-time systems
satisfying the following difference equations and indicate whether each system is a FIR
or an IIR system.

(a)
(b)
(c)

(a)

y[n]=x[n] - 2x[n — 2] +x[n — 3]
ylnl+2y[n — 1]1=x[n] + x[n - 1]
yln] = 3yln —2]=2x[n] - x[n - 2]

By definition (2.56)
h{n]) =5[n] - 26[n - 2] +8[n - 3]
or
hln]={(1,0,-2,1})

Since h[n] has only four terms, the system is a FIR system.

CHAP. 2] LINEAR TIME-INVARIANT SYSTEMS

() Alnl= =2hln—-11+8[n]1+8ln-1]

Since the system is causal, 4[— 1] = 0. Then

h[0] = —2h[ -1] +8[0] + 8] ~1] =8[0] =1

h(1]= =2A[0) +8[1] +68[0) = -2+1= -1
h[2] = —2h[1] + 8[2) +8[1) = —2(-1) =2
h[3] = —2h[2] + 8[3] + 8[2] = —2(2) = - 22

h(n)= —2h[n—1]+8[n]+6[n—1]=(-1)"2"""
Hence, h[n]=6[n]+(-1)"2""'u[n—-1]

Since Al n] has infinite terms, the system is an IIR system.

(¢) hlnl=hln—-21+268[n]—68ln-2)
Since the system is causal, A —2] = h[ —

h[0] = Sh[~2] + 28[0] — 8[ - 2] = 28[0] =2
h[1] = sh[-1]+28[1]-8[-1] =0
h[2] = Lh[0] +25[2] - 8[0] = 4 (2)-1=0

1] =0. Then

A[3] = Lh[1] + 28[3] - 8[1] =0

Hence, ‘ h[n]=28[n]

Since h[n] has only one term, the system is a FIR system.

Supplementary Problems

2.46. Compute the convolution y(r) = x(s)* h(t) of the following pair of signals:

_ 1 —a<t<a _J1
(@ x()= {O otherwise ’ k(o) = {0
[t 0<t<T 1
b) x(t)= {0 otherwise’ h(t) = {0
(@) x()=u(t —1),h(t)=e">u(t)
_[2a -1t |t < 2a
Ans. (a) y(t)= {0 > 2a
0
b

(B) y(t)={1T?
— 312 +2T-3T1?
0

() a1 —e " Mu(r-1)

—a<t<a
otherwise
0<t<2T

otherwise

t<0
0<t<T

T<t<2T
2T <t <3T
3T <t

105
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2.47. Compute the convolution sum y[n] = x[n]* h[n] of the following pairs of sequences:

2.48.

2.49.

2.50.

2.51.

2.52,

(a) x{n]=uln], hln]=2"ul—n]
(6) xlnl=ulnl—uln—N] h[n]=a"uln],0<a<1
(¢) xln]=)uln], hln]=8[n]— 18(n — 1]

_Jaten n<0
Ans. (a) yln] {2 w0
0 n<0
l_an+l
[ N —
b) yin]= s O<nx< 1
1-a®
a(—) N-l<n
l-a

(c) yln)=6l[n]

Show that if y(t) =x(t)* h(t), then
y' (1) =x'(t)*h(t) =x(t)=h'(t)

Hint: Differentiate Egs. (2.6) and (2.10) with respect to ¢.

Show that
x(t)*8'(t) =x"(1)
Hint:  Use the result from Prob. 2.48 and Eq. (2.58).

Let y[n)=x[n]* h[n]. Then show that
x[n—n]*h[n-ny)=y[n—n,—n,]

Hint: See Prob. 2.3.

Show that

x[n]®x,[n] = “ Z_ x[k]x,[n—k]

k=ng,

for an arbitrary starting point n,,.

Hint:  See Probs. 2.31 and 2.8.

The step response s(¢t) of a continuous-time LTI system is given by
s(t) = [cos wyt Ju(t)
Find the impulse response (1) of the system.

Ans.  h(2) = 8(¢) — wlsin oyt Ju(t)
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2.53. The system shown in Fig. 2-31 is formed by connection two systems in parallel. The impulse

2.54.

2.55.

2.56.

responses of the systems are given by

hy(t) =e ?'u(t) and hy(t)y=2e"u(t)
(a) Find the impulse response A(t) of the overall system.
(b) Is the overall system stable?

Ans. (a) h(t)=(e ¥ +2e ult)
(b) Yes

>

x(1)

hy(8)

v

Fig. 2-31

Consider an integrator whose input x(¢) and output y(t) are related by
t
y(t) = f x(7)dr

(a) Find the impulse response h(t) of the integrator.
(b) Is the integrator stable?

Ans. (a) h(t)=u(t)
(b) No

Consider a discrete-time LTI system with impulse response 4[n] given by
h[n]=6[n—-1]
Is this system memoryless?

Ans. No, the system has memory.

The impulse response of a discrete-time LTI system is given by
H[n] = (4)"uln]
Let y[n] be the output of the system with the input
x{n]=28[n]+8[n—-3]
Find y[1] and y[4].
Ans. y[1]=1 and y[4] = 3.
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Consider a discrete-time LTI system with impulse response A[n] given by
hin]=(=1)"uln—1]

(a) Is the system causal?
(b) Is the system stable?

Ans.  (a) Yes; (b) Yes

Consider the RLC circuit shown in Fig. 2-32. Find the differential equation relating the output
current y(¢) and the input voltage x(¢).

d’y(t) R dy(t) 1 - 1 dx(t)
3 o+ — + — = —

T YT ar et a

R L

AN B —
+
.m)(j i - C

Fig. 2-32

Consider the RL circuit shown in Fig. 2-33.

(a) Find the differential equation relating the output voltage y(¢) across R and the input
voltage x(t).

(b) Find the impulse response A(t) of the circuit.

(¢) Find the step response s(t) of the circuit.

dy(t) R R
i +Zy(t)—zx(t)

R
(b) hit)= Ze"R/"”u(I)

(¢) s(t)=[1—e R u(r)

Ans.  (a)

L
TEEEN
+
.
x(1) 1 y()
x(1)<> R§ M) :I A1) l ==

Fig. 2-33
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2.60. Consider the system in Prob. 2.20. Find the output y(¢) if x(¢) = *u(¢) and y(0) = 0.

Ans.  te™"u(t)

2.61. Is the system described by the differential equation

dy(t)
dt

+5y(t) +2=x(t)
linear?

Ans.  No, it is nonlinear.

2.62. Write the input-output equation for the system shown in Fig. 2-34.
Ans. 2y[n]—yln —1]=4x[n]+2x[n —1]

x{n] N ,2\ *'\2 _ f}:\ ylal
Y 7 ”
v + : +
AN
Fig. 2-34

2.63. Consider a discrete-time LTI system with impulse response

_ {1 n=0,1
hln) = {O otherwise

Find the input-output relationship of the system.

Ans. y[n]=x[n]+x[n—-1]

2.64. Consider a discrete-time system whose input x[n] and output y[n] are related by
y[n]—3y[n—1]=x[n]
with y[—1] = 0. Find the output y[n] for the following inputs:
(a) x[n]=(5)"uln);
(b) x[n]=()"uln]
Ans. (@) yln]=6[(3)"" = ()" Tuln]
(b) ylnl=(n+1X3)"uln]
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2.65. Consider the system in Prob. 2.42. Find the eigenfunction and the corresponding eigenvalue of

the system.

z
Ans. z", A=

Z—a



Chapter 3

Laplace Transform and Continuous-Time
LTI Systems

3.1 INTRODUCTION

A basic result from Chapter 2 is that the response of an LTI system is given by
convolution of the input and the impulse response of the system. In this chapter and the
following one we present an alternative representation for signals and LTI systems. In this
chapter, the Laplace transform is introduced to represent continuous-time signals in the
s-domain (s is a complex variable), and the concept of the system function for a
continuous-time LTI system is described. Many useful insights into the properties of
continuous-time LTI systems, as well as the study of many problems involving LTI systems,
can be provided by application of the Laplace transform technique.

3.2 THE LAPLACE TRANSFORM

In Sec. 2.4 we saw that for a continuous-time LTI system with impulse response A{t),
the output y(t) of the system to the complex exponential input of the form e* is

y(1) = T{e”) = H(s)e" (3.1)

where H(s)= [ h(1)e " di (3.2)

A. Definition:

The function H(s) in Eq. (3.2) is referred to as the Laplace transform of h(¢). For a
general continuous-time signal x(¢), the Laplace transform X(s) is defined as

X(s)= [ x(t)e"ds (3.3)

The variable s is generally complex-valued and is expressed as
s=o+tjw (3.4)

The Laplace transform defined in Eq. (3.3) is often called the bilateral (or two-sided)
Laplace transform in contrast to the unilateral (or one-sided) Laplace transform, which is
defined as

X,(s)= [ x(t)edr (3.5)

0-
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where 0™ =lim, _, ,(0 —¢). Clearly the bilateral and unilateral transforms are equivalent
only if x(¢) =0 for ¢ < 0. The unilateral Laplace transform is discussed in Sec. 3.8. We will
omit the word “bilateral” except where it is needed to avoid ambiguity.

Equation (3.3) is sometimes considered an operator that transforms a signal x(¢) into a
function X(s) symbolically represented by

X(s)=L{x(1)) (3.6)

and the signal x(¢) and its Laplace transform X(s) are said to form a Laplace transform
pair denoted as

x(1) — X(s) (3.7)

B. The Region of Convergence:

The range of values of the complex variables s for which the Laplace transform
converges is called the region of convergence (ROC). To illustrate the Laplace transform
and the associated ROC let us consider some examples.

EXAMPLE 3.1. Consider the signal
x(t)y=e “u(t) a real (3.8)
Then by Eq. (3.3) the Laplace transform of x(t) is

X(s) =f_ e“”u(t)e“'dt=f0~e“”‘“’dt

x

1
s+a

e (s+ax

v 37a Re(s) > —a (3.9)

because lim, e “**" =0 only if Re(s +a)> 0 or Re(s) > —a.

Thus, the ROC for this example is specified in Eq. (3.9) as Re(s) > —a and is displayed
in the complex plane as shown in Fig. 3-1 by the shaded area to the right of the line
Re(s) = —a. In Laplace transform applications, the complex plane is commonly referred to
as the s-plane. The horizontal and vertical axes are sometimes referred to as the o-axis and
the jw-axis, respectively.

EXAMPLE 3.2. Consider the signal
x(t)y=—e "u(—t) a real (3.10)
Its Laplace transform X(s) is given by (Prob. 3.1)

X(s)=$ Re(s) < —a (3.11)

Thus, the ROC for this example is specified in Eq. (3.71) as Re(s) < —a and is displayed
in the complex plane as shown in Fig. 3-2 by the shaded area to the left of the line
Re(s) = —a. Comparing Egs. (3.9) and (3.11), we see that the algebraic expressions for X(s)
for these two different signals are identical except for the ROCs. Therefore, in order for the
Laplace transform to be unique for each signal x(1), the ROC must be specified as part of the
transform.
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s-plane

a<0

Fig. 3-1 ROC for Example 3.1.

C. Poles and Zeros of X(s):

Usually, X(s) will be a rational function in s, that is,
ags"+a;s" '+ - +a, a, (s—z) (s—z,)
bos™+bis" kb, by (s=py) (s,

The coefficients a, and b, are real constants, and m and n are positive integers. The X(s)
is called a proper rational function if » > m, and an improper rational function if n <m.
The roots of the numerator polynomial, z,, are called the zeros of X(s) because X(s) =0
for those values of s. Similarly, the roots of the denominator polynomial, p,, are called the
poles of X(s) because X(s) is infinite for those values of s. Therefore, the poles of X(s)
lie outside the ROC since X(s) does not converge at the poles, by definition. The zeros, on
the other hand, may lie inside or outside the ROC. Except for a scale factor a,/b,, X(s)
can be completely specified by its zeros and poles. Thus, a very compact representation of
X(s) in the s-plane is to show the locations of poles and zeros in addition to the ROC.

Traditionally, an “x” is used to indicate each pole location and an “ ©” is used to
indicate each zero. This is illustrated in Fig. 3-3 for X(s) given by

(3.12)

X(s)=

x 2s+4 5 s+2 R )
= = > —
(s) s?+45+3 T (s+1)(s+3) e(s)
Note that X(s) has one zero at s = —2 and two poles at s = —1 and s = —3 with scale

factor 2.

D. Properties of the ROC:

As we saw in Examples 3.1 and 3.2, the ROC of X(s) depends on the nature of x(t).
The properties of the ROC are summarized below. We assume that X(s) is a rational

function of s.
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N

a>0 a<()

Property 1:
Property 2:

Property 3:

sy
sy

=

(a) (
Fig. 3-2 ROC for Example 3.2.

Fig. 3-3 s-plane representation of X(s)=(2s + 4)/(s? + 45 + 3).

The ROC does not contain any poles.

If x(¢) is a finite-duration signal, that is, x(+) =0 except in a finite interval ¢, <t <1,
(- <, and t, <), then the ROC is the entire s-plane except possibly s = 0 or s = .

If x(t) is a right-sided signal, that is, x(+) = 0 for ¢t <1, < =, then the ROC is of the form
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where o,,,, equals the maximum real part of any of the poles of X(s). Thus, the ROC is
a half-plane to the right of the vertical line Re(s) = a,,,, in the s-plane and thus to the
right of all of the poles of X(s).

Property 4: If x(¢) is a left-sided signal, that is, x(¢) =0 for ¢ >, > —oo, then the ROC is of the
form

Re(s) < opin

where o, equals the minimum real part of any of the poles of X(s). Thus, the ROC is
a half-plane to the left of the vertical line Re(s) = o, in the s-plane and thus to the left
of all of the poles of X(s).

Property 5: If x(t) is a two-sided signal, that is, x(¢) is an infinite-duration signal that is neither
right-sided nor left-sided, then the ROC is of the form

o, <Re(s) <o,

where o, and o, are the real parts of the two poles of X(s). Thus, the ROC is a vertical
strip in the s-plane between the vertical lines Re(s) = o, and Re(s) = o,.

Note that Property 1 follows immediately from the definition of poles; that is, X(s) is
infinite at a pole. For verification of the other properties see Probs. 3.2 to 3.7.

3.3 LAPLACE TRANSFORMS OF SOME COMMON SIGNALS
A. Unit Impulse Function 3(¢):
Using Eqgs. (3.3) and (1.20), we obtain

Z[8(1)) =jw 8(t)e~*'dt = | all s (3.13)

B. Unit Step Function u(¢):

oo

f_mu(t)e"“ dt= /(ye'“ dt

o

Zlu(1)]

1
——e
s

—st

I

=§ Re(s)>0 (3.14)

0+

where 0% =lim, _ ,(0 +¢).

C. Laplace Transform Pairs for Common Signals:

The Laplace transforms of some common signals are tabulated in Table 3-1. Instead of
having to reevaluate the transform of a given signal, we can simply refer to such a table
and read out the desired transform.

34 PROPERTIES OF THE LAPLACE TRANSFORM

Basic properties of the Laplace transform are presented in the following. Verification
of these properties is given in Probs. 3.8 to 3.16.
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Table 3-1 Some Laplace Transforms Pairs

x(t) X(s) ROC
8(1) 1 All s
1
u(t) - Re(s)>0
s
1
—u(—1) — Re(s) <0
s
1
tu(t) 7 Re(s)>0
k!
t*u(r) p Re(s)>0
s
1
e "u(t) Re(s) > —Re(a)
st+a
1
—e u(—1t) Re(s) < —Re(a)
s+a
1
te " 'u(t) —_— Re(s) > — Re(a)
(s+a)
1
—te”“'u(~1) > Re(s) < —Re(a)
(s+a)
s
cos wqtu(t) m Re(s)>0
. Wy
sin watu(t) ;Tw(z, Re(s) >0
s+a

e cos wytu(t) Re(s) > —Re(a)

(s+a) +w}

w
e sin wytu(t) 2 Re(s) > —Re(a)

(s+a)2+w(2)

A. Linearity:

If
x(t) = X\(s) ROC =R,
x,(1) = Xy(s) ROC=R,
Then a,x (1) +a,x,(t) > a, X(s)+a,X,(s) R'DR NR, (3.15)

The set notation A DB means that set A4 contains set B, while 4 N B denotes the
intersection of sets A and B, that is, the set containing all elements in both 4 and B.
Thus, Eq. (3.15) indicates that the ROC of the resultant Laplace transform is at least as
large as the region in common between R, and R,. Usually we have simply R'=R, N R,.
This is illustrated in Fig. 3-4.
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.
€

-

\\

=
N

1‘- e
R NR, R,

Fig. 3-4 ROC of a, X (s) + a, X,(s).

B. Time Shifting:
If
x(t)y —X(s) ROC=R
then x(t—ty) e X(s) R'=R (3.16)
Equation (3.16) indicates that the ROCs before and after the time-shift operation are the

same.

C. Shifting in the s-Domain:
If
x(t) = X(s) ROC=R
then e x(t)y > X(s—5,) R'=R+ Re(sy) (3.17)
Equation (3.17) indicates that the ROC associated with X(s —s,) is that of X(s) shifted
by Re(s,). This is illustrated in Fig. 3-5.

D. Time Scaling:

If
x(t) > X(s) ROC=R
1 s
then x(at)e——»——X{—) R =aR (3.18)
lal” \a
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€

Jjo J

% _
A

Fig. 3-5 Effect on the ROC of shifting in the s-domain. (a) ROC of X(s); (b) ROC of X(s — s,).

Equation (3.18) indicates that scaling the time variable ¢ by the factor a causes an inverse
scaling of the variable s by 1/a as well as an amplitude scaling of X(s/a) by 1/ lal. The
corresponding effect on the ROC is illustrated in Fig. 3-6.

E. Time Reversal:
If
x(t) = X(s) ROC=R

—

Fig. 3-6 Effect on the ROC of time scaling. (a) ROC of X(s); (b) ROC of X(s/a).
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then x(—t)y > X(-s) R'=-R (3.19)

Thus, time reversal of x(t) produces a reversal of both the o- and jw-axes in the s-plane.
Equation (3.19) is readily obtained by setting a = — 1 in Eq. (3.18).

F. Differentiation in the Time Domain:

If
x(1) > X(s) ROC=R
dx(1)
then " —sX(s) R'DR (3.20)

Equation (3.20) shows that the effect of differentiation in the time domain is multiplication
of the corresponding Laplace transform by s. The associated ROC is unchanged unless
there is a pole-zero cancellation at s = (.

G. Differentiation in the s-Domain:
If
x(t)y > X(s) ROC =R

dXx(s)
ds

then —tx(t) e R'=R (3.21)

H. Integration in the Time Domain:

If
x(t) > X(s) ROC =R

then I x(f)dTH%X(s) R' =R [Re(s)>0) (3.22)

—x

Equation (3.22) shows that the Laplace transform operation corresponding to time-domain
integration is multiplication by 1/s, and this is expected since integration is the inverse
operation of differentiation. The form of R’ follows from the possible introduction of an
additional pole at s = 0 by the multiplication by 1/s.

I. Convolution:

If
x,(1) > X \(s) ROC =R,
x,(1) > X,y (s) ROC =R,
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Table 3-2 Properties of the Laplace Transform

Property Signal Transform ROC
x(t) X(s) R
x,(t) X(s) R,
x,() X,(s) R,
Linearity a,x (1) +a,x,(1) a, X,(s) +a; X(s) R'DR,NR,
Time shifting x(t —1y) e~ X(s) R'=R
Shifting in s e x(t) X(s —s¢) R' =R + Re(sy)
1
Time scaling x(at) mX(s) R' =aR
Time reversal x(=1) X(-s) R'=-R
dx(t)
Differentiation in ¢ " sX(s) R' DR
dX(s)
Differentiation in s —1x(1) 7 R'=R
1
Integration fl x(r)dr ;X(s) R’ DR N {Re(s) > 0}
Convolution x,(8)* x,(1) X () X(s) R'DR,NR,
then x, (1) * x,5(t) = X \(5)X5(s) R'DR, NR, (3.23)

This convolution property plays a central role in the analysis and design of continuous-time
LTI systems.

Table 3-2 summarizes the properties of the Laplace transform presented in this
section.

3.5 THE INVERSE LAPLACE TRANSFORM

Inversion of the Laplace transform to find the signal x(r) from its Laplace transform
X(s) is called the inverse Laplace transform, symbolically denoted as

x(1)=L"YX(s5)) (3.24)

A. Inversion Formula:

There is a procedure that is applicable to all classes of transform functions that
involves the evaluation of a line integral in complex s-plane; that is,

1 C +joo
t)=— X “d 3.25
*() =g [ K(s)erds (3.25)
In this integral, the real c is to be selected such that if the ROC of X(s) is o, < Re(s) <o,
then o, <c¢ <o,. The evaluation of this inverse Laplace transform integral requires an
understanding of complex variable theory.
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B. Use of Tables of Laplace Transform Pairs:

In the second method for the inversion of X(s), we attempt to express X(s) as a sum

X(s)y=X(s)+ - +X,(5) (3.26)
where X ((s),..., X,(s) are functions with known inverse transforms x,(¢),..., x,(¢). From
the linearity property (3.15) it follows that

x(t)=x,(t)+ - +x,(1) (3.27)

C. Partial-Fraction Expansion:
If X(s) is a rational function, that is, of the form
_N(s) _ (s—2) (s —2,)
D(s) ~(s—py) - (s—p,)

a simple technique based on partial-fraction expansion can be used for the inversion of
X(s).

X(s) (3.28)

(a) When X(s) is a proper rational function, that is, when m <n:
1. Simple Pole Case:
If all poles of X(s), that is, all zeros of D(s), are simple (or distinct), then X(s) can be
written as
¢, ¢,

X(s)= 4ot
()= 55 —

(3.29)

where coefficients ¢, are given by
¢, = (s =p) X(5)|s=p, (3.30)
2. Multiple Pole Case:

If D(s) has multiple roots, that is, if it contains factors of the form (s —p,)", we say that
p, is the multiple pole of X(s) with multiplicity r. Then the expansion of X(s) will consist of
terms of the form

A A, A,
st (3.31)
s=p (s—-p) (s —p;)
1 a* )
where A= EW[(s—p,.) X(s)],-,, (3.32)
(b) When X(s) is an improper rational function, that is, when m > n:
If m > n, by long division we can write X(s) in the form
¥ N(s) R(s) 333
= = + .
()= 55y =29+ by (3.33)

where N(s) and D(s) are the numerator and denominator polynomials in s, respectively,
of X(s), the quotient Q(s) is a polynomial in s with degree m — n, and the remainder R(s)
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is a polynomial in s with degree strictly less than n. The inverse Laplace transform of X(s)
can then be computed by determining the inverse Laplace transform of Q(s) and the
inverse Laplace transform of R(s)/D(s). Since R(s)/D(s) is proper, the inverse Laplace
transform of R(s)/D(s) can be computed by first expanding into partial fractions as given
above. The inverse Laplace transform of Q(s) can be computed by using the transform
pair

o sk k=1,2,3,... (3.34)

3.6 THE SYSTEM FUNCTION
A. The System Function:

In Sec. 2.2 we showed that the output y(t) of a continuous-time LTI system equals the
convolution of the input x(¢) with the impulse response A(t); that is,

y(t) =x(t)*h(t) (3.35)
Applying the convolution property (3.23), we obtain
Y(s)=X(s)H(s) (3.36)

where Y(s), X(s), and H(s) are the Laplace transforms of y(¢), x(¢), and A(¢), respec-
tively. Equation (3.36) can be expressed as

_Y(s)
X(s)

H(s) (3.37)
The Laplace transform H(s) of h(t) is referred to as the system function (or the transfer
function) of the system. By Eq. (3.37), the system function H(s) can also be defined as the
ratio of the Laplace transforms of the output y(¢) and the input x(t). The system function
H(s) completely characterizes the system because the impulse response A(t) completely
characterizes the system. Figure 3-7 illustrates the relationship of Egs. (3.35) and (3.36).

B. Characterization of LTI Systems:

Many properties of continuous-time LTI systems can be closely associated with the
characteristics of H(s) in the s-plane and in particular with the pole locations and the
ROC.

————— h(,) ——-

x(1) y()=x(1) = h(1)
X(s) Y(s)=X(s)H(s)
H(s) |

Fig. 3-7 Impulse response and system function.
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1. Causality:

For a causal continuous-time LTI system, we have
h(t)=0 t<0

Since h(t) is a right-sided signal, the corresponding requirement on H(s) is that the ROC
of H(s) must be of the form

That is, the ROC is the region in the s-plane to the right of all of the system poles.
Similarly, if the system is anticausal, then

h(t)=0 t>0
and A(t) is left-sided. Thus, the ROC of H(s) must be of the form
Re(s) <omin
That is, the ROC is the region in the s-plane to the left of all of the system poles.

2. Stability:

In Sec. 2.3 we stated that a continuous-time LTI system is BIBO stable if and only if
[Eq. (2.2D)]

| Ih()ld <o
The corresponding requirement on H(s) is that the ROC of H(s) contains the jw-axis
(that is, s = jw) (Prob. 3.26).

3. Causal and Stable Systems:

If the system is both causal and stable, then all the poles of H(s) must lie in the left
half of the s-plane; that is, they all have negative real parts because the ROC is of the
form Re(s) > o,,,,, and since the jo axis is included in the ROC, we must have o, ,, <0.

max’

C. System Function for LTI Systems Described by Linear Constant-Coefficient Differential
Equations:

[n Sec. 2.5 we considered a continuous-time LTI system for which input x(¢) and
output y(t) satisfy the general linear constant-coefficient differential equation of the form

Noodhy() M dkx(n)
—_— = b, ——— 3.38
kgoak dr* kz=:() £ odrk ( )

Applying the Laplace transform and using the differentiation property (3.20) of the
Laplace transform, we obtain

N M
a,s*Y(s)= Y. b,s*X(s)
k=0 k=0
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N M
or Y(s) Y aps¥=X(s) Y b,s* (3.39)
k=0 k=0
Thus,

H(s) = =450 — (3.40)

Hence, H(s) is always rational. Note that the ROC of H(s) is not specified by Eq. (3.40)
but must be inferred with additional requirements on the system such as the causality or
the stability.

D. Systems Interconnection:

For two LTI systems [with A,(¢) and h,(t), respectively] in cascade [Fig. 3-8(a)], the
overall impulse response A(t) is given by [Eq. (2.81), Prob. 2.14]

h(t) =hy(t)* hy(t)
Thus, the corresponding system functions are related by the product
H(s) = Hy(s)Hy(s) (3.41)

This relationship is illustrated in Fig. 3-8(b).
Similarly, the impulse response of a parallel combination of two LTI systems
[Fig. 3-9(a)] is given by (Prob. 2.53)

h(t) =hy(t) +hy(2)
Thus,

H(s)=H,(s)+ H,(s) (3.42)
This relationship is illustrated in Fig. 3-9(b).

x(1) b0} x(1) )
Y — BiD) | —— ﬁ —— ()
h(D=h (1) * hy(1)
(@)
X(s) Y(s) X(s) ¥(s)
—pl H(s) = His) | => —— s e

H(s)=H (s)H,(s)
(b)

Fig. 3-8 Two systems in cascade. (a) Time-domain representation; (b) s-domain representation.
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= hi(1)
x(1) ¥ x(1) ¥y
—— —-1 h(r) p——-
> hy(1) h(ty=h (1) +h,(1)
(a)
= H(s)
X(s) Y(s) X(s) Y(s)
emm——— ———- e H(s) ——
I Hys) H(s)=H,(s)+H,(s)

(b)
Fig. 3-9 Two systems in parallel. (a) Time-domain representation; (b) s-domain representation.

3.7 THE UNILATERAL LAPLACE TRANSFORM
A. Definitions:

The unilateral (or one-sided) Laplace transform X,(s) of a signal x(¢) is defined as
[Eq. (3.5)]

o

X,(s) =fﬁx(t)e‘“ dt (3.43)

The lower limit of integration is chosen to be 0~ (rather than 0 or 0*) to permit x(¢) to
include 8(¢) or its derivatives. Thus, we note immediately that the integration from 0~ to
0% is zero except when there is an impulse function or its derivative at the origin. The
unilateral Laplace transform ignores x(¢) for ¢ < 0. Since x(¢) in Eq. (3.43) is a right-sided
signal, the ROC of X,(s) is always of the form Re(s) > o, that is, a right half-plane in
the s-plane.

ax

B. Basic Properties:

Most of the properties of the unilateral Laplace transform are the same as for the
bilateral transform. The unilateral Laplace transform is useful for calculating the response
of a causal system to a causal input when the system is described by a linear constant-
coefficient differential equation with nonzero initial conditions. The basic properties of the
unilateral Laplace transform that are useful in this application are the time-differentiation
and time-integration properties which are different from those of the bilateral transform.
They are presented in the following.
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1. Differentiation in the Time Domain:

dx(t)
—dt— HSX,(S)'—X(O#) (344)
provided that lim, _,, x(¢)e™* = 0. Repeated application of this property yields
d’x(t
7,(2—) > 52X)(5) = sx(07) =x'(0") (3.45)
d"x(t
d,(n L X, (5) =5 (0T =T (O ) = =0 (3.46)
N "0~ d'x(t)
where xD(07) = N
2. Integration in the Time Domain:
¢ 1
f X(T)dTH;‘Xl(S) (3.47)
-
t 1 1 0~
| x(r)dre =X,(s) + ;f x(r)dr (3.48)

C. System Function:

Note that with the unilateral Laplace transform, the system function H(s) = Y(s)/X(s)
is defined under the condition that the LTI system is relaxed, that is, all initial conditions
are zero.

D. Transform Circuits:

The solution for signals in an electric circuit can be found without writing integrodif-
ferential equations if the circuit operations and signals are represented with their Laplace
transform equivalents. [In this subsection the Laplace transform means the unilateral
Laplace transform and we drop the subscript I in X,(s).] We refer to a circuit produced
from these equivalents as a transform circuit. In order to use this technique, we require the
Laplace transform models for individual circuit elements. These models are developed in
the following discussion and are shown in Fig. 3-10. Applications of this transform model
technique to electric circuits problems are illustrated in Probs. 3.40 to 3.42.

1. Signal Sources:
v(t) > V(s) i(2) > I(s)
where v(¢) and i(r) are the voltage and current source signals, respectively.
2. Resistance R:

v(t) = Ri(t) — V(s) = RI(s) (3.49)
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Circuit element

Voltage source

Current source

Resistance

Inductance

Capacitance
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Representation

t-Domain s-Domain

v(t) V(s)

(D) (=)
O—)—° o——°
i(n 1(s)
+i(t)= ‘VC'V‘ _O +1(:) R i

it) L
O——w———0
v _
(1)
1
sC
I(s)
- Cv0°) _
i() ¢ Vo)
——O0 s
¥ B 1 i)
3 - S
v s € 4 -
O+ | ( ) _O
Vis)

Fig. 3-10 Representation of Laplace transform circuit-element models.
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3. Inductance L:

di(t)
U(t)=L7<—>V(s)=sL1(s)—Li(O') (3.50)
The second model of the inductance L in Fig. 3-10 is obtained by rewriting Eq. (3.50) as

1 1
j =— —i(0~ 51
i(1) = 1(s) = T V(5)+ =i(0) (3.51)
4. Capacitance C:

do(t)

i(t)=C—dt—— — [(s)=sCV(s)—Cv(07) (3.52)

The second model of the capacitance C in Fig. 3-10 is obtained by rewriting Eq. (3.52) as

1 1
U(t)<—>V(s)=EI(s)+;u(0‘) (3.53)

Solved Problems

LAPLACE TRANSFORM

3.1. Find the Laplace transform of
(@) x(t)= —e "u(—1)
(b) x(1)=e"u(—1)
(a) From Eq. (3.3)
X(s) — _/"" e_a,u( —t)e_"dt _ —fo_e“”“)’ dt

— %

0—

— e—(.r+a)f

Re(s) < —a

Thus, we obtain
1
TMy(—t —_— R < — 3.54
u(=1) = —— o(s) < —a (3.54)
(b) Similarly,
X(s) =fw e“u(—t)e ' dt =[O—e_(‘_’”’dt

0-
e—(sfa)l

Re(s) <a

s—a - §—a
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3.2,

3.3.
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Thus, we obtain

e"’u(—t)e—»—s_a Re(s) <a (3.55)
A finite-duration signal x(t) is defined as
#0 o <t<t
x(1) 1S =te
=0 otherwise

where 1, and 1, are finite values. Show that if X(s) converges for at least one value of
s, then the ROC of X(s) is the entire s-plane.

Assume that X(s) converges at s = o,; then by Eq. (3.3)
1X()l < [ Lx(eye ! lde = [*x(e) e di <0
e ‘)
Let Re(s) = o, > o,. Then

7 Lx(eyeertiondr =[xyl dr
. 3

= f’zl x(1)le e 1ot gy

n
Since (o, — o) > 0, e 71770 is a decaying exponential. Then over the interval where x(¢) # 0,
i 0

the maximum value of this exponential is ¢ ‘“' 791 and we can write

153 t

f x(t)le " dt <e"“’"""”'f x(t)le v dr < oo (3.56)

n 1

Thus, X(s) converges for Re(s) = o, > 0. By a similar argument, if o, < o, then

flzlx(1)|e*"l' de < e*“’""“”zflzl x(t)le o dr < (3.57)
0 f

and again X(s) converges for Re(s) = o, <o, Thus, the ROC of X(s) includes the entire
s-plane.

Let

e O<t<T
t)y= =48 =
*() {0 otherwise

Find the Laplace transform of x(7).
By Eq. (3.3)

r T
X(s)= f() e e dr = j(-) e~ra gy

|

st+a

,
. [1 —e~*+7) (3.58)

o Sta

—{s+ajt
e

Since x(1) is a finite-duration signal, the ROC of X(s) is the entire s-plane. Note that from Eq.
(3.58) it appears that X(s) does not converge at s = —a. But this is not the case. Setting
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s = —a in the integral in Eq. (3.58), we have
T T
X(=a)=| e @tdt= | dt=T
(-a)= [ /

The same result can be obtained by applying L’Hospital’s rule to Eq. (3.58).

Show that if x(¢) is a right-sided signal and X(s) converges for some value of s, then
the ROC of X(s) is of the form

Re(s) > 0,4

where o__ equals the maximum real part of any of the poles of X(s).

max
Consider a right-sided signal x(¢) so that
x(t)=0 1<t

and X(s) converges for Re(s) = a;,. Then

X() < [ Je(ela= [ x(o)lea

=fw|x(t)|e""u' dt < o
h
Let Re(s) =, > o,. Then

x ©
flx(t)le“"l’dt=/' | x(t)]e=ve =0 gy
n f

< e“"""""’fw|x(t)Ie'”“’ dt <o
h

Thus, X(s) converges for Re(s) = o, and the ROC of X(s) is of the form Re(s) > g, Since the
ROC of X(s) cannot include any poles of X(s), we conclude that it is of the form

Re(s) > 0,0y

where o_,, equals the maximum real part of any of the poles of X(s).

max

Find the Laplace transform X(s) and sketch the pole-zero plot with the ROC for the
following signals x(¢):

(@) x(ty=e 2ult) +e *u(r)

(b) x(£)=e >ult) +e*u(—1)

(c) x(t)=e*u(t) +e > u(—1)

(a) From Table 3-1

u(t)<—»L Re(s) > -2 (3.59)

s+2

=2t

=3

— Re(s)> -3 (3.60)
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(b)

()
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7

N

Fig. 3-11

We see that the ROCs in Egs. (3.59) and (3.60) overlap, and thus,

_ ! 1 2As+3)
_S+2+s+3_(5+2)(s+3) Re(s) > -2 (3.61)

X(s)

From Eq. (3.67) we see that X(s) has one zero at s = — £ and two poles at s = —2 and
s = —3 and that the ROC is Re(s) > —2, as sketched in Fig. 3-11(a).

From Table 3-1

e'3'u(t)<—>;—+1—_—§ Re(s) > -3 (3.62)
ePu(—t) —é Re(s) <2 (3.63)

We see that the ROCs in Eqgs. (3.62) and (3.63) overlap, and thus,
1 1 -5
s+3  5-2 (s-2)(s+3)

X(s) = —3<Re(s)<2  (3.64)

From Eq. (3.64) we see that X(s) has no zeros and two poles at s =2 and s = —3 and
that the ROC is —3 < Re(s) < 2, as sketched in Fig. 3-11(b).

From Table 3-1

ez’u(r)Hx—ji Re(s) >2 (3.65)
e”’u(—t)*»—% Re(s) < -3 (3.66)

We see that the ROCs in Egs. (3.65) and (3.66) do not overlap and that there is no
common ROC; thus, x(¢) has no transform X(s).
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3.6. Let
x(t)=e
Find X(s) and sketch the zero-pole plot and the ROC for a > 0 and a <0.

The signal x(¢) is sketched in Figs. 3-12(a) and (b) for both a > 0 and a < 0. Since x(¢) is
a two-sided signal, we can express it as

x(t)y=e""u(t) +e*u(—1) (3.67)

Note that x(¢) is continuous at ¢ =0 and x(07) =x(0) =x(0*) = 1. From Table 3-1

1
Tyt —_— R > - 3.68
e~ u(t) = —— e(s)> —a (3.68)
1

e“u(—t) > — —— Re(s) <a (3.69)

s—a
x(ry=e-ai x(=e
a>0 a<0

e

0

(a) (b)

€

B

(c
Fig. 3-12

~
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If a > 0, we see that the ROCs in Eqgs. (3.68) and (3.69) overlap, and thus,

1 1 —-2a
X = — = —a < < .
()= =T a<Re(s)<a (3.70)
From Eq. (3.70) we see that X(s) has no zeros and two poles at s =a and s = —a and that the

ROC is —a < Re(s) <a, as sketched in Fig. 3-12(¢). If a <0, we see that the ROCs in Egs.
(3.68) and (3.69) do not overlap and that there is no common ROC; thus, x(¢) has no
transform X(s).

PROPERTIES OF THE LAPLACE TRANSFORM
3.7. Verify the time-shifting property (3.16), that is,
x(t—1y) e e’ X(s) R' =R
By definition (3.3)
Ax(t-1,)) = fj;x(t —t5)e"dr
By the change of variables 7 =t — ¢, we obtain

AAx(r—1,)} = fx x(r)e T dr
=e“‘"[w x(1)e TdT = e *oX(s)

with the same ROC as for X(s) itself. Hence,
x(t—ty) e>e "X (s) R'=R

where R and R’ are the ROCs before and after the time-shift operation.

3.8. Verify the time-scaling property (3.18), that is,

By definition (3.3)
Ax(an)) = [ x(ar)edi
By the change of variables 7 = at with a > 0, we have

Axtan) =~ [“x(mermrar-~x(2)  r-ar
x(at) 7). x(71)e T=—X|- a

Note that because of the scaling s/a in the transform, the ROC of X(s/a) is aR. With a <0,
we have

Astan) = [ Teme e ar
a o

1 = 1 s
=——f x(T)e“’/")’d‘r=«—X(—) R =aR
a’_» a a
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3.9.

Thus, combining the two results for @ > 0 and a <0, we can write these relationships as

1 s
——X(—) R =aR
lal a

Find the Laplace transform and the associated ROC for each of the following signals:
(a) x(6)=68(1—1,)

(b) x(t)=ult —1t,)

(¢) x(t)=e *[u(t) —ult —5)]

(d) x(t)= Y 8(t—kT)
k=0
(e) x(t)=8(at+b), a,b real constants

(a) Using Egs. (3.13) and (3.16), we obtain
8(t—ty) e—e™" all s (3.71)

x(at) —

(b) Using Eqgs. (3.14) and (3.16), we obtain

et

u(t —ty) Re(s) >0 (3.72)

(c¢) Rewriting x(1) as
x(ty=e 2 [u(t) —u(t=5)] =e *u(t) —e *'u(1 - 5)
=e Hu(t) —e e A=yt - 5)

Then, from Table 3-1 and using Eq. (3.76), we obtain

1 1 1
X — _p—10,-5____  _ _ ,—5(s+2) _
(s) 32 ¢ ¢ T s+2(1 e ) Re(s) > —2
(d) Using Egs. (3.71) and (1.99), we obtain
» . o ok
X(s)= L e =L () == Re(s) >0 (3.73)
k=0 k=0
(e) Let
f(t) =6(ar)
Then from Egs. (3.13) and (3.18) we have
1
f(t) =6(at) —F(s) = Tl all s (3.74)
b b
Now x(t)=6(at+b) =5 a(!+—) =f(t+—)
a a
Using Egs. (3.16) and (3.74), we obtain
1
X(s) =e*/F(s)=—e/" all s (3.75)

jal
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Verify the time differentiation property (3.20), that is,
dx(r)
dt

—s5X(s) R' DR

From Eq. (3.24) the inverse Laplace transform is given by
1 ¢ + joo
x(t) = — X(s)e*' ds 3.76
()= 5[ "X (3.76)
Differentiating both sides of the above expression with respect to ¢, we obtain
de(t) 1 eip
dt 27 Yo —jo

sX(s)e’ds (3.77)

Comparing Eq. (3.77) with Eq. (3.76), we conclude that dx(¢)/dt is the inverse Laplace
transform of sX(s). Thus,

dx(1)

—s5X(s) R' DR
Note that the associated ROC is unchanged unless a pole-zero cancellation exists at s = 0.
Verify the differentiation in s property (3.21), that is,

dX(s)
ds

—ix(t) & R'=R

From definition (3.3)
X(s)= fx x(t)e *'dt

Differentiating both sides of the above expression with respect to s, we have

d’\;(ss) =/::(—r)x(t)e‘"dt=f:[—tx(r)]e“"dt
Thus, we conclude that
—tx(t)«—»dX(s) 'R
ds

Verify the integration property (3.22), that is,

frwx(f)d't'«—»éX(s) R'=RN {Re(s) >0}

Let
(1) = [ x(r)dr—F(s)
Then x(t) = df::)
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Applying the differentiation property (3.20), we obtain
X(s) =sF(s)
Thus,

F(s)=§X(s) R’ =Rn{Re(s) >0}

The form of the ROC R’ follows from the possible introduction of an additional pole at s =0
by the multiplying by 1/s.

Using the various Laplace transform properties, derive the Laplace transforms of the
following signals from the Laplace transform of u(t).

(a) &(1) (b) &)

(c) tu(1) (d) e “u(r)

(e) te “'ulr) (f) cos wytulr)

(g) e *cos wytult)

(a) From Eq. (3.]14) we have

1
u(l)<—>; for Re(s) >0
From Eq. (1.30) we have
du(t)
8(t) =
(1) =—,

Thus, using the time-differentiation property (3.20), we obtain
1
6(t) ems—=1 all s
s

(b) Again applying the time-differentiation property (3.20) to the result from part (a), we
obtain

8'(t)y s all s (3.78)

(¢) Using the differentiation in s property (3.21), we obtain

d{1y 1
m(:)«»-g(—)=—2 Re(s) >0 (3.79)

N N

(d) Using the shifting in the s-domain property (3.17), we have

e u(t) > ——

R > —
s+a e(s) ¢

(e) From the result from part (¢) and using the differentiation in s property (3.21), we obtain

d{ 1 1
ds( )— — Re(s) > —a (3.80)

tenmu(t) “—> — — =
s+a (s+a)’

(f) From Euler’s formula we can write

cos wotu(t) = 3(e/0' + e J¥0Nu(r) = L/ u(r) + e 10'y(1)
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Using the linearity property (3.15) and the shifting in the s-domain property (3.17), we
obtain

S Re(s) >0  (3.81)

52+ w?

1 1 [
c tu(t — + =
0s wotu(t) 2s5—jwyg 2s5+jw,
(g) Applying the shifting in the s-domain property (3.17) to the result from part (f), we
obtain
s+a

e"‘”coswotu(t)e—vm RC(S)> —-a (382)
Verify the convolution property (3.23), that is,
x (1) xy(1) > X (5) X,(5) R'OR,NR,

y(t) =x, (1) * xy(t) = f_wwx'("')xz(t —-71)dr
Then, by definition (3.3)

Y(s) = /:[[:x,(f)xz(r -7) dr]e"’dt

= f_w xl(r)[f_m x,(t—71)e™™ dt] dr

Noting that the bracketed term in the last expression is the Laplace transform of the shifted
signal x,(t —7), by Eq. (3.16) we have

Y(s)= [ x(r)e"Xy(s) dr

- [f:x(f)e-”df]xz(s) =X,(5) Xy(5)

with an ROC that contains the intersection of the ROC of X (s) and X,(s). If a zero of one
transform cancels a pole of the other, the ROC of Y(s) may be larger. Thus, we conclude that

x (1) * x,(1) > X ((5) X,(5) R' DR NR,

Using the convolution property (3.23), verify Eq. (3.22), that is,

j’mx(f)dTH éX(s) R' =R {Re(s)> 0)

We can write [Eq. (2.60), Prob. 2.2]
[ x(rydr=x(1)xu(1) (3.83)
From Eq. (3.14)

u(t)e—»; Re(s) >0
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and thus, from the convolution property (3.23) we obtain
1
x(t)y*u(t)y — —X(s)
s

with the ROC that includes the intersection of the ROC of X(s) and the ROC of the Laplace
transform of u(¢). Thus,

[ x(r)dr«—»%X(s) R'=Rn{Re(s) >0}

INVERSE LAPLACE TRANSFORM

3.16. Find the inverse Laplace transform of the following X(s):

3.17.

1
(a) X(s)=——,Re(s)> -1

s+1
1
(b) X(s)=——, Re(s) < —1
s+1
s
(C) X(S) = Sz—+—4', RC(S) >0
(d) X(s)= —— — Re(s)> —1
(s+1) +4

(a) From Table 3-1 we obtain
x(t)y=e'u(t)
(b) From Table 3-1 we obtain
x(t)=—e 'u(—1t)
(¢) From Table 3-1 we obtain
x(t) =cos2tu(t)

(d) From Table 3-1 we obtain

s(t)=e""cos2tu(t)

Find the inverse Laplace transform of the following X(s):

@ X(s) e
a s —m,Re(s)>—l
(5) X(s)=
s —m,RB(&')<—3
25+ 4
(c) X(s)= -3 <Re(s)< -1

st+4s+3’
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Expanding by partial fractions, we have

2s+4 s+2 c [
T tas+3 “(s+1)(s+3) s+l s+3
Using Eq. (3.30), we obtain

X(s)

s+2
Q= (DX =25 | -1
s+2
& =(s +3)X(5)|s=—3=2s ey 1
Hence,
1 1
X(s)= STl + 3
(a) The ROC of X(s)is Re(s) > — 1. Thus, x(¢) is a right-sided signal and from Table 3-1 we
obtain

x()=e"u(t) +e du(t)y=(e " +eu(t)

(b) The ROC of X(s)is Re(s) < —3. Thus, x(¢) is a left-sided signal and from Table 3-1 we
obtain

x(t)=—e u(~1t) —e 3 —t)y=—(e"+eu(-t)

(¢) The ROC of X(s)is —3 <Re(s) < —1. Thus, x(¢) is a double-sided signal and from
Table 3-1 we obtain

x(t)=—eu(—t) +e > u(t)

3.18. Find the inverse Laplace transform of
S5s + 13

X = )

Re(s) >0

We can write

2445+ 13=(s+2)+9=(s+2—j3)(s+2+,3)

Then
S5s+ 13 Ss+ 13
X(s)= 3 = — -
s(s?+4s+13)  s(s+2-j3)(s+2+j3)
=C_1+ @2 . €3 .
s s—(=2+43)  s-(-2-j3)
where
Ss+ 13
€1 =5X(s)l-0 = st+4s+ 13 ,=o=
_ 55+ 13 1
Cz=(5+2—J3)X(5)|:=—2+13=ms:-2+/3= -5+
. 55+ 13 1 ,
cy= (s+2+13)X(s)|x=_2_,-3=m ;=<z-,'3: —E(I -
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3.19.

Thus,

I _ 1(1 - ]
s—(—2+j3) 2° V5T =253
The ROC of X(s) is Re(s) > 0. Thus, x () is a right-sided signal and from Table 3-1 we obtain

x(1) = u(0) = 51+ e uty — 11 = e u()

Inserting the identity

LN
X =—=5 (1 +))

e T2EIMN = = 2p 273 = o= 2 (005 3t + jsin3t)
into the above expression, after simple computations we obtain
x(1) =u(t) — e *(cos3t — sin3t)u(t)
=[1-e?(cos3r — sin3t)]u(r)
Alternate Solution:
We can write X(s) as
S5s+ 13 ¢ 8+ ¢y
AR P T ) S P
As before, by Eq. (3.30) we obtain
S5s+ 13
¢ =sX(8)s-0 = peanyernrd i 1
Then we have
¢85+ ¢y 5s+13 1 -s+1
sZ+ds+13 s(s?+4s+13) T 5 sP+4s+13

Thus,
1 s—1 1 s+2-3
S ey P R P TCIEY
1 s+2 3

- +
s (s+2)+3% (s+2)°+3?

Then from Table 3-1 we obtain
x(t) =u(t) —e > cos3tu(t) +e ' sin3tu(1)
=[1—e(cos3r —sin3r) Ju(t)

Find the inverse Laplace transform of

X(s) s2+2s5+5 Re(s) 3
§)= —— e(s)> —
(s +3)(s+5)
We see that X(s) has one simple pole at s = —3 and one multiple pole at s = —5 with
multiplicity 2. Then by Egs. (3.29) and (3.37) we have
9 Ay A,
X(s)= (3.84)

+ +
s+3  s+5 (5+5)2
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By Eqs. (3.30) and (3.32) we have

s2+25+5
C|=(S+3)X(5)’54—J=‘—2' =
(s+5) 3
A 5)2x | s24+2s5+5
={(s+ )2 sy = —mm— =
2= )X (s) - s S+3 L s 10
)\_d[ +52X ]I d|s*+2s+5
1 ds s ) X(s) s= -5 s s+3 s
s2+6s+1
=TT =-1
(s+3)" |[,__s
Hence,
1 10

2
X(s)= — — —— — —
(s) s+3 s+5 (s+5)2

The ROC of X(s) is Re(s) > —3. Thus, x(¢) is a right-sided signal and from Table 3-1 we
obtain
x(t) =2e Mu(t) —e >u(t) — 10te >'u(t)
=[2e ¥ ~e ¥ = 10te " u(t)
Note that there is a simpler way of finding A, without resorting to differentiation. This is

shown as follows: First find ¢, and A, according to the regular procedure. Then substituting the
values of ¢, and A, into Eq. (3.84), we obtain

s2+25+5 2 A 10

= + —
(s+3)(s+5)° s+3  s+5  (s5+5)°

Setting s = 0 on both sides of the above expression, we have
5 2 A 10

757375 25

from which we obtain A, = — 1.

Find the inverse Laplace transform of the following X(s):

2s + 1
(a) X(s)= ———, Re(s)> =2
s+2

b X1 =T Retsr> —1

= ———, > —

VT s Y
s +25%+6
(¢) X(s)=—5——,Re(s)>0
%+ 3s

@ s B2+ -3 3
©OOANTT T T sv2 T sz

Since the ROC of X(s)is Re(s) > —2, x(¢) is a right-sided signal and from Table 3-1 we

obtain

x(1) =28(t) — 3e~2u(1)
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(b) Performing long division, we have

X(s)=52+6s+7=1 35+ 5 i+ 3s+5
s+ 35+ 2 2435+ 2 G+ DE+2)
Let
3s+5 ¢, c,
X = DG+ s+l Tse2
where
3s+5
e =(s+DX(5)],-_, = 12 :=~1=2
3s+5
Cz=(s+2)X1(5)|s=—z=ﬁj=_2=1
Hence,
2 1
X(s)=1+ it e
The ROC of X(s) is Re(s) > —1. Thus, x(¢) is a right-sided signal and from Table 3-1
we obtain
x(t) =8(t) + (2e "+ e )u(t)
(¢) Proceeding similarly, we obtain
s3+ 25246 35+6
X(s)=ﬂ=s—l+s(—sjr—3—)
Let
3s+6 c, c,
Xi(s) = s(s+3) - ?+ s+3
where
35+6
cl=5X1(s)':=0=m :=0=2
35+6
ca=(s+3)Xy(s)|-_3= =
s=-3
Hence,
2 1
X(s)=s—1+;+ 33

The ROC of X(s) is Re(s) > 0. Thus, x(¢) is a right-sided signal and from Table 3-1 and
Eq. (3.78) we obtain

x(1)=8'(t) =8(¢) + (2+e ¥M)u(t)

Note that all X(s) in this problem are improper fractions and that x(¢) contains &(t) or
its derivatives.
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3.21.

3.22.
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Find the inverse Laplace transform of

24256 +4e
s2+4s5+3

X(s)= Re(s)> -1

We see that X(s) is a sum
X(s)=X,(s) +X,(s)e ¥+ X;(s)e™

where

Xy(s) = Xy(s) =

s2+4s5+3 s+4s5+3

xy(1) > X\(s) xy(t) = Xy(s) x3(1) <= Xs(s)
then by the linearity property (3.15) and the time-shifting property (3.16) we obtain

x(t) =x,(t) +x,(t =2) +x5(t - 4) (3.85)
Next, using partial-fraction expansions and from Table 3-1, we obtain
1 1
X - = -t _ ,-3
(8) = 7 ~ 5 ) = (e —e M u(r)
X -1 3 -t -3r
2(5)—s—+—1+;-3‘—’x2(1)=(—8 +3e7)u(t)
¥ 2 2 ) R
- = -t _ ,—3t
3(s) 31 543 —ux;3(r) =2(e e u(t)

Thus, by Eq. (3.85) we have
x(t)=(e"—e)u(t) +[—e D+ 37" Du(+ - 2)
+2[e N — =D y(1 - 4)
Using the differentiation in s property (3.21), find the inverse Laplace transform of
Re(s) > —a

We have

d 1 ) 1
-g(s+a - (s+a)’

and from Eq. (3.9) we have

e "u(t) — Re(s) > —a

s+a
Thus, using the differentiation in s property (3.21), we obtain

x(t)=te %u(t)
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3.23. Find the system function H(s) and the impulse response A(f) of the RC circuit in Fig.
1-32 (Prob. 1.32).

(a)

(b)

Let
X

In this case, the RC circuit is

Taking the Laplace transform

(1) =uvy(1) y(t) =v.(t)
described by [Eq. (1.105)]

dy(t) 1 1
@ + EY(‘) = R_Cx(t)

of the above equation, we obtain

1 1
sY(s) + EEY(S) = EX(S)

or

(s+ E%)Y(s)= E%X(s)

Hence, by Eq. (3.37) the system function H(s) is

H(s) =

Y(s)  1/RC 1 1

X(s) s+1/RC  RCs+1/RC

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse

response h(t) is
h(t)

Let

= £ H(s)) = e/ ulr)

x(1) = (1) y(1) =i(t)

In this case, the RC circuit is

described by [Eq. (1.107)]

dy(t) 1 1 dx(1)

Taking the Laplace transform

+—y(t) ==
a TrRDTR 4

of the above equation, we have

sY(s) + %Y(s) = %sX(s)

or

Hence, the system function H

H(s) =

o+ o= Loves

(s) is

Y(s) __s/R 1 s
X(s) s+1/RC  Rs+1/RC
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3.24.

3.25.
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In this case, the system function H(s) is an improper fraction and can be rewritten as

1s+1/RC-1/RC 1 1
"R s+1/RC

1

Since the system is causal, taking the inverse Laplace transform of H(s), the impulse

response A(t) is

1
h(t) =27 (H(5)) = 8(1) ~

e_'/RCu(t)

Note that we obtained different system functions depending on the different sets of input

and output.

Using the Laplace transform, redo Prob. 2.5.
From Prob. 2.5 we have
h(t) =e *u(t) x(t) =e*u(—1t)

Using Table 3-1, we have

H(s)=ﬁ Re(s) > —a
X(s)= —s—_lz Re(s) <a
Thus,
1 1
Y(s)=X(s)H(s)= - (s+a)(s—a) = Tl

and from Table 3-1 (or Prob. 3.6) the output is
! Iel
t)y=—e“
y(1) 2ae

which is the same as Eq. (2.67).

—a <Re(s) <a

The output y(t) of a continuous-time LTI system is found to be 2e~>u(t) when the

input x(¢) is u(t).

(a) Find the impulse response A(¢) of the system.
(b) Find the output y(¢) when the input x(¢) is e ‘u(t).

(a) x(0) =u(t), y(£)=2eu(t)
Taking the Laplace transforms of x(¢) and y(¢), we obtain
1
X(s)=; Re(s) >0
Y 2 R 3
e > —
(D=5 Re(s)

CHAP. 3] LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS 145
Hence, the system function H(s) is
o Y(s) 2s R ;
= —— = > =
)= %Gy " 5+3 e(s)
Rewriting H(s) as
p 2s 2(s+3)-6 5 6 R ;
= = = — > -
(5) s+3 s+3 s+3 e(s)
and taking the inverse Laplace transform of H(s), we have
h(t) =28(1) — 6 u(t)
Note that h(1) is equal to the derivative of 2e~*'u(r) which is the step response s(t) of
the system [see Eq. (2.13)].
I
(») x()=e 'u(t) > — Re(s) > ~1
s+1
Thus,
s
Y =X(s)H P R > —1
() =X(DHS) = 55575 e(s)
Using partial-fraction expansions, we get
v 3
= - +
(s) s+1 s+3

Taking the inverse Laplace transform of Y(s), we obtain

y(1)=(—e "+ 3e )u(t)

3.26. If a continuous-time LTI system is BIBO stable, then show that the ROC of its system
function H(s) must contain the imaginary axis, that is, s = jw.

A continuous-time LTI system is BIBO stable if and only if its impulse response h(r) is
absolutely integrable, that is [Eq. (2.21)],

[ k()i <o
By Eq. (3.3)
H(s) = [ h(t)e dr

Let s =jw. Then

]H(jw)|=‘f:h(t)e'j“'dl sflIh(t)e"“”ldt=f:lh(t)ldt <o

Therefore, we see that if the system is stable, then H(s) converges for s =jw. That is, for a
stable continuous-time LTI system, the ROC of H(s) must contain the imaginary axis s = jw.
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3.27. Using the Laplace transfer, redo Prob. 2.14.
(a) Using Eqgs. (3.36) and (3.41), we have
Y(s) =X(s)H\(s)Hy(s) = X(s)H(s)

where H(s) = H,(s)H,(s) is the system function of the overall system. Now from Table

3-1 we have
hl(t)=e"2’u(t)(—+Hl(s)=$ Re(s) > -2
2
hz(t)=2(3_’u(t)<—»H2(s)=—S+—l Re(s) > —1
Hence,
2

H(s)=H(s)H,(s) = Re(s) > —1

(5+1)(s+2) s+1 s+2
Taking the inverse Laplace transfer of H(s), we get
h(t)=2(e " —e *)u(t)
(b) Since the ROC of H(s), Re(s)> —1, contains the jw-axis, the overall system is stable.

3.28. Using the Laplace transform, redo Prob. 2.23.
The system is described by
dy(t)
dt
Taking the Laplace transform of the above equation, we obtain
sY(s) +a¥Y(s)=X(s) or (s+a)Y(s)=X(s)

Hence, the system function H(s) is

+ay(t) =x(t)

Y(s) 1
X(s) T s+a

H(s) =

Assuming the system is causal and taking the inverse Laplace transform of H(s), the impulse
response h(t) is

h(t) =e “u(t)
which is the same as Eq. (2.124).

3.29. Using the Laplace transform, redo Prob. 2.25.
The system is described by
Yy (t) +2y(t) =x(t) +x'(t)
Taking the Laplace transform of the above equation, we get
sY(s) +2Y(s) = X(s) +s5X(s)
or (s+2)Y(s)=(s+1)X(s)
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Hence, the system function H(s) is
Y(s) s+1 s+2-1 1
—X(s)_s+2_ s+2 s+2

H(s)

Assuming the system is causal and taking the inverse Laplace transform of H(s), the impulse
response h(t) is

h(t) =8(t) —e 'u(t)

3.30. Consider a continuous-time LTI system for which the input x(¢) and output y(t) are
related by

y'(1) +y'(t) = 2y(t) = x(1) (3.86)

(a) Find the system function H(s).

(b) Determine the impulse response h(t) for each of the following three cases: (i)
the system is causal, (if) the system is stable, (iii) the system is neither causal nor
stable.

(a) Taking the Laplace transform of Eq. (3.86), we have
s2Y(s) +sY(s) —2Y(s) = X(s)
or (s?+5-2)Y(s) =X(s)
Hence, the system function H(s) is
Y(s) 1 1

H(s)=X(s) T s-2 (s+2)(s—1)

(b) Using partial-fraction expansions, we get
1 1 1 1
= — — + —
(s+2)(s-1) 3s+2 3s-1

H(s)=

(i) If the system is causal, then A(¢) is causal (that is, a right-sided signal) and the
ROC of H(s) is Re(s)> 1. Then from Table 3-1 we get

h(1) = —3(e”* —eu(r)

(ii) If the system is stable, then the ROC of H(s) must contain the jw-axis. Conse-
quently the ROC of H(s) is —2 < Re(s) < 1. Thus, h(t) is two-sided and from
Table 3-1 we get

h(t) = — e u(t) — ze'u( 1)

(iii) If the system is neither causal nor stable, then the ROC of H(s) is Re(s) < —2.
Then h(¢) is noncausal (that is, a left-sided signal) and from Table 3-1 we get

h(t) =3te 2u(—t) — se'u(—1t)

3.31. The feedback interconnection of two causal subsystems with system functions F(s)
and G(s) is depicted in Fig. 3-13. Find the overall system function H(s) for this
feedback system.
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x(1) e(r) }L0)
126)] >

)

G(s) <

Fig. 3-13 Feedback system.

Let x(t) e X(s) r(t) <= R(s) e(t) —E(s)

Then,

y(t) = Y(s)

Y(s)=E(s)F(s) (3.87)
R(s) =Y(s)G(s) (3.88)
Since
e(t)=x(t)+r(t)
we have
E(s) =X(s)+R(s) (3.89)
Substituting Eq. (3.88) into Eq. (3.89) and then substituting the result into Eq. (3.87), we
obtain
Y(s) = [X(s) + Y(5)G(5)]F(s)
or [1=F(5)G(s)]Y(s) =F(s)X(s)
Thus, the overall system function is
Y(s) F(s)

HG) = %5 " T=F»60)

(3.90)

UNILATERAL LAPLACE TRANSFORM

3.32. Verify Egs. (3.44) and (3.45), that is,
dx(1)
dt

dx(t)
®) —>

(a) Using Eq. (3.43) and integrating by parts, we obtain

dx(1) wdx(r)
'/’{ dt }=-{0 ar ¢ a

(a)

> sX,(s) —x(07)

—52X,(s) —sx(07) —x'(07)

x(l)e""|:f + sfwx(t)e"“ dt
o-

=x(07) +sX,(s) Re(s) >0

Thus, we have
dx(t)

T sXi(s) —x(07)
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(b) Applying the above property to signal x'(¢) =dx(¢)/dt, we obtain

dx(t) _d dx(1)
di*  dr dt
=52X,(s) —sx(07) —x'(07)

Note that Eq. (3.46) can be obtained by continued application of the above proce-
dure.

—s[sX;(s) =x(07)] —x'(07)

3.33. Verify Eqgs. (3.47) and (3.48), that is,

(a)
(b)

(a)

(b)

3.34. (a)

(b)

' 1
f x(r)dr— —X,(s)
0~ S

' 1 1 .o-
f x(1)dre—> —X/s)+ —fo x(7)dr
® s s

- —

Let g()= [' x(r)dr
o-
d,
Then 5(1) =x(t) and g(07)=0
dt
Now if

g(1) > G,(s)
then by Eq. (3.44)
X;(s) =5G(s) —8(07) =sG,(s)
Thus,

1
G,(s) = ;Xl(s)

or [ x(r)d x )
> —
- r)dr " (s
We can write
! 0 1
dr= dr+ | x(7)d
f_wx('r) T f_wx(‘r) T j;_ (7)dr

Note that the first term on the right-hand side is a constant. Thus, taking the unilateral
Laplace transform of the above equation and using Eq. (3.47), we get

t 1 1 -
f_mx('r) dr > ;X,(s) + ;f_owx('r)dr

Show that the bilateral Laplace transform of x(¢z) can be computed from two
unilateral Laplace transforms.

Using the result obtained in part (a), find the bilateral Laplace transform of
e 2,
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(a)

(b)
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The bilateral Laplace transform of x(¢) defined in Eq. (3.3) can be expressed as

X(s) =/j;x(t)e'“dt= f-(:x(t)e"”dt+j(‘:x(t)e'“dt

= [x(=near+ [“x(t)ear
0- 0~

Now [ x(nye " di = X,(s) Re(s) > o
N
Next, let
LAx(-0) =X (s) = [ x(~1)e di Re(s) > o~
-
Then [ x(-1)e”di= [ x(=t)e” ' dt=X;(-s) Re(s) <o~
1] 0"

Thus, substituting Egs. (3.92) and (3.94) into Eq. (3.91), we obtain
X(s)=X,(s)+X;(-s) " <Re(s) <o~

x(t)=¢ 2

(1) x(1)=e"% for t >0, which gives

1
L{x()) =X (s) = —

12 Re(s) > -2

(2) x(t)=e* for t <0. Then x(—t)=e "% for t > 0, which gives

A-0) =X ()= =5 Re(s) > 2
Thus,
Xi(-s)= Lo Re(s) <2
—-s+2 s—2
(3) According to Eq. (3.95), we have
X(s)=X,(5) + X/ (=5) = — ~ siz
4
--= ~2<Re(s) <2

which is equal to Eq. (3.70), with a = 2, in Prob. 3.6.

3.35. Show that
(a) x(0%)= lim sX,(s)

(b)

lim x(¢) = lim sX,(s)
50

t— o

[CHAP. 3

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)
(3.98)

Equation (3.97) is called the initial value theorem, while Eq. (3.98) is called the final
value theorem for the unilateral Laplace transform.

CHAP. 3]

(a) Using Eq. (3.44), we have

« dx(t)
_ -\ = =St dy
sX;(s) —x(07) j‘; e
o+ dx(1) (1)
= -‘Ild —Ifd
= t+-/(‘)‘—dt e~ dt
© dx(t)
0+ —st
= ! —e 4,
x(0)lo +/(']+ " 1
mdx(t)
= +\ _ - 7, -st
x(0%) —x(0 )+f0+ et
Thus,
= dx(t)
= + —st
sX,(s) =x(0 )+-/(’y—dt e~ dt
and lim sX,(s) =x(0*) + lim fxwe"'dt
s> ® ! sowodor  dt
= dx(t
=x(0%) +fm—%l(su3;e-“)dz=x(o+)
since lim e *'=0.

5>

(b) Again using Eq. (3.44), we have

im [5X,(5) =x(07)] = lim [~ —-—=

LAPLACE TRANSFORM AND CONTINUOUS-TIME LTI SYSTEMS

I
—
8
by
———
3
L
4
—
3

= [lim x(t)—x(07)

Since lin})[sX,(s) -x(07)] = lirr:)[sX,(s)]

we conclude that

lim x(t) = lim sX,(s)
- s—0

3.36. The unilateral Laplace transform is sometimes defined as

~x(07)

(20} =X7 ()= [ x(0)e "

151

(3.99)

with 0% as the lower limit. (This definition is sometimes referred to as the 0%

definition.)
(a) Show that

A{dx(t)

S| K9 -x07)

Re(s)>0

(3.100)
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(b) Show that
Zlu(n)) = (3.101)
Z.{8(1)} =0 (3.102)

(a) Let x(t) have unilateral Laplace transform X; (s). Using Eq. (3.99) and integrating by
parts, we obtain

dx (1) = dx(1)
-/1{ a }=_/;~ @ e dt
—x(t)e gt [ x(t)e " dr
o+
= —x(0") +sX; (s) Re(s) >0
Thus, we have
dx(1)

o T sX(s) —x(07)

(b) By definition (3.99)

Zu(1)) =fuxu(t)e‘“dt=fme"’dt
. .

x

1 1
=-e ”n*=; Re(s) >0
From Eq. (1.30) we have
du(t)
8(1) = —, (3.103)
Taking the 0% unilateral Laplace transform of Eq. (3.7/03) and using Eq. (3.100), we

obtain
ZA8(1)} =s% —u(0*)y=1-1=0
This is consistent with Eq. (1.21); that is,
Z.45(1)) =f[:6(r)e"'dt=0

Note that taking the 0 unilateral Laplace transform of Eq. (3.103) and using Eq. (3.44),
we obtain

Z{8(1)} =s§ —u(07)=1-0=1

APPLICATION OF UNILATERAL LAPLACE TRANSFORM

3.37. Using the unilateral Laplace transform, redo Prob. 2.20.
The system is described by
y'(t) +ay(t) =x(t) (3.104)
with y(0) =y, and x(¢) = Ke™*"u(t).
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3.38.

Assume that y(0) = y(0~). Let
y(1) = Y;(s)

Then from Egq. (3.44)

y'(1) Y, (s) —=y(07) =sY;(s) =¥
From Table 3-1 we have

x(t)«—-)X,(s)=i— Re(s) > -b
s+b

Taking the unilateral Laplace transform of Eq. (3.104), we obtain

K
[s¥(5) = o] +a¥i(s) =

K
+ =yo+ ——
or (s+@)¥(s) =yo+ —
Thus,
Yo K
+
s+a (s+a)(s+b)

Y,(s) =

Using partial-fraction expansions, we obtain
Yo K ( 1 1 )

Y, = + -
1(5) s+a a-bl\s+b s+a

Taking the inverse Laplace transform of Y,(s), we obtain

(efbt —e*‘”)}u(t)

- -at
y(1) [YOe + a—b

which is the same as Eq. (2.107). Noting that y(0*) =y(0) = y(07) = y,, we write y(¢) as

t) = —al+ -bt _ ,—at 120
y(t) =yoe pay e )

Solve the second-order linear differential equation
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Y1) +5y'(1) + 6y(t) =x(1) (3.105)

with the initial conditions y(0) =2, y'(0) =1, and x(¢)=¢e 'u(2).
Assume that y(0) =y(0~) and y'(0) =y'(07). Let
y(t) = Y;(s)
Then from Egs. (3.44) and (3.45)
y'(1) =sY,(s) —y(07) =sY,(s) -2
Y'(£) > s2Y)(s) —=sy(07) —y'(07) =5?Y,(s) = 25— 1

From Table 3-1 we have

1
x(t) e X,(s) = Py
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3.39.
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Taking the unilateral Laplace transform of Eq. (3.105), we obtain

[s2Y,(s) = 25 = 1] + 5[sY,(s) = 2] + 6Y,(s) = L

s+1
1 252+ 135+ 12
or (s?+55+6)Y,(s)=——+2s+ 1l = ————
s+1 s+1
Thus,

252+ 135 + 12 252+ 135 + 12
(s+1)(s2+55+6) (s+1)(s+2)(s+3)

Yi(s)=
Using partial-fraction expansions, we obtain

v 1 1 6 1 9 1
= - + —_——
1(5) 2s5+1 s+2 2s+3

Taking the inverse Laplace transform of Y,(s), we have
y(t) = (%e"' + 672 — %e"")u(!)

Notice that y(0*) =2 =y(0) and y'(0*) =1 =y'(0); and we can write y(¢) as

y(t) =3¢ " +6e % — 3¢ t>0

Consider the RC circuit shown in Fig. 3-14(a). The switch is closed at ¢ = 0. Assume
that there is an initial voltage on the capacitor and v(07) = v,

(a) Find the current i(z).
(b) Find the voltage across the capacitor v(1).

oY AN—> AA—>

T : T
T el = ) vs(0) ¢ vel
: 4 S

ve(0)=v,
(a) (b)
Fig. 3-14 RC circuit.

+

il
y
o

(a) With the switching action, the circuit shown in Fig. 3-14(a) can be represented by the
circuit shown in Fig. 3-14(b) with ¢,(¢) = Vu(¢). When the current i(¢) is the output and
the input is ¢,(¢), the differential equation governing the circuit is

1
Ri(t) + Ef_lwi(r)df=v:(t) (3.106)
Taking the unilateral Laplace transform of Eq. (3.7106) and using Eq. (3.48), we obtain

1[1 10 v
RI(s) + = ;1(5)+;f_“1(7)d7’]=; (3.107)
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where I(s) =4 {i(1)}
Now v(1) = éfiwi(f) dr
1 .o

and v (07) = Ef_mi(-r) dr=v,
Hence, Eq. (3.107) reduces to

(R+ ——l—)l(s) s Y

Cs s s

Solving for I(s), we obtain

- 1 V—-u, 1

Vv
I(s) =

s R+1/CG R s+1/RC

Taking the inverse Laplace transform of I(s), we get

V—-u
i =~ 2e=/RCy(1)

(b) When v(¢) is the output and the input is v,(¢), the differential equation governing the

circuit is
) L = (3.108)
dt RC ¢ RC ™
Taking the unilateral Laplace transform of Eq. (3.108) and using Eq. (3.44), we obtain
1 1 v
SVe(8) =0(07) + paVel($) = e 7
1 1V
or (S+E)Vc(s)=R—C—;+UO

Solving for V.(s), we have
1 N Vg
RC s(s+1/RC) ' s+1/RC

Vi(s) =

1 1 Vg
=V - - +
s s+1/RC s+1/RC
Taking the inverse Laplace transform of V,(s), we obtain
v (1) =V[1-e RClu(t) + vge"/RCu(1t)
Note that v (0*) = vy = v.(07). Thus, we write v (1) as

v (1) =V(1—e /R 4 pge/RC >0

3.40. Using the transform network technique, redo Prob. 3.39.

(a) Using Fig. 3-10, the transform network corresponding to Fig. 3-14 is constructed as shown
in Fig. 3-15.
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R Ks)
AW >

+
4 J. T

v * Cs
;CD + V)

Vo
_ ) l

Fig. 3-15 Transform circuit.

Writing the voltage law for the loop, we get
1 vy V
(R+ a)l(s)+ el
Solving for I(s), we have

-0y 1 V—uy 1

v
1) === R¥1/66 = "R s+i/RC

Taking the inverse Laplace transform of /(s), we obtain

V- er"/RCu(t)
R

i(1) =
(b) From Fig. 3.15 we have
v L %
= — + —
() = () + ~

Substituting /(s) obtained in part (a) into the above equation, we get
V—u, 1 Uy

V(&)= e sGrRO) TS

1 1 vy
=)= - e
s s+1/RC s

Vg
+
s+ 1/RC

1 1
=yv|= -
s s+1/RC
Taking the inverse Laplace transform of V.(s), we have

v (1) =V (1 —e RO u(t) + vge Ru(r)

3.41. In the circuit in Fig. 3-16(a) the switch is in the closed position for a long time before
it is opened at ¢t = 0. Find the inductor current i(t) for ¢ > 0.

When the switch is in the closed position for a long time, the capacitor voltage is charged
to 10 V and there is no current flowing in the capacitor. The inductor behaves as a short circuit,
and the inductor current is =2 A.

Thus, when the switch is open, we have i(07) =2 and v (0~) = 10; the input voltage is 10
V, and therefore it can be represented as 10u(¢). Next, using Fig. 3-10, we construct the
transform circuit as shown in Fig. 3-16(b).
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3.42.

10V

(a) (b)

Fig. 3-16

From Fig. 3-16(b) the loop equation can be written as

1 . ey 20[ 10 10
- -1+ + — +—=—
s1(s) (5)+ —I(5)+ — =~
1 5 20 ! .
or (5s+ +—s_) (s) =
Hence,
/ 1 2s
(s) = 1s+2+20/s s*+4s+40
2(s+2) -4 (s+2) 2 6
(s+2)2+6> (s+2)°+62 3 (s+2)°+62

Taking the inverse Laplace transform of I(s), we obtain

i(t) =e?(2cos61 — 3sin61)u(t)
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Note that i(0*) = 2 =i(07); that is, there is no discontinuity in the inductor current before and

after the switch is opened. Thus, we have

i(t)y =e *(2cos6r— $sin6t) 120

Consider the circuit shown in Fig. 3-17(a). The two switches are closed simultaneously
at t = 0. The voltages on capacitors C, and C, before the switches are closed are 1

and 2 V, respectively.

(a) Find the currents i,(¢) and i,(¢).
(b) Find the voltages across the capacitors at ¢t =0,

(a) From the given initial conditions, we have

be(07)=1V and e (07)=2V

Thus, using Fig. 3-10, we construct a transform circuit as shown in Fig. 3-17(b). From
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=
C
i
o | FO—
o i ‘
120 I 1
N +
5V o= (1) a0 D >,=O 2 1(5) ) 5 ‘ 12(5))
| | ]
m (Ol
C=1F I !

(b)

f=veso—
(a) (b)
Fig. 3-17

Fig. 3-17(b) the loop equations can be written directly as

(2+ %)Il(s) = 20,(s) =;

—21,(s) + (2+ sl)lz(s) - —%

Solving for 7,(s) and I,(s) yields
s+1 s+

1
i
I(s)= —r = —1 L 142
i(5) s+ 3 s+13 45+ 5
/ s—3 s+1-3 | 31
s =—m= — =1 - —
os) s+ 3 s+ ds+3

Taking the inverse Laplace transforms of /,(s) and I,(s), we get
i(r)=8(1) + 3¢ *u(r)
i(1) =8(1) — feu(r)

From Fig. 3-17(b) we have

1 1
VC,(S) = ;11(5) + B

1 2
Ve(s) = S h(s) + 3

Substituting /,(s) and I,(s) obtained in part (a) into the above expressions, we get

1s+1 1

el =TT
r

ls—5 2

el =5t
4
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Then, using the initial value theorem (3.97), we have
. s+l
ve,(07) = lim sV (s) = lim —5 +1=1+1=2V
s—® s—ow §+ i

1
. . S72
UCZ(O+) = Sll_'HlSVCZ(S) = sll_{llm +2=1+2=3V

Note that v-(0%) #0v-(07) and vc(0%) # v (07). This is due to the existence of a
capacitor loop in the circuit resulting in a sudden change in voltage across the capacitors.
This step change in voltages will result in impulses in /,(¢) and i,(¢). Circuits having a
capacitor loop or an inductor star connection are known as degenerative circuits.

Supplementary Problems

Find the Laplace transform of the following x(¢):

(a) x(¢) =sin wqtu(t)
(b) x(2) = cos(wyt + Pult)
(c) x()=e""u(t) —e”u(—-1)

d) x(H=1
(e) x(t)=sgnt
Ans.

)
(a) X(s)= —5—,Re(s)>0
57+ wgy

5€COS ¢ — w,sin @

¥l ,Re(s)>0

b) X(s)=

—a < Re(s) <a. If a <0, X(s) does not exist since X(s) does

(c) Ifa>0, X(s)= e

not have an ROC.
(d) Hint: x(t)=u(t)+u(—1t)

X(s) does not exist since X(s) does not have an ROC.
(e) Hint: x(t)=u(t) —u(-1t)

X(s) does not exist since X(s) does not have an ROC.

a?’

Find the Laplace transform of x(t) given by

1 <<t

x(t) = {

0 otherwise

1
Ans. X(s)=—[e 1 —e 2] all s
s
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3.46.

3.47.

3.48.

3.49.
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Show that if x(¢) is a left-sided signal and X(s) converges for some value of s, then the ROC
of X(s) is of the form

Re(s) <o,

in

where o,,;, equals the minimum real part of any of the poles of X(s).

Hint: Proceed in a manner similar to Prob. 3.4.

Verify Eq. (3.21), that is,

R'=R

dX(s)
ds

- ﬂ.’( t) «—>
Hint: Differentiate both sides of Eq. (3.3) with respect to s.

Show the following properties for the Laplace transform:

(a) If x(¢)is even, then X(—s) = X(s); that is, X(s) is also even.
(b) If x(¢) is odd, then X(—s)= —X(s); that is, X(s) is also odd.
(c) If x(1) is odd, then there is a zero in X(s) at s =0.

Hint:

(a) Use Egs. (1.2) and (3.17).

(b) Use Egs. (1.3) and (3.17).
(c) Use the result from part (b) and Eq. (1.83a).

Find the Laplace transform of
x(t) =(e *cos2t —5Se )u(r) + te*u(—1)

s+ 1 5 1 1

Ans. X(s)= - —

- . —1<Re(s) <2
(s+1)°+4 s+2 25-2 e(s)

Find the inverse Laplace transform of the following X(s);

(a) X(s) = ————— Re(s) > -1
s(s + 1)

(b) X(s) = ————~, —1<Re(s) <0
s(s + 1)°

(¢) X(s) = —  Re(s) < ~1
s(s + 1)?

@ X) = —FL _ Res)>-2
sc+4ds + 13

(6) X(s) = ——— Re(s)>0

4 (s~ + 4)

N Xs) = u _Re(s) >—2

sT+ 257+ 95 + 18
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Ans.

(@ x()=0-e""—te u(t)

(b) x()=—u(=1)— QA +)e ut)

() x()=(—1+e "+1e Dul—1)

(d) x(t)=e"?(cos3t — §sin3t)u(t)

(e) x(¢)= 3tsin2tu(s)

(f) x()=(- Ze 2+ & cos3t+ & sin30)u(t)

Using the Laplace transform, redo Prob. 2.46.
Hint: Use Eq. (3.21) and Table 3-1.

Using the Laplace transform, show that

(@) x()x6(t)=x(1)
b) x()*8'()=x'(1)

Hint:

(a) Use Eq. (3.2]) and Table 3-1.
(b) Use Egs. (3.18) and (3.21) and Table 3-1.

Using the Laplace transform, redo Prob. 2.54.
Hint:

(a) Find the system function H(s) by Eq. (3.32) and take the inverse Laplace transform of
H(s).
(b) Find the ROC of H(s) and show that it does not contain the jw-axis.

Find the output y(t) of the continuous-time LTI system with
h(t) =e u(t)

for the each of the following inputs:

(a) x(t) = e 'u(t)

(by x(1) = e 'u(-1)

Ans.

(@ y(1) = (e '—e u(r)
(B) y(1) = e u(=n+e 2u(r)

The step response of an continuous-time LTI system is given by (1 —e~")u(t). For a certain
unknown input x(t), the output y(¢) is observed to be (2 — 3e~' + ¢ ~3)u(t). Find the input
x(t).

Ans. x(1) =21 — e ¥)u(t)
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3.55.

3.56.

3.57.

3.58.

3.59.

3.60.
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(1) 1 1 ¥(0)
e 2 € e o B e : — >
s+l 5+2

+ +
' 1+

<

Y

Fig. 3-18

Determine the overall system function H(s) for the system shown in Fig. 3-18.

Hint:  Use the result from Prob. 3.31 to simplify the block diagram.
s

Ans. H(s)= —————
s (s) s +3s2+s5-2

If x(¢) is a periodic function with fundamental period T, find the unilateral Laplace transform
of x(1).

Ans. X(s)= ;fo(t)e"’dt Re(s) >0
. D=5 - ,

Find the unilateral Laplace transforms of the periodic signals shown in Fig. 3-19.

-5

Re(s)>0; (b)) ——————, Re(s)>0
s(1+e™)

Ans. (a) s—(1+—e"—)_v

Using the unilateral Laplace transform, find the solution of
y'(t) —y'(1) —6y(1) =€
with the initial conditions y(0) =1 and y'(0) =0 for ¢ > 0.

Ans. y(1)= —ie'+%e ¥+ 1, 120

Using the unilateral Laplace transform, solve the following simultaneous differential equations:
y(t) +y(e) +x'(t) +x(t)=1
Y1) —y(1) =2x(1) =0
with x(0) =0 and y(0) =1 for ¢ > 0.
Ans. x()=e '—1,y(t)=2—-¢e"",t20

Using the unilateral Laplace transform, solve the following integral equations:
t

(@ y()=1+a[y(r)dr, 120
0

(b) y(t)=e‘[l + f'e“'y(‘r) d‘r], 120
0

Ans. (@) y(t)=e", t20; (b) y(t)=e*,t>0
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x(1)

——— | ——
] ] ] t 1 ]
' ] ) 1 ] ]
[} 1 ] 1 t 1
] 1 [} 1 I [}
1 1 i ] I 1
1 - | A —r 1 L —
| 0 1 2 3 4 5 !

(@)
x(1

—_— | [r— ; - ; -
]
! I ; I ! |
1 1 ] 1
' \ : | : )
: ! L : . g .
)l 0 | P 3 Yy s I
i 1 ! f ! '
1 1 ' f ' '
1 f ! ' ! '
] 1 ] ! ! ! '

)
Fig. 3-19
3.61. Consider the RC circuit in Fig. 3-20. The switch is closed at ¢ = 0. The capacitor voltage before

3.62.

the switch closing is v,. Find the capacitor voltage for ¢ > 0.

Ans. v (t)=v,e”RC 120

Consider the RC circuit in Fig. 3-21. The switch is closed at 1 = 0. Before the switch closing,
the capacitor C, is charged to v, V and the capacitor C, is not charged.

(a) Assuming ¢, =c, = c, find the current i(¢t) for ¢ > 0.

(b) Find the total energy E dissipated by the resistor R and show that E is independent of R
and is equal to half of the initial energy stored in C,.

Yo

t=0

R
i1 )

Fig. 3-20 RC circuit.

I

I
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R

L

4’fc AMW—
]

Fig. 3-21 RC circuit.
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(c) Assume that R=0 and C,=C, = C. Find the current i(¢) for ¢ > 0 and voltages v (0")

and v (07).
Ans.

(@) i1)=(vy/Rle 2R 120
(b) E=;i0iC

(€) it) = 500C8(t), 1c(0) = vy /2 # 0c(07) = vy, v f0M) =14/2 # 0 (07) =0

Chapter 4

The z-Transform and Discrete-Time
LTI Systems

4.1 INTRODUCTION

In Chap. 3 we introduced the Laplace transform. In this chapter we present the
z-transform, which is the discrete-time counterpart of the Laplace transform. The z-trans-
form is introduced to represent discrete-time signals (or sequences) in the z-domain (z is a
complex variable), and the concept of the system function for a discrete-time LTI system
will be described. The Laplace transform converts integrodifferential equations into
algebraic equations. In a similar manner, the z-transform converts difference equations
into algebraic equations, thereby simplifying the analysis of discrete-time systems.

The properties of the z-transform closely parallel those of the Laplace transform.
However, we will see some important distinctions between the z-transform and the
Laplace transform.

4.2 THE z-TRANSFORM

In Sec. 2.8 we saw that for a discrete-time LTI system with impulse response h[n], the
output y{n] of the system to the complex exponential input of the form z" is

y[n] =T{z"} = H(z)z" (4.1)
where
H(z)= i hin]z™" (4.2)
A. Definition:

The function H(z) in Eq. (4.2) is referred to as the z-transform of A[n]. For a general
discrete-time signal x[n), the z-transform X(z) is defined as

)

X(z)= Y, x[n]z™" (4.3)

n=—

The variable z is generally complex-valued and is expressed in polar form as
z =re'® (4.4)

where r is the magnitude of z and () is the angle of z. The z-transform defined in Eq.
(4.3) is often called the bilateral (or two-sided) z-transform in contrast to the unilateral (or

165
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one-sided) z-transform, which is defined as
X,(z)= Ex[n]z‘" (4.5)
n=0

Clearly the bilateral and unilateral z-transforms are equivalent only if x[n]=0 for n <0.
The unilateral z-transform is discussed in Sec. 4.8. We will omit the word “bilateral”
except where it is needed to avoid ambiguity.

As in the case of the Laplace transform, Eq. (4.3) is sometimes considered an operator
that transforms a sequence x[n] into a function X(z), symbolically represented by

X(z) =3{x[n]) (4.6)
The x[n] and X(z) are said to form a z-transform pair denoted as
x[n] = X(z) (4.7)

B. The Region of Convergence:

As in the case of the Laplace transform, the range of values of the complex variable z
for which the z-transform converges is called the region of convergence. To illustrate the
z-transform and the associated ROC let us consider some examples.

EXAMPLE 4.1. Consider the sequence
x[n] =a"u[n) a real (4.8)
Then by Eq. (4.3) the z-transform of x[n] is

o

X(z)= Y au[n]z7"= ;(az")"

n=—x

For the convergence of X(z) we require that
Y laz7Y' <
n=0

Thus, the ROC is the range of values of z for which {az~ 'l < 1 or, equivalently, |z| > |al. Then

% n 1
X(z)=Y (az“) =

n=0

g lz| > |al (4.9)

Alternatively, by multiplying the numerator and denominator of Eq. (4.9) by z, we may write X(z) as

X(z)=——z— |z > |al (4.10)

zZ—a

Both forms of X(z) in Eqgs. (4.9) and (4.10) are useful depending upon the application.
From Eq. (4.10) we see that X(z) is a rational function of z. Consequently, just as with
rational Laplace transforms, it can be characterized by its zeros (the roots of the numerator
polynomial) and its poles (the roots of the denominator polynomial). From Eq. (4.10) we see
that there is one zero at z =0 and one pole at z =a. The ROC and the pole-zero plot for
this example are shown in Fig. 4-1. In z-transform applications, the complex plane is
commonly referred to as the z-plane.
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Re(2) Re(z)
Unit circle A
- .
// /7////4‘ z-plane 7
o
<
P ///‘ ;
/ Z Im(z)
O0<a<0 a>1
Re(z)

Im(z)

-l<a<0 a<-1

Fig. 4-1 ROC of the form |z|> lal.

EXAMPLE 4.2. Consider the sequence
x[n]}=—-a"u[—n—-1] (4.11)

Its z-transform X(z) is given by (Prob. 4.1)

X(z)= 2| <lal (4.12)

1-az"!
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Again, as before, X(z) may be written as

X(z) =;§a— Iz| <lal (4.13)

Thus, the ROC and the pole-zero plot for this example are shown in Fig. 4-2. Comparing
Egs. (4.9) and (4.12) [or Egs. (4.10) and (4.13)], we see that the algebraic expressions of
X(z) for two different sequences are identical except for the ROCs. Thus, as in the Laplace

Im(z) Im(z)

afl Re(2)

O<acx<] a>1

Im(z) Im(z)

,///////,% Re(2)

W 7
////////

-l<a<0 a<-1

Fig. 4-2 ROC of the form |z] <lal.

///%////y/////%// Re(@)
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transform, specification of the z-transform requires both the algebraic expression and the

ROC.

C. Properties of the ROC:

As we saw in Examples 4.1 and 4.2, the ROC of X(z) depends on the nature of x[n].
The properties of the ROC are summarized below. We assume that X(z) is a rational
function of z.

Property 1:
Property 2:

Property 3:

Property 4:

Property 5:

The ROC does not contain any poles.

If x[n] is a finite sequence (that is, x[n]=0 except in a finite interval N; <n <N,,
where N, and N, are finite) and X(z) converges for some value of z, then the ROC is
the entire z-plane except possibly z =0 or z = .

If x[n] is a right-sided sequence (that is, x[n] =0 for n <N, < ®) and X(z) converges
for some value of z, then the ROC is of the form

|zI>rp  Oor > |z|>r
where r_,, equals the largest magnitude of any of the poles of X(z). Thus, the ROC is
the exterior of the circle |z|=r,, in the z-plane with the possible exception of z = .

If x[n]is a left-sided sequence (that is, x[n]=0 for n > N, > —) and X(z) converges
for some value of z, then the ROC is of the form

|zl <rpn  or  0<lzl<rpy,
where r;, is the smallest magnitude of any of the poles of X(z). Thus, the ROC is the
interior of the circle |z| = r,,, in the z-plane with the possible exception of z = 0.

If x[n] is a two-sided sequence (that is, x[n] is an infinite-duration sequence that is
neither right-sided nor left-sided) and X(z) converges for some value of z, then the
ROC is of the form

ry<lzl<r,

where r, and r, are the magnitudes of the two poles of X(z). Thus, the ROC is an
annular ring in the z-plane between the circles |z|=r, and |z|=r, not containing any
poles.

Note that Property 1 follows immediately from the definition of poles; that is, X(z)
is infinite at a pole. For verification of the other properties, see Probs. 4.2 and 4.5.

4.3 z-TRANSFORMS OF SOME COMMON SEQUENCES
A. Unit Impulse Sequence 3fn]:
From definition (7.45) and (4.3)

X(z)= i 8[n]zn=z""=1 alt z (4.14)

n= -
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Thus,
8[n] &1 all z

B. Unit Step Sequence ulnl:
Setting @ = 1 in Eqgs. (4.8) to (4.10), we obtain
1 z

>
1-z7' z-1 Iz1>1

uln] —

C. z-Transform Pairs:

The z-transforms of some common sequences are tabulated in Table 4-1.

Table 4-1. Some Common z-Transform Pairs

[CHAP. 4

(4.15)

(4.16)

x[n) X(z) ROC
8[n] 1 All z
1 z
uln) e [2[>1
1 z
—ul-n-1] e R lz| <1
8ln —m] z™m All z except 0if (m > 0) or » if (m < 0)
1 z
a"uln) — Iz]> |al
1-az z—a
1 z
—a"u[-n—1] —, |z <]a
1—-az zZ—a
az™! az
na"uln) 3 3 |z} > lal
(1-az7') (z-a)
az™! az
—na"ul—n - 1] 5 3 |zl <|al
(1-az7'y (z-a)
1 z 7
(n + Da"uln) ———2[ ] 121> 1al
(1-—az ')y Lz—a
. 22— (cos Q) z
Q > 1
(cos Qgnuln] 27— (2008 Qg)z + 1 o
(sinQy)z
in Q) > 1
(sin Qyn)uln) 22— (2cos Qg)z + 1 Iz
22— (rcos Qg)z
n Q >
(r" cos Qynuln] - (Zroos )z 41 lz[>r
(rsinQg)z
nsin Q >
(r” sin Qon)uln] 22— (2rcos Qg)z +r? lzl>r
a” 0<n<N-1 1-a"z7" 121> 0
0 otherwise 1-az™!
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4.4 PROPERTIES OF THE Z-TRANSFORM

Basic properties of the z-transform are presented in the following discussion. Verifica-
tion of these properties is given in Probs. 4.8 to 4.14.

A. Linearity:
If
x,[n] > X\(2) ROC =R,
x,[n] > X,(z) ROC =R,
then
ax,[n] +a,x;[n] = a, X \(2) +a,X,(z) R'DR,NR, (4.17)
where a, and a, are arbitrary constants.
B. Time Shifting:
If
x[n] & X(z) ROC =R
then
x[n—ny] «=>z7"X(z) R'=RN{0<|z| < ) (4.18)
Special Cases:
x[n—1]—z7'X(z) R =Rn{0<]zl} (4.19)
x[n+1] & zX(z2) R =R {lz| < ) (4.20)

Because of these relationships [Eqs. (4.79) and (4.20)], z7! is often called the unit-delay
operator and z is called the unit-advance operator. Note that in the Laplace transform the
operators s~ !=1/s and s correspond to time-domain integration and differentiation,
respectively {Egs. (3.22) and (3.20)].

C. Multiplication by zg:
If
x[n] > X(z2) ROC=R

then

z8x[n] HX(zi) R'=|zy|R (4.21)

0

In particular, a pole (or zero) at z =z, in X(z) moves to z = z,z, after multiplication by
z¢ and the ROC expands or contracts by the factor |z,).

Special Case:

e x[n] <> X (e %z) R' =R (4.22)
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In this special case, all poles and zeros are simply rotated by the angle (), and the ROC is
unchanged.

D. Time Reversal:

If
x[n] > X(z) ROC=R
then
1 1
x[—n]HX(;] R’=E (4.23)

Therefore, a pole (or zero) in X(z) at z =2z, moves to 1/z, after time reversal. The
relationship R' = 1 /R indicates the inversion of R, reflecting the fact that a right-sided
sequence becomes left-sided if time-reversed, and vice versa.

E. Multiplication by n (or Differentiation in z):

If
x[n] —X(z) ROC=R
then
dx(2) R'=R 4.24
nx[n] e —z p = (4.24)
F. Accumulation:
If
x[n] = X(z) ROC =R
then
n 1 z
Y x[k]<—>1 z"X(Z)=z 1X(z) R' DR {lz|> 1} (4.25)
k= - - -

Note that ¥7_ __x[k] is the discrete-time counterpart to integration in the time domain
and is called the accumulation. The comparable Laplace transform operator for integra-
tion is 1/s.

G. Convolution:

If
x\[n] = X\(2) ROC =R,
x;[n] > X,(2) ROC=R,
then
x[n]*x,[n] > X (2)X,(2) R'DR,NR, (4.26)

This relationship plays a central role in the analysis and design of discrete-time LTI
systems, in analogy with the continuous-time case.
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Table 4-2. Some Properties of the z-Transform

Property Sequence Transform ROC
x[n] X(z) R
x[n] X(2) R,
x,[n) X,(2) R,
Linearity ax[n]l+a,x,[n]  a,X(2)+a,X,(2) R'DR,NR,
Time shifting xln —ng) 27" X(2) R DRN{0<|z| <}
z
Multiplication by z{ 2{x[n] X( = ) R =|z,IR
0
Multiplication by e/%” e/ x(n] X(e /%oz) R =R
1 1
Time reversal x[—n] X( — ) R = —
z R
o dX(z)
Mulitiplication by n nx[n] -z i R'=R
z
n
Accumulation Y xln] p—— X(z) R' DRN{z|> 1}
k=-o A
Convolution x,[n)* x,[n] X(2)X,(2) R' DR NR,

H. Summary of Some z-transform Properties

For convenient reference, the properties of the z-transform presented above are
summarized in Table 4-2.

4.5 THE INVERSE z-TRANSFORM

Inversion of the z-transform to find the sequence x[n] from its z-transform X(z) is
called the inverse z-transform, symbolically denoted as

x[n] =87 YX(z)} (4.27)

A. Inversion Formula:

As in the case of the Laplace transform, there is a formal expression for the inverse
z-transform in terms of an integration in the z-plane; that is,

1
x[n] = Er—jgjcx(z)z"-‘ dz (4.28)

where C is a counterclockwise contour of integration enclosing the origin. Formal
evaluation of Eq. (4.28) requires an understanding of complex variable theory.

B. Use of Tables of z-Transform Pairs:
In the second method for the inversion of X(z), we attempt to express X(z) as a sum
X(z2)=X{(z2)+ - +X,(2) (4.29)
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where X,(z),..., X,(z) are functions with known inverse transforms x,[n],...,x[n]
From the linearity property (4.17) it follows that
x(n] =x[n] + - +x,[n] (4.30)

C. Power Series Expansion:

The defining expression for the z-transform [Eq. (4.3)] is a power series where the
sequence values x[n] are the coefficients of z™". Thus, if X(z) is given as a power series in
the form

%

L x[n]z™

n=—o

x| =222+ x[ 1]z +x[0] +x[1] 27 +x[2) 272+ - (4.31)

X|[z]

ii

we can determine any particular value of the sequence by finding the coefficient of the
appropriate power of z~!. This approach may not provide a closed-form solution but is
very useful for a finite-length sequence where X(z) may have no simpler form than a
polynomial in z~' (see Prob. 4.15). For rational z-transforms, a power series expansion
can be obtained by long division as illustrated in Probs. 4.16 and 4.17.

D. Partial-Fraction Expansion:

As in the case of the inverse Laplace transform, the partial-fraction expansion method
provides the most generally useful inverse z-transform, especially when X(z) is a rational
function of z. Let

N(z) (z—-z) (2—2z,)
= =k (4.32)
D(z) ~(z-p) (2-p,)

Assuming n > m and all poles p, are simple, then

X(z)

X(z ¢ c c C, c "¢
() _c, & , @ .. =24 d (4.33)
z z z-p, Z-p, z2-p, z [T z—pyg
where
X(z)
Co=X(2)l:m0 ¢ =(z2=ps) 2 (4.34)
z=p;
Hence, we obtain
X(2) : Y e (4.35)
z)=cy+c + - +c, =cy+ c .
¢z —p, Z= Dy 0 k=1 kl_l’k

Inferring the ROC for each term in Eq. (4.35) from the overall ROC of X(z) and using
Table 4-1, we can then invert each term, producing thereby the overall inverse z-transform
(see Probs. 4.19 to 4.23).

If m > n in Eq. (4.32), then a polynomial of z must be added to the right-hand side of
Eq. (4.35), the order of which is (m — n). Thus for m > n, the complete partial-fraction
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expansion would have the form

X(z)= Y bz7+ Y e,
k=1

q=0

4

(4.36)

Z =Py
If X(z) has multiple-order poles, say p; is the multiple pole with multiplicity r, then
the expansion of X(z)/z will consist of terms of the form
A A A,
L —25 o —
z=p (z-p) (z—p;)

(4.37)

where

(4.38)

4.6 THE SYSTEM FUNCTION OF DISCRETE-TIME LTI SYSTEMS
A. The System Function:

In Sec. 2.6 we showed that the output y{n] of a discrete-time LTI system equals the
convolution of the input x[n] with the impulse response k[n]; that is [Eq. (2.35)),

y[n] =x[n]*h{n] (4.39)
Applying the convolution property (4.26) of the z-transform, we obtain
Y(z)=X(2)H(z) (4.40)

where Y(z), X(z), and H(z) are the z-transforms of y[n], x[n], and h[n], respectively.
Equation (4.40) can be expressed as

Y(z)
X(z)

H(z)= (4.41)
The z-transform H(z) of hln] is referred to as the system function (or the transfer
function) of the system. By Eq. (4.41) the system function H(z) can also be defined as the
ratio of the z-transforms of the output y{n] and the input x{n). The system function H(z)

completely characterizes the system. Figure 4-3 illustrates the relationship of Egs. (4.39)
and (4.40).

] h[n] pe——--

x[n) yln)=xin] « hn}
X(z) Y(2)=X(2)H(z)

——————{-1 H(@2) e ————-

Fig. 4-3 Impulse response and system function.
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B. Characterization of Discrete-Time LTI Systeis:

Many properties of discrete-time LTI systems can be closely associated with the
characteristics of H(z) in the z-plane and in particular with the pole locations and the
ROC.

Causality:

~

For a causal discrete-time LTI system, we have [Eq. (2.44)]
h[n] =0 n<0

since A{n]is a right-sided signal, the corresponding requirement on H(z) is that the ROC
of H(z) must be of the form

[2] > Poax

That is, the ROC is the exterior of a circle containing all of the poles of H(z) in the
z-plane. Similarly, if the system is anticausal, that is,

h{n] =0 nx=0
then A[n] is left-sided and the ROC of H(z) must be of the form
!Z' < " min

That is, the ROC is the interior of a circle containing no poles of H(z) in the z-plane.

2. Stability:

In Sec. 2.7 we stated that a discrete-time LTI system is BIBO stable if and only if [Eq.
(2.49)]

i [h[n]l < o

The corresponding requirement on H(z) is that the ROC of H(z) contains the unit circle
(that is, |z| = 1). (See Prob. 4.30.)

3. Causal and Stable Systems:

If the system is both causal and stable, then all of the poles of H(z) must lie inside the
unit circle of the z-plane because the ROC is of the form |z|>r_,., and since the unit
circle is included in the ROC, we must have r, <1.

C. System Function for LTI Systems Described by Linear Constant-Coefficient Difference
Equations:

In Sec. 2.9 we considered a discrete-time LTI system for which input x[n] and output
yln] satisfy the general linear constant-coefficient difference equation of the form

N M
Y oay[n—k]= Y bx[n—k| (4.42)
k=0 k=0
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Applying the z-transform and using the time-shift property (4.18) and the linearity
property (4.17) of the z-transform, we obtain

N M
k}_:oakz"‘Y(z) = Y bz7*X(z)

k=0
or
N M
Y(z) Y a,z7*=X(z) Y. b,z 7* (4.43)
k=0 k=0
Thus,
>
b,z ¥
H(z) =2 i (4.44)
X(z) Y g,z
k=0

Hence, H(z) is always rational. Note that the ROC of H(z) is not specified by Eq. (4.44)
but must be inferred with additional requirements on the system such as the causality or
the stability.

D. Systems Interconnection:

For two LTI systems (with A,[n] and h,[n], respectively) in cascade, the overall
impulse response h[n] is given by

h[n] =h,[n] * hy[n] (4.45)
Thus, the corresponding system functions are related by the product
H(z)=H|(z)Hy(z) RDOR,NR, (4.46)

Similarly, the impulse response of a parallel combination of two LTI systems is given
by
h(n] =h[n] + h,[n] (4.47)
and
H(z)=H{(z)+ H,(2) RDOR,NR, (4.48)

4.7 THE UNILATERAL z-TRANSFORM
A. Definition:

The unilateral (or one-sided) z-transform X,(z) of a sequence x[n] is defined as [Eq.
(4.5)]

X,(z)= Y x[n]z"" (4.49)
n=0
and differs from the bilateral transform in that the summation is carried over only n > 0.
Thus, the unilateral z-transform of x[n] can be thought of as the bilateral transform of
x[nluln]. Since x[nluln]is a right-sided sequence, the ROC of X,(z) is always outside a
circle in the z-plane.
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B. Basic Properties:

Most of the properties of the unilateral z-transform are the same as for the bilateral
z-transform. The unilateral z-transform is useful for calculating the response of a causal
system to a causal input when the system is described by a linear constant-coefficient
difference equation with nonzero initial conditions. The basic property of the unilateral
z-transform that is useful in this application is the following time-shifting property which is
different from that of the bilateral transform.

Time-Shifting Property:
If x[n]«> X,(z), then for m > 0,
x[n=m] —z7"X (2)+ 27" x[=1] + 27" k[ =2 + - +x[-m] (4.50)
x[n+m)ezmX,(z)—z"x[0] =27 'x[1] = -+ —zx[m - 1] (4.51)

The proofs of Egs. (4.50) and (4.51) are given in Prob. 4.36.

D. System Function:

Similar to the case of the continuous-time LTI system, with the unilateral z-transform,
the system function H(z) =Y(z)/X(z) is defined under the condition that the system is
relaxed, that is, all initial conditions are zero.

Solved Problems

THE z-TRANSFORM

4.1. Find the z-transform of

(a) x[n]l=—a"ul-n—1]
(b) x[nl=a"u[-n-1]
(@) From Eq. (4.3)

X(z)=— i a"u[-n-1]z7"= - E a"z™"

n=—w ne-w
= - i (a"z)"= 1- i (a“z)"
n=1 n=0
By Eq. (1.91)
i (a“z)"=—l—_—1— if la”'z|<1orl|zl<lal
o0 1-a 'z
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Thus,

X(z)=1- lzl<lal (4.52)

1-a7'z 1-a'z z-a 1-az”

(b) Similarly,

X(z)= i a "u[-n-1]z7"= )_:j (az)™"

n=-o n=-~ow
=Y (a2)"= ¥ (az)" -1
n=1 n=0
Again by Eq. (1.91)
ad n ) 1
’E’O(al) “1-a if lazl<lor|z(<m
Thus,
X - : 2l < 2 4.53
= 1= - _ < .
(2) 1-az 1-az z—-1/a 2594 (4.53)

4.2. A finite sequence x[n] is defined as

#0 N, gsn <N,

x[n] :
=0 otherwise

where N, and N, are finite. Show that the ROC of X(z) is the entire z-plane except

possibly z =0 or z = oo,

From Eq. (4.3)

N,
X(z)= Y x[n]z™" (4.54)
n=N;

For z not equal to zero or infinity, each term in Eq. (4.54) will be finite and thus X(z) will
converge. If N, <0 and N, > 0, then Eq. (4.54) includes terms with both positive powers of z
and negative powers of z. As |z|] — 0, terms with negative powers of z become unbounded,
and as |z| — o, terms with positive powers of z become unbounded. Hence, the ROC is the
entire z-plane except for z =0 and z = . If N, > 0, Eq. (4.54) contains only negative powers
of z, and hence the ROC includes z = ». If N, < 0, Eq. (4.54) contains only positive powers of
z, and hence the ROC includes z = 0.

4.3. A finite sequence x[n] is defined as

x|n]=1{5,3,-2,0,4,-3)

Find X(z) and its ROC.
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From Eq. (4.3) and given x{n] we have
@ 3

X(z)= Y x[n}z7"= ¥ x[n}z7"

n=-» n=-2
=x[-2]22 +x[-1]z +x[0) + x[1]z" "' +x[2)z "2 + x[3]2 "}
=522+32-2+4z"7~3273

For z not equal to zero or infinity, each term in X(z) will be finite and consequently X(z) will
converge. Note that X(z) includes both positive powers of z and negative powers of z. Thus,
from the result of Prob. 4.2 we conclude that the ROC of X(z)is 0 <|z| < co.

4.4. Consider the sequence
0<n<N-1,a>0

ah
x{n] = {0 otherwise
Find X(z) and plot the poles and zeros of X(z).
By Eq. (4.3) and using Eq. (1.90), we get

N-1 N-1 . ]_(az—l)N 1 zN—gV
X - n,—n _ -1 — —
(2) EO“ ,Eo(az ) 1—az™! R

(4.55)

From Eq. (4.55) we see that there is a pole of (N — )th order at z =0 and a pole at z =a.

Since x[n] is a finite sequence and is zero for n <0, the ROC is |z| > 0. The N roots of the
numerator polynomial are at

— gpi@mk/N)
z,=ae

k=0,1,...,N—-1 (4.56)
The root at k =0 cancels the pole at z = a. The remaining zeros of X(z) are at
2, = ae/mk/N) k=1,...,N—1 (4.57)

The pole-zero plot is shown in Fig. 4-4 with N = 8,

Im(z)

'y
z-plane
P ¢. RN
(N - Dth o "o
order pole . AN Pole-zero cancel
\ ‘\
' \
L 1
L} 1)
o~ : >
' ] Re(z)
1 ’
\ '
A} ’
A ’
. .
o, K2J

Fig. 4-4 Pole-zero plot with N = 8.
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Show that if x[n]is a right-sided sequence and X(z) converges for some value of z,
then the ROC of X(z) is of the form

[2]> 7 e or ©>|z| > r .,

where r,,, is the maximum magnitude of any of the poles of X(z).

Consider a right-sided sequence x[n] so that
x[n]=0 n <N,
and X(z) converges for |z| =ry. Then from Eq. (4.3)

1 X(2)l< i lx[n])irg" = i Ix[n]lrg" <o

n=—o n=N,
Now if r, > r,, then

i [x[n]lri"= i ‘x[n]l(ro:—;)

n=N, n=N,

oy |x[n]|r0’"(:—:))—n

n=N,

< (%)_N] i [x[n)lrg™ <o

0 n=N,

since (r, /ry) ™" is a decaying sequence. Thus, X(z) converges for r = r, and the ROC of X(z)
is of the form

jz| > rg

Since the ROC of X(z) cannot contain the poles of X(z), we conclude that the ROC of X(z)
is of the form

(2] > 7o

where .. is the maximum magnitude of any of the poles of X(z).
If N, <0, then

o

X(z)= ZN x[nlz7m=x[N ]z M+ - 4x[-1]2 4+ ix[n]z"‘
n=N, n=0

That is, X(z) contains the positive powers of z and becomes unbounded at z = . In this case
the ROC is of the form

© > 2| > Fpa

From the above result we can tell that a sequence x[n] is causal (not just right-sided) from the
ROC of X(z) if z = is included. Note that this is not the case for the Laplace transform.

Find the z-transform X(z) and sketch the pole-zero plot with the ROC for each of the
following sequences:

(@) x[n]=G)uln]+ (3)"uln]
(6) x[n]=()"uln] + (3)"ul—n — 1]
() x[n]=D)"u[n]+ D) u[-n-1]
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(a)

(b)

e
o
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From Table 4-1

(%) u[n]4——>~———T lz]> = (4.58)
1\ 1
(E) u[n]«—-»—% |Z|>§ (4.59)
We see that the ROCs in Egs. (4.58) and (4.59) overlap, and thus,
X(2) = b = 22(,27‘%), 2> = (4.60)
z=5 z-3 (s—3)(z-3) 2

From Eq. (4.60) we see that X(z) has two zeros at z=0 and z= -5 and two poles at
z=1 and z =} and that the ROC is |z| > 4, as sketched in Fig. 4-5(a).

From Table 4-1

1\ z 1
(3) u[n]HP% lz1> 3 (4.61)
" z 1
(5) u[—n—l]«—>~z—_—%— |Z|<5 (4.62)
We see that the ROCs in Egs. (4.61) and (4.62) overlap, and thus
z z 1 z 1 1
X(z)=z—%_z—%:—g(z—é)(z~%) §<(z|<-2- (4.63)

From Eq. (4.63) we see that X(z) has one zero at z =0 and two poles at z = 3 and z = }
and that the ROC is 4 <|z| < 4, as sketched in Fig. 4-5(b).

Im(z) Im(z)

Re(z)

Fig. 4-5
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(a)
(b
(a)
(b)
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From Table 4-1

n

1 z 1
(5) u[n]«—bz——_—l lzl>—2— (4.64)

(4.65)

1\" z 1
(3) Il[—”—l](—b——;—% |Z|<'§

We see that the ROCs in Eqs. (4.64) and (4.65) do not overlap and that there is no
common ROC, and thus x{n] will not have X(z).

x[n] =a"™ a>0 (4.66)

Sketch x[n] for a <1 and a > 1.

Find X(z) and sketch the zero-pole plot and the ROC for a <1 and a > 1.

The sequence x[n] is sketched in Figs. 4-6(a) and (b) for both a <1 and a > 1.
Since x[n] is a two-sided sequence, we can express it as

x[n]=a"u[n]+a "u[—n-1] (4.67)
From Table 4-1
z

4 —_— > 4.68
a"u[n] < pa— lz1>a ( )
1 |z| ! 4.69

“Mul~n - - < - .
au[=n—1] z-1/a z a ( )

If a <1, we see that the ROCs in Eqgs. (4.68) and (4.69) overlap, and thus,

() o 2 z _a2—1 z
(Z)—z - B (z—a)(z-1/a)

—-a z—-1/a a
From Eq. (4.70) we see that X(z) has one zero at the origin and two poles at z =a and
z=1/a and that the ROC is a <|z| < 1/a, as sketched in Fig. 4-7. if a > 1, we see that
the ROCs in Eqgs. (4.68) and (4.69) do not overlap and that there is no common ROC,
and thus x[n] will not have X(z).

1
a <]zl < - (4.70)

x{nl=a!

lisiull]

x[n}=a'!

O<a<l

II””!IHHH

¢ n

=

(@ ®)
Fig. 4-6
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Im(z2)

Fig. 4-7

PROPERTIES OF THE z-TRANSFORM

4.8. Verify the time-shifting property (4.18), that is,
x[n—ngl —>z7™X(z) R DORN{0<]|z| <}

By definition (4.3)

o

8{x[n~n,l} = Y x[n-nglz™"
n=—o
By the change of variables m = n — n,, we obtain

x

8{1[" _"0]} = E x{m]z =m0

ms=—o

©

=z7" Y x[m]zTm=z""X(z)

m=-—om

Because of the multiplication by z~", for n, > 0, additional poles are introduced at z =0 and
will be deleted at z = . Similarly, if 7, <0, additional zeros are introduced at z =0 and will
be deleted at z = . Therefore, the points z = 0 and z = © can be either added to or deleted

from the ROC by time shifting. Thus, we have
x[n—=nglesz7X(2) R ORN{0<|z] <)

where R and R’ are the ROCs before and after the time-shift operation.
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4.9. Verify Eq. (4.21), that is,

2{x[n] e—»X(—Z—) R =lz,/R
Zg
By definition (4.3)

A pole (or zero) at z =z, in X(z) moves to z =z,z,, and the ROC expands or contracts by
the factor [z,|. Thus, we have

z{,’x[n]«—-»X(zi) R =1z4|R

0

4.10. Find the z-transform and the associated ROC for each of the following sequences:

(b) x[n]l=uln —n,l
(d) x[n}l=ul-n]

(@) x[n]=8ln—n,l
(c) x[n)=a"* uln + 1]
(e} x[nl=a "ul—-n]
(a) From Eq. (4.15)
8[n]e—1 all z
Applying the time-shifting property (4.18), we obtain

0<lzl, ng>0

8[n—ny)esz "0 2l <o, ny <0 (4.71)
(b) From Eq. (4.16)
: 21> 1
_— >
uln] — P z
Again by the time-shifting property (4.18) we obtain
z Z—(ﬂo—l)
— —np = < < .
uln—ny] ez P p— <]zl < (4.72)
(¢) From Egs. (4.8) and (4.10)
z
a"u[n) > — Iz| > |al
z—a
By Eq. (4.20) we obtain
22
a" luln+1] ez = lal <lz) < (4.73)
z—a z-

(d) From Eq. (4.16)

z
_— > 1
uln] = —— 2]
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By the time-reversal property (4.23) we obtain

1/z N 1
u[—n]‘——-» 1/Z_1 —TT_Z_ Izl<1 (4.74)
(e) From Egs. (4.8) and (4.10)
. z
a"uln] > — |z| > |al

Again by the time-reversal property (4.23) we obtain

1/z 1 1
i ia lz]<m (4.75)

4.11. Verify the multiplication by n (or differentiation in z) property (4.24), that is,
dX(z)

R' =R
dz

nx[n] «— —z

From definition (4.3)

o«

X(z)= Y x[n)z™"

n= —o

Differentiating both sides with respect to z, we have

o Ll
and
=T - L (mlale -l
Thus, we conclude that
ax(2)

R'=R

nx[n] e -z

dz

4.12. Find the z-transform of each of the following sequences:

(a) x[n]=na"uln]
(b) x[n]l=na""‘uln)
(a) From Egs. (4.8) and (4.10)

a”u[n]«——»z—i—a |z| > lal (4.76)

Using the multiplication by n property (4.24), we get

. d z \  az ;
na u[n]e—»—zE(z_a)—(—Z_—a)z |z| > lal (4.77)
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(b) Differentiating Eq. (4.76) with respect to a, we have

na"-lu[n]H-d—( il )=—z- 2> la] (4.78)
da\z—a (z—a)2

Note that dividing both sides of Eq. (4.77) by a, we obtain Eq. (4.78).

4.13. Verify the convolution property (4.26), that is,
x[n]* x,[n] > X (2)X,(2) R' DR, NR,

By definition (2.35)

yin]=x,[n]xx,[n] = )y xy[k]r[n—k]

k=—o
Thus, by definition (4.3)
o= L | £ atkbatn-kl)e= Ttk £ aln-kle
n=-o \k=-x k=—-w n=-x

Noting that the term in parentheses in the last expression is the z-transform of the shifted
signal x,[n — k], then by the time-shifting property (4.18) we have

¥Y(z)= ¥ x[k][z-*xz(z)]=( 3 x[k]z'*)x2(z)=x,(z)xz(z)

k= - k=—oo

with an ROC that contains the intersection of the ROC of X (z) and X,(z). If a zero of one
transform cancels a pole of the other, the ROC of Y(z) may be larger. Thus, we conclude that

xi[n]*x,[n] > X (2) X,(2) R'DRNR,

4.14. Verify the accumulation property (4.25), that is,

n

L xlkl e

k= —o

X(z) = —Z__Z—IX(z) R SR {zl> 1)

— 71
From Eq. (2.40) we have

n

yln)= X x[k]=x[n]xuln]

k=—o

Thus, using Eq. (4.16) and the convolution property (4.26), we obtain

Y(z) =X(2)( 1 _lz—l ) =X(Z)(zi—1)

with the ROC that includes the intersection of the ROC of X(z) and the ROC of the
z-transform of u(n]. Thus,

n

L xk]e

k= —o00

z
1_Z_IX(Z)=Z—_—1-X(Z) R'DRQ(IZI>1}
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INVERSE z-TRANSFORM
4.15. Find the inverse z-transform of

X(z)=z*(1-327") (1 -2z"")(1+227") 0<lzl<oo (4.79)

Multiplying out the factors of Eq. (4.79), we can express X(z) as
X(z)=z+3z-3+z7"
Then, by definition (4.3)
X(z)=x[-2)z22+x[-1]z +x[0] +x[1]z"!
and we get
x[n]=1{...,0,1,4, =$,1,0....}

f

4.16. Using the power series expansion technique, find the inverse z-transform of the
following X(z):

1
(@) X(2)= ————=, |z|>lal
1-az

1
) X(2)= ———=, |zI<]lal
1—az

(a) Since the ROC is |z| > |al, that is, the exterior of a circle, x[n] is a right-sided sequence.
Thus, we must divide to obtain a series in the power of z~'. Carrying out the long
division, we obtain

l+az '+a%z72+ -+

1

1-az"7'|z
1-az™!
az™!
az ' —a’z7?
a’z7?
Thus,
1
X(z)=1————_—] =l+az '+a%z7%+ - +akz7k+ -
- az
and so by definition (4.3) we have
x[n1=0 n<0
x[0]=1 x[1l=a x[2]=4a* x[k]=a*

Thus, we obtain

x[n]=a"u[n]

(b) Since the ROC is |z| <lal, that is, the interior of a circle, x[n] is a left-sided sequence.
Thus, we must divide so as to obtain a series in the power of z as follows. Multiplying
both the numerator and denominator of X(z) by z, we have

X(z)=

zZ—a
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and carrying out the long division, we obtain

Thus,

X(2)=

1

-a~'z-a"%z*—a7%— -

and so by definition (4.3) we have

x[n}=0
x[-1]=-a"!

Thus, we get

—a+zfz
z—a" 2?2
a 'z?
2 122 —a-2;3
a~%?
I ~2,2_ =33 _ ...
EF——II zZ—a 2Z —-a "z —
n>0
x[-2)=-a"? x[-3]=-a"?
x[n]=—a"u[-n-1]

4.17. Find the inverse z-transform of the following X(z):

1
(@) X(z2)= log(l_—a?)’ |z] > |al

1
(b) X(z)=log(m), |z <lal

(a) The power series expansion for log(1 — r) is given by

(b)

Now

|
log(l-r)=-Y —r"
n=l"

1
———1) = —log(1—az™")

X(z)=log(1_aZ

Irl <1

—akgk
x{-k]=-a"*
|z|>al

189

(4.80)

Since the ROC is |z| > |al, that is, laz~!| < 1, by Eq. (4.80), X(z) has the power series

expansion

® q n |
= -1 — n,—n
X(z)—n§=ln(az ) ) —az

n=1

from which we can identify x[n] as

or

N

1
x[n]= ;a"u[n -1]

1
X(z)=log(m)= —log(l —a~'2)

lz| <lal

(4.81)
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Since the ROC is |z| <|al, that is, |a~'z| < 1, by Eq. (4.80), X(z) has the power series

expansion
= P N
X(z2)=)Y —(a7'2) = ¥ —-—(a'z) = ¥ —-—a"z"
n=ln n=-1 n n=—1 n
from which we can identify x[n] as
_ |0 n>0
x[n]= -(1/n)a" n< -1
1
or x[n)=~—a"u[-n—1} (4.82)
n

4.18. Using the power series expansion technique, find the inverse z-transform of the
following X(z):

z 1
(a) X(z)=522—_§'_—'_—1 |2|<—2-
b)) X(z)= 332-3741 zI>1

(a) Since the ROC is |z] < 3, x[n] is a left-sided sequence. Thus, we must divide to obtain a
series in power of z. Carrying out the long division, we obtain

24322+ 727+ 1524+ -
1—3z+222,z
z—322+22°

3z2-22°
322-9z3+ 624
723 - 62°
7z% — 21z% +147°
152 -
Thus,
X(z)= - +152°+ 72 +322 42

and so by definition (4.3) we obtain
x[n)=1(...,15,7,3,1,0)

(b) Since the ROC is |z|> 1, x[n] is a right-sided sequence. Thus, we must divide so as to
obtain a series in power of 27! as follows:

Z—=3—3Z
3 _1,-1
2722
39,14 3,-2
-3z +32
7 - —

Thus,

X(z)=3z""+2z72+ 2273+ -+
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and so by definition (4.3) we obtain

[n]={0.3.5.5,..}

4.19, Using partial-fraction expansion, redo Prob. 4.18.

z 1
@ SR P v Ty ey B
Using partial-fraction expansion, we have
X(z) 1 1 cy ¢,y
2 227 3241 Aze-D(z-1) z-1"z-1
where c, = ! =1 c ! =-1
2(2_%) 2=1 g 2(z-1) =172
and we get
X(z)= il ———z—, |z]<—l-
z—1 2z—-3 2

Since the ROC of X(z)is |z|< 3, x[n] is a left-sided sequence, and from Table 4-1 we
get

xln]=—ul-n =11+ () ul-n-11=[(2)" - 1]u[-n - 1]

which gives
x[n]=1{...,15,7,3,1,0}

z z

(b) X(z) = - 2> 1
-3

z—-1

Since the ROC of X(z)is |z|> 1, x[n] is a right-sided sequence, and from Table 4-1 we
get

s{n) =uln) = (3)"uln] = [1 = (3) [uln]

which gives

x[n]={0,3.3.4,...}

4.20. Find the inverse z-transform of
z

X(z)= ———
)= G2

|z|>2

Using partial-fraction expansion, we have
X(z) 1 ¢, A A,y
= 5 = + + 3
z (z-1)(z-2) z=1 -2 (z-2)

(4.83)

1 1
z=1

where [N
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Substituting these values into Eq. (4.83), we have
1 1 A 1
7= + + F]
(z=-1)(z-2) z2-1 z-2 (z-2)

Setting z = 0 in the above expression, we have
1 Ay

(. e |

4 2 4
Thus,
z

- + >
1 z-2 (z-2) l21>2

z
X(2)= —

Since the ROC is |z| > 2, x[n] is a right-sided sequence, and from Table 4-1 we get
x[n]=(1=2"+n2"""Yu[n]

4.21. Find the inverse z-transform of
223 ~5z22+2+3

X(Z)='Tz—:‘l—)—(;—:—2)-' |Z|<1
X ﬁ223-—522+z+3d223—522+z+3
(z) = (z=1)(z-2) = z2-3z+2

Note that X(z) is an improper rational function; thus, by long division, we have
1

=2z414 =274 14
X(@) =224 14 oy =224 I 0y
t X(2) =
Le (=G
X(z 1 c c c
Then l()= =2y 2 3
z 2(z-1)(z-2) =z z-1 z-2
0 1 1 1 )
where T G-D(z-2)|,_, 2 a2,
1 1
CJ_z:(z—l)z=2_—2_
Thus,
X z 1 =z
(=3 -77%3753
3 z 1 z
and X(z)=2z+ 7z - ——+ = 1zl< 1

2 z-1 2z-2
Since the ROC of X(z)is |z < 1, x[n] is a left-sided sequence, and from Table 4-1 we get
x[n]=28[n+1]+ 38[n]+u[-n—1]- $2"u[-n - 1]
=28[n+ 1]+ 38[n] + (1 - 2" Nu[~-n 1]
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4.22. Find the inverse z-transform of
X ’ [z]>2
=— >

X(z) can be rewritten as

3 z
- = -
X(Z)—z—Z 3z (2—2) l2l>2

Since the ROC is |z| > 2, x[n] is a right-sided sequence, and from Table 4-1 we have
z
2’1
uln} z-2
Using the time-shifting property (4.18), we have

2nvl [ 1] —l( z ) !
— 11 > =
un 2 \z=2) T 22
Thus, we conclude that
x[n] =3(2)" 'u[n-1]
4.23. Find the inverse z-transform of
X 2427243274 12150
= >
(2) 2244243 z

We see that X(z) can be written as
X(z)=(2z7"+27°+327%)X(2)

z
where X,(z)=m
Thus, if
xi[n] > X\(z2)
then by the linearity property (4.17) and the time-shifting property (4.18), we get
x[n]=2x[n-1]+x[n-3]+3x,[n-5] (4.84)
Now X,(z)= : 1 _ 1 __a N c,
z z°+4z+3  (z+1)(z+3) z+1 z+3
1 1 1 1
Where ‘T 3k 2 TR N
1 2z 1 2z
Then X1(2)=§z+1_52‘;§ |z|>0

Since the ROC of X(z)is |z|> 0, x,[n] is a right-sided sequence, and from Table 4-1 we get
x[n)=3[(=1)" = (~3)"]uln]
Thus, from Eq. (4.84) we get
w[n]=[(=1"" = (=3 uln = 1]+ H[(-D" 7 = (=3)"Juln - 3]
+3[(=1" = (=3)"uln - 5]
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4.24. Find the inverse z-transform of

) T ella
1 22
Ty TG
From Eq. (4.78) (Prob. 4.12)
na" 'uln] — (z—Za)2 |z} > lal
Now, from Eq. (4.85)
X(z)=z[(z—ja—)3 |z} > |al

and applying the time-shifting property (4.20) to Eq. (4.86), we get
x[n]=(n+1)a"u[n+1]=(n+1)a"u[n]

since x[~1]=0at n=—1.

SYSTEM FUNCTION

4.25. Using the z-transform, redo Prob. 2.28.
From Prob. 2.28, x[n) and A[n] are given by

x[n]) =u[n] h{n]=a"u[n} 0<a<l
From Table 4-1
sn]=uln] = X(2) = —  ll>0l
hin] =a"uln] = H(z) = — 2| > lal
Then, by Eq. (4.40)
ZZ
Y(Z)=X(Z)H(Z)=m lzi>1
Using partial-fraction expansion, we have
Y(z) z C c,
z (z=1)(z-a) TIo1 - z-a
z 1 z a
where T dle T Tma T 7 ke T-a
Thus,
Y(z) = — 21> 1

[CHAP. 4

(4.85)

(4.86)

(4.87)
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Taking the inverse z-transform of Y(z), we get

1-—a"!

a"u[n] = (—I—T)u[n]

1 a

u[n] -

y[n]=

l-a 1-a

which is the same as Eq. (2.134).

4.26. Using the z-transform, redo Prob. 2.29.
(@) From Prob. 2.29(a), x[n] and h[n] are given by
x[n] =a"u[n] h[n] =pB"u[n]
From Table 4-1

z
x[n]=a"u[n] > X(z) = P lz|> al
z
W) =pruln) —H(2) = =5 lel>18
zZ
Then Y(z)=X(z)H(z)= ———— |zl > max(«a, B
(1) =XDH) = = h) («.B)
Using partial-fraction expansion, we have
Y(2) z ¢, c,
= = +
z (z—a)(z=B) z2—a z-PB
z a z B
where ¢, = = c,= = —
z-Bl,., a—-B Z—-alz=p a—-pB
Thus,
v a z B z |
(z)_a-Bz—a—a—Bz—B |z] > max(a, B)
a B an+l _Bn+l
d |- n_ _" nn R L,
an y[n] [a~Ba a_BB ]u[n] ( o uln]
which is the same as Eq. (2.135). When a =8,
22
Y(z2) = —— |z| > a
(&)= o
Using partial-fraction expansion, we have
Y(z2) z Ay A,y
= 7=~ 7 F}
2 (z-a)" z-a (z-a)
where AN=zl,cn=a
z A a
and

195
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Setting z = 0 in the above expression, we have
A

1
0=—-—+——>) =1
a «a

Thus,
az

Y(z)= 1z > a

and from Table 4-1 we get
yln]=(a" +na")u[n] =a”(1+n)uln)
Thus, we obtain the same results as Eq. (2.135).
(b) From Prob. 2.29(b), x[n] and A[n] are given by

[CHAP. 4

x[n] =a"u[n] h[n]=a "u[ —n] 0<a<l1
From Table 4-1 and Eq. (4.75)
sl =atuln] = X(2) = — 121>l
Win) = a"ul —n) s H(z) = ——— = el =
1-az a(z—1/a) lal
1 z 1
Then Y(Z)=X(Z)H(z)=—;ma_) a<|zl<;
Using partial-fraction expansion, we have
Y(z) 1 1 1( ¢ c,
z =_;m——;(z—a z—l/a)

1 a 1 a
where C'=z—1/a z=a=_1—a2 CZ:z—az=|/a=1—a2
Thus,

1 z 1 z 1
Y(z)=1—a22-—a-l—a22—1/a a<|z|<;

and from Table 4-1 we obtain

yn] = 1_1‘12a"u[n]~ 1_’ 2{—(—1—)"u[-n—1]}

a a

a™u[n]+ a"u[-n—-1]= -

1-a? 1-a?

which is the same as Eq. (2.137).

4.27. Using the z-transform, redo Prob. 2.30.
From Fig. 2-23 and definition (4.3)
x[n]={1,,,1} > X(2)=1+z"1+2z7%27}3
Aln]={1,1,1} <« H(z)=1+z""+z"?

In|
S
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Thus, by the convolution property (4.26)
Y(2)=X(2)H(z)=(1+z7 ' +z72+273)(1+2z7 " +277)
=142z 432724327 342z7%+773
Hence,
h[n]=1{1,2,3,3,2,1}

which is the same result obtained in Prob. 2.30.

Using the z-transform, redo Prob. 2.32.
Let x[n] and y[n] be the input and output of the system. Then

z
x[n]=u[n] <—>X(z)=Z*1 lzi>1
z
ylnl=a"uln] = ¥(z) = — 121> lad
Then, by Eq. (4.41)
o Y(z) z-1 Iz
= = >
()= %G " 7=« Hoa
Using partial-fraction expansion, we have
H(z) z—1 c, cy
=— =+
z Z(z—a) z z-a
z—1 1 z-1 a—1 l-a
where ¢ = == ¢, = = - _
Z—a|z;=0 a z z=a (24 a
Thus,
H(z)=— - —— lzl >«
o Z—a
Taking the inverse z-transform of H(z), we obtain
1 1-a
h[r]=—§[n] - a"u[n]
a a
When n =0,
1 l-a
h[0] = — - =
[e 4 [0 4
Then
1 n
h[n]—{—(l—ar)oz"_l nx>1

Thus, A{n] can be rewritten as
hln]=8[n]=68[n]- (1 —a)a" 'u[n-1)

which is the same result obtained in Prob. 2.32.

197
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4.29. The output y[n] of a discrete-time LTI system is found to be 2(3)"u[n] when the input

x[n]is u[n].
(a) Find the impulse response h[n] of the system.
(b) Find the output y[n] when the input x[nlis (3)"uln].

(a) xln] = uln] e X(2) = Z—é—l 21> 1
1\ - 2z 2] 1
,V[”]=2(§)u[n]“—’y(l —m Z>§

Hence, the system function H(z) is

1
X(z2) z—1 |Zl>§

z 2(z—-3) z z-3%
2(z-1 2(z~-1
where cl=_(_.|_) = c, _(_.)_ = —4
-3 | z z=1/3
Thus,
H(z) =6 4— 2>
= — —_— > —
(2) z—% z 3
Taking the inverse z-transform of H(z), we obtain
h[n]:ﬁé[n]—4(§)nu[n]
1\ z 1
(b) x[n] = (—) un]—X(z)= — lz]> =
2 zZ— 3 2
Th Y(2) = X(2)H(z) = —22 1) |2l
en, z)=X(z 2) = —— % zl> -
(z=3)(2-3)
Again by partial-fraction expansion we have
Y(z) 2(z—-1) ¢, c,
== = +
z (z=3)(z-3) z-% z-3%
2(z-1 2(z-1
where c,=—(—1) =-6 cz=(7,) =8
273 i-1p2 277 =13
Thus,
y 6——r 18— 2> =
=—6—F +8— > =
(2) -3  z-3 )

Taking the inverse z-transform of Y(z), we obtain

yln]=[-6(2)" +8(2)"|uln]
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If a discrete-time LTI system is BIBO stable, show that the ROC of its system function
H(z) must contain the unit circle, that is, |z]= 1.

A discrete-time LTI system is BIBO stable if and only if its impulse response A[n] is
absolutely summable, that is [Eq. (2.49)],

i |h[n]l <=

n=—-w

Now H(z)= Y. h[n]z™"
n= -«
Let z =¢/? so that |z]| =|e/? = 1. Then

L Alnjer

n=—o

|H(e®)|=

A

< )_:. lh[n}e %"= i [h[n]l <=

n=—c n= —x

Therefore, we see that if the system is stable, then H(z) converges for z = ¢/, That is, for a
stable discrete-time LTI system, the ROC of H(z) must contain the unit circle |z]= 1.

Using the z-transform, redo Prob. 2.38.

(a) From Prob. 2.38 the impulse response of the system is

h[n]=a"u[n]

Zz
Then H(z)= —— {2 > |al
Z—a

Since the ROC of H(z) is |z| > |al, z = % is included. Thus, by the result from Prob. 4.5
we conclude that A[n] is a causal sequence. Thus, the system is causal.

(b) If lal> 1, the ROC of H(z) does not contain the unit circle [z] = 1, and hence the system
will not be stable. If |a] < I, the ROC of H(z) contains the unit circle |z| = 1, and hence
the system will be stable.

A causal discrete-time LTI system is described by
y[n] —%y[n—l] +3y[n—2] =x[n] (4.88)
where x[n] and y[n] are the input and output of the system, respectively.

(a) Determine the system function H(z).
(b) Find the impulse response hin] of the system.
(¢) Find the step response s{n] of the system.

(a) Taking the z-transform of Eq. (4.88), we obtain
Y(z)~ 2z7'Y(z) + 327 (2) = X(2)

or (1-4z7"+ 4277)Y(2) = X(2)



200

()

(c)

THE z-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS

Thus,
H(z) = Y(z2) _ 3 1 _ z?
X(z) 1-3z7'+3z72 22-3z+1
2?2 1
TEEhe-n e
Using partial-fraction expansion, we have
H(z) z < )
z (z—3)(z—-1%) T z-1 * z- 4
z z
where € =3 T z=1/2=2 =3 1 z=1/4= -1
Thus,
z z 1
H(z)=2r%-—-z_—% |z|>§

Taking the inverse z-transform of H(z), we get

hin) = [2(3)" - (4)"]uln)

x[n]=uln] e X(2) = zzj lz>1
23
Then Y(z)=X(Z)H(Z)=(z—l)(z—%)(z—%) fz]>1
Again using partial-fraction expansion, we have
Y(z) z? < c, Cq

z =(z—1)(z—%)(z—%)=z—l z—1  z-}

N 22 8 z?
where o= == Cp=———— = —
Po(z-a)(z-9) ), 3 (2= 1D)(z=3) e
z? 1
(z- 1)(7'_5) z=1/4 3
Thus,
v 8 =z 5 z 1 =z 2> 1
(B)=377 7201 3700 z

Taking the inverse z-transformation of Y(z), we obtain

yln]=s{n]=[3=2(1)" + $(3)"Juln]

[CHAP. 4

CHAP. 4] THE 2-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS 201

4.33. Using the z-transform, redo Prob. 2.41.

As in Prob. 2.41, from Fig. 2-30 we see that
q[n]=2q[n—1] +x[n]
y[n]=qln] +3q{n-1]

Taking the z-transform of the above equations, we get
0(z) =227'Q(z) + X(z)
Y(z) =Q(z) +3z7'Q(z2)
Rearranging, we get
(1-227Y0(2) =X(2)
(1+32710(2) =Y(2)

from which we obtain

H(Z)=ﬂ=————1+3z:I (4.89)
X(z) 1-2z7!
Rewriting Eq. (4.89), we have
(1-2z27"Y(2) = (1+327")X(z2)

or

Y(z)-2z7'Y(2) =X(z) +3z7'X(2) (4.90)
T!::kipg the inverse z-transform of Eq. (4.90) and using the time-shifting property (4.18), we
obtain

y[n]=2y[n—1]=x[n] +3x[n—-1]
which is the same as Eq. (2.148).

4.34. Consider the discrete-time system shown in Fig. 4-8. For what values of k is the
system BIBO stable?

gln- 1) <_.‘ qin)

Fig. 4-8
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From Fig. 4-8 we see that

k
aln) =x[n] + Saln 1]

k
y[n)=q[n]+ 54[n—1]

Taking the z-transform of the above equations, we obtain

k
0(2) =X(2) + 327'0(2)

k
Y(2)=0Q(2) + 327'0(2)

(1_
{1+

z) B 1+ (k/3)z7! B z+k/3
) (k2" k2 I2|>

Rearranging, we have

Z“)Q(Z)=X(Z)

W x> o) x

2ot - v(2)

from which we obtain

H(z) - -
(2) =% >

which shows that the system has one zero at z= —k /3 and one pole at z =k /2 and that the
ROC is |z|> |k /2|. Thus, as shown in Prob. 4.30, the system will be BIBO stable if the ROC
contains the unit circle, |z] = 1. Hence the system is stable only if |k| < 2.

UNILATERAL 2-TRANSFORM

4.35. Find the unilateral z-transform of the following x[n]:
(a) x[n)l=a"uln]
(b) x[nl=a""'uln + 1]
(a) Since x[n]=0 for n <0, X,(z) = X(z) and from Example 4.1 we have
1 z

Xi(z) = 1—az '

|z[>lal (4.91)
zZ—a

(b) By definition (4.49) we have
X(z)= Y a"tuln+1]z7"= Y a"*'z7"=a }, (az“')’l
n=0 n=0 n=0

1 az
- =

2] > lal (4.92)

a -
1—-az z-

Note that in this case x[n] is not a causal sequence; hence X,(z) # X(z) [see Eq. (4.73) in
Prob. 4.10].
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4.36. Verify Egs. (4.50) and (4.51), that is, for m > 0,
(@) x[n—mlez7"X(2)+z7" Ix[—1]+z2"" 2% -2]+ - -+ +x[—m]
b) x[n+m]e—>z"X,(z) —z"x[0] =z 'x[1] = -+ —2zx[m — 1]

(a) By definition (4.49) with m > 0 and using the change in variable k = n — m, we have

o« ©

8l{x["—m]}= Zx[n—m]z‘”= Z x[k]z=m+o

n=0 k=-m

=z'”’{ Y x[klz b4 T x[k]z"‘}

k=0 k=-1
=z7™{X,(2) +x[- 1)z +x[-2)z%+ -+ - +x[-m]z"™}
=z7"X(z) + 27" x[ 1]+ 27 %[ =2] + - +x[-m]

(b) With m>0

B{x[n+m]}= iﬂx[n+m]z—"= ki x[k]z=k=m
—o| ¥ alk)e - 8 alk]e~*
k=0 k=0

= 2m{(X,(2) ~ (x[0) +x[1]z ™"+ -+ +x[m — 1]z=n 1))

=z"X(z) —z"x[0] —z™ x[1] - -+ —zx[m — 1]

4.37. Using the unilateral z-transform, redo Prob. 2.42.
The system is described by
y[n] —ay[n -1} =x[n] (4.93)
with y[—1]=y_, and x[n]= Kb"u[n]. Let
y[n] = Yi(2)
Then from Eq. (4.50)
yln=1] =z (2) +y[ -1} =27'Y(2) +y_,

From Table 4-1 we have

x[n]Hx,(z)=K;—f—5 2> 18]

Taking the unilateral z-transform of Eq. (4.93), we obtain

Y(2) —a{z7'Y(2) +y_,} =K

z—b

or (1 —az" Y)Y, (z)=ay_, +K :
z—b

z—a z

or ( ; )Y,(z)=ay_‘+Kz—_—b
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4.38.
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Thus,

ZZ

a +K(z—a)(z—b)

4
Yi(2) =ay =

Using partial-fraction expansion, we obtain

v z K b z z )
= + —_
i(2) ay_lz—a b—a( z—b az—a

Taking the inverse z-transform of Y,(z), we get

b a
y[n]=ay_,a"u[n) +Kb—_~;b uln) —Kb_aa u[n)
n+l_an+l
= y,,a"”+K——————b_a )u[n]

which is the same as Eq. (2.158).

For each of the following difference equations and associated input and initial
conditions, determine the output y[n]:

(a) yln)— 3yln —11=x[n], with x[r)=()", y[-1]=1
() 3yln)—4yln — 1} +yln = 2l =x[n), with x[n]=(D)", y[-1]=1, y[-2]=2

)
3
Taking the unilateral z-transform of the given difference equation, we get

Y(2) = 3{z7 'Y (2) +y[- 1]} = X)(2)

Substituting y[—1]=1 and X,(z) into the above expression, we get

(a) xln]le— X (2) = z——;l [z] >

| 1 Ny 1 z
R = — +
(1= -3+ =

z—14 y 1 z
=—+__.
or z i(2) 2 z-~13
Thus,
v,(2) 1 z? 7 z 5 z
Z)= — + = — —_
! 2z-3 (z-3)0z-3) 2z-3 z-1
Hence,
ynl=7(1)"" 29" nz -
z 1
(b) x[n]l—eX(2)= — |z] > =
zZ— 3 2

Taking the unilateral z-transform of the given difference equation, we obtain

3Y(2) - 4{z7 'Y (2) +y[ -1} + {272V (2) + 27y [ = 1) +y[ - 2]} = X, (2)

CHAP. 4]

THE z-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS 205

Substituting y[—1]=1, y[—2] =2, and X,(z) into the above expression, we get

z
(B-4z7'+z )Y (2)=2-2z""+ p

2

3(z-1)(z-3%) 322-2z+1%
2z AT Yy e
or 2?2 i(2) z2(z-3)
Thus,
z(3z22-2z+3)
Y, (z) =
1(2) (z-1D(z-3)(z-3)
3 z z 1 =z
T 2z-1 z—1 2z-}%
Hence,
Anl=3- () +3(3)" =2
4.39. Let x[n] be a causal sequence and
x[n] & X(z)
Show that
x[0] = lim X(z) (4.94)
Z— X

4.40.

Equation (4.94) is called the initial value theorem for the z-transform.

Since x[n] =0 for n <0, we have
X[z)= ¥ x[n]z7"=x[0] +x[1)z7 ' +x[2]z 7%+ - -
n=0

As z —®,z7" — 0 for n > 0. Thus, we get
lim X(z) =x[0]
zme

Let x[n] be a causal sequence and
x[n) &= X(z2)

Show that if X(z) is a rational function with all its poles strictly inside the unit circle
except possibly for a first-order pole at z =1, then

A}im x[N]= lim](1~z“)X(z) (4.95)
— 00 z—
Equation (4.95) is called the final value theorem for the z-transform.
From the time-shifting property (4.19) we have
B{x[n]-x[n-1]}=(1-2"")X(2) (4.96)
The left-hand side of Eq. (4.96) can be written as
@ N
Y {x[n]=x[n-1]}z7"= Iéim Y {x[n)-x[n-1]}z"
n=0 -

n=0
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4.41.

4.42.

4.43.

4.44.

THE z-TRANSFORM AND DISCRETE-TIME LTI SYSTEMS [CHAP. 4

If we now let z — 1, then from Eq. (4.96) we have

N

Zanll(l -z X(z) = Al,iinw ;ﬂ{x[n] -x[n-1]}= ;\l/ime[N]

Supplementary Problems

Find the z-transform of the following x[n]:

(a) x{n]l={3,1,-3)

(b) x[n)=26[n+2]-36[n-2]

(0) x[n]=3(= P "uln]-203)ul-n—1]
(@) x{n]=3)"uln) - 2Yul-n-1)

Ans. (@) X(z)=1i+z7'-12720<]z|
(b) X(z)=22>-3z"%0<]z|<
2(5z2 - 8) 1
() X(2)= —<l|z|<3

(z+3)(2-3)" 2
(d) X(z) does not exist.

Show that if x[n] is a left-sided sequence and X(z) converges from some value of z, then the
ROC of X(z) is of the form

lzZil<rpm or  0<lzl<ry,

where r_. is the smallest magnitude of any of the poles of X(z).

min

Hint: Proceed in a manner similar to Prob. 4.5.

Given X(z) = z2(z—4)
(z=1)(z-2)(z-3)

(a) State all the possible regions of convergence.

(b) For which ROC is X(z) the z-transform of a causal sequence?

Ans. (@) 0<lz1<1,1<z1<2,2<]|z]<3,|z|>3
(b) |z1>3

Verify the time-reversal property (4.23), that is,
1
x[—n]«—»X(—) R =
z

Hint: Change n to —n in definition (4.3).
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4.47.

4.48.
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Show the following properties for the z-transform.
(a) If x[n]is even, then X(z~ ") = X(2).
(b) If x[n]is odd, then X(z~ )= —X(2).
(¢) If x[n}is odd, then there is a zero in X(z) at z=1.
Hint: (a) Use Egs. (1.2) and (4.23).
(b) Use Egs. (1.3) and (4.23).
(¢) Use the result from part (b).

Consider the continuous-time signal
x(t)y=e >0

Let the sequence x[n] be obtained by uniform sampling of x(¢) such that x[n]=x(nT,), where
T, is the sampling interval. Find the z-transform of x[n].

Ans. X(z)=

1 _e—uTI -1

z
Derive the following transform pairs:

22— (cos )z

>1
22— (2cos )z +1 l2l

(cos Qon)u[n] —

(sin )z
22— (2c0s Qg)z + 1

(sin Qgn)u[n] — lz|>1

Hint:  Use Euler’s formulas.
1
2
and use Egs. (4.8) and (4.10) with a = ¢ /%,

, . | .
cos Qgn = —(e/Pon + ¢7ikom) sin Qon = ?(e’““" — e /Mom)
J

Find the z-transforms of the following x[n]:
(a) x[n]=(n—-3)u[n - 3]

(b) x[n]=(n—3)uln]

(¢) x[nl=uln]l—uln-3]

(d) x{n]=n{uln] —uln - 3]}

Z—Z

Ans. (a) —2,|Z|>1

(z—-1)
-322+4z

b —Z 21
(z-1)
z—272

) —,lz|>1
z—-1
z—4z72+3;73

d) ———,lzl>1

(z—1)°
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4.49.

4.50.

4.51.

4.52.

4.53.
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Using the relation
z
a"u[n] e — [z > lal
z—a

find the z-transform of the following x[n]:

(@) x(n)=na""'uln]
(b) x[nl=n(n - Da""%uln)
(¢) xlnl=n(n—-1)---(n—k+Da""*u[n]

Hint:  Differentiate both sides of the given relation consecutively with respect to a.

Ans. (@) (——ZT,Izblal
z—-a
2z

b) (——)—3,|z|>|a|
z—a

(c) (—.),‘H,|2|>|ﬂ|
z—a

Using the z-transform, verify Eqs. (2.130) and (2.131) in Prob. 2.27, that is,

(@) x[n]*8[n]=x[nl
(b)Y x{nl*8ln —nyl=xln—ny

Hint: Use Eq. (4.26) of the z-transform and transform pairs 1 and 4 from Table 4-1.

Using the z-transform, redo Prob. 2.47.
Hint: Use Eq. (4.26) and Table 4-1.

Find the inverse z-transform of
X(z)=e"" |z]>0

Hint: Use the power series expansion of the exponential function e’.
n

a
Ans. x[n]= Fu[n]

Using the method of long division, find the inverse z-transform of the following X(z):

z
(a) X(Z)=(T_—1)(—Z_7),|Z|<1
z
(b) X(Z)=m,1<|2|<2
z
(c) X(z)=m_—2—),lzi>2
Ans. (@) x[n]l={...,},3,},0)
)
(b) x[n]={...,—%,—‘%,—%,—l,—1,~1,...}

(¢) x[n)=1{0,1,3,7,15,...}
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4.54. Using the method of partial-fraction expansion, redo Prob. 4.53.
Ans. (@) x[n]=Q =2"ul-n-1]
(b) x[n)=—uln)-2"u[—n-1]
(¢) x(n]=(=1+2"uln]

4.55. Consider the system shown in Fig. 4-9. Find the system function H(z) and its impulse response
hln).

1 I
Ans. H(Z)=T%F,h[n]=(§) uf{n]

¥{n]

;G\ >
+

+

%

1

x{n]

4.56. Consider the system shown in Fig. 4-10.

(a) Find the system function H(z).

(b) Find the difference equation relating the output y(n] and input x[n].
bo+byz 4+ b,z72

l1+a,z7'+a,z7?

) ylnl+ayln—11+a,yln =21 =byx[nl+ b, x[n - 1]+ b,x[n - 2]

Ans. (a) H(z2)=

= O -G)
b

+ +
a; fa,:

ﬁéllk >
‘
+
s
+
GQ'

(s, (s
+ + yln]
Fig. 4-10
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4.57.

4.58.

4.59.

4.60.
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Consider a discrete-time LTI system whose system function H(z) is given by

z 1
H(z) = ﬂ lz| > 3
(a) Find the step response s(n].
(b) Find the output y[r] to the input x[n] = nu[n).
Ans. (@) sln]=[2-()"luln]
(b) ylnl=2AG)"+n — 1uln]

Consider a causal discrete-time system whose output y{n] and input x[{n] are related by
y[n]=3y[n—-11+ gy[n -2} =x[n]

(a) Find its system function H(z).

(b) Find its impulse response A{n].

;2
02
(b) Aln]=[3(3)" — 2(3)"Juln]

Ans. (a) H(z)=

Using the unilateral z-transform, solve the following difference equations with the given initial
conditions.

(@) yln]l-3yln— 1]1=x[n], with x[n] =4u[n], y[-1]=1
(b) y[n)=>5yln — 1]+ 6yln — 2] =x[n), with x[nl=uln], y[-1]=3, y[-2]=2

Ans. (@) ylnl=-2+93)", n> -1
(b) ylnl=3+82"-203)" n= -2

Determine the initial and final values of x{n] for each of the following X(z):

B 22(z- ) 1
(a) X(z)—(—z—?%)(z——%)’|2l>5
z
(b) X(z)=m,lz|>l

Ans. (a) x[0]=2, x[»]=0
(b) x[0]=0, x[x] =1

Chapter 5

Fourier Analysis of Continuous-Time
Signals and Systems

5.1 INTRODUCTION

In previous chapters we introduced the Laplace transform and the z-transform to
convert time-domain signals into the complex s-domain and z-domain representations that
are, for many purposes, more convenient to analyze and process. In addition, greater
insights into the nature and properties of many signals and systems are provided by these
transformations. In this chapter and the following one, we shall introduce other transfor-
mations known as Fourier series and Fourier transform which convert time-domain signals
into frequency-domain (or spectral) representations. In addition to providing spectral
representations of signals, Fourier analysis is also essential for describing certain types of
systems and their properties in the frequency domain. In this chapter we shall introduce
Fourier analysis in the context of continuous-time signals and systems.

5.2 FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS
A. Periodic Signals:

In Chap. 1 we defined a continuous-time signal x(¢) to be periodic if there is a positive
nonzero value of T for which

x(t+T)=x(1) all « (5.1)

The fundamental period T, of x(¢) is the smallest positive value of T for which Eq. (5.1)
is satisfied, and 1/T, = f, is referred to as the fundamental frequency.
Two basic examples of periodic signals are the real sinusoidal signal

x(t) =cos(wyt + ¢) (5.2)
and the complex exponential signal
x(t) =e/! (5.3)

where w, =27/T, =27 f, is called the fundamental angular frequency.

B. Complex Exponential Fourier Series Representation:

The complex exponential Fourier series representation of a periodic signal x(¢) with
fundamental period T, is given by

i ) 27
x(t)= Y cke’k‘"“‘ Wy = —— (5.4)
Ty

k= —o

211
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where ¢, are known as the complex Fourier coefficients and are given by

1 ,
x(t) e ket dy (5.5)

Cp = "7
TO Ty

where jTU dcnotes the integral over any one period and 0 to T, or —T,/2 to T,/2 is
commonly used for the integration. Setting k =0 in Eq. (5.5), we have
1
co==1 x(t)dt (5.6)
T(J Ty
which indicates that ¢, equals the average value of x(¢) over a period.
When x(¢) is real, then from Eq. (5.5) it follows that
c =cp (5.7)

where the asterisk indicates the complex conjugate.

C. Trigonometric Fourier Series:

The trigonometric Fourier series representation of a periodic signal x(¢) with funda-
mental period T, is given by

a, * . 2
x(t)=—=+ Y (a,cos kwyt + b, sin kw,t) wy=— (5.8)
2D T,
where a, and b, are the Fourier coefficients given by
2
a,=—| x(t)cos kwytdt (5.9a)
0°Ty
b 2f()'k d (5.9b)
=— | x(t)sinkw,tdt .
T, - 0

The coefficients a, and b, and the complex Fourier coefficients ¢, are related by
(Prob. 5.3)

a,

5 =% A =Cpt+ ey by=i(c, —c_4) (5.10)
From Eq. (5.10) we obtain
¢, = 3(a, —jby) c_=3(a, +jby) (5.11)
When x(¢) is real, then a, and b, are real and by Eq. (5.10) we have

a, =2Re[c¢,] b, = —2Im[c,] (5.12)
Even and Odd Signals:

If a periodic signal x(¢) is even, then b, = 0 and its Fourier series (5.8) contains only
cosine terms:

a o
x(t)= 70 + kZ a, cos kwyt wy=— (5.13)
=1
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If x(1) is odd, then a, = 0 and its Fourier series contains only sine terms:
2

x(t)= Y b, sin kw,t W= -
0

k=1

(5.14)

D. Harmonic Form Fourier Series:

Another form of the Fourier series representation of a real periodic signal x(z) with
fundamental period T is

* 27
x(t)=Cy+ Y Cycos(kwot —0,) wo=—
k=1 T,

Equation (5.15) can be derived from Eq. (5.8) and is known as the harmonic form Fourier
series of x(¢). The term C, is known as the dc component, and the term C, cos(kwyt — 6,)
is referred to as the kth harmonic component of x(t). The first harmonic component
C, cos(w,t — 8,) is commonly called the fundamental component because it has the same
fundamental period as x(t). The coefficients C, and the angles 6, are called the harmonic
amplitudes and phase angles, respectively, and they are related to the Fourier coefficients
a, and b, by

(5.15)

a b
Co=70 C,=Vai+b; 9k=tan—]_k‘ (5.16)

Ay

For a real periodic signal x(¢), the Fourier series in terms of complex exponentials as
given in Eq. (5.4) is mathematically equivalent to either of the two forms in Eqs. (5.8) and
(5.15). Although the latter two are common forms for Fourier series, the complex form in
Eq. (5.4) is more general and usually more convenient, and we will use that form almost
exclusively.

E. Convergence of Fourier Series:

It is known that a periodic signal x(¢) has a Fourier series representation if it satisfies
the following Dirichlet conditions:

1. x(¢) is absolutely integrable over any period, that is,
|x(¢)ldt <o (5.17)
TO

2. x(t) has a finite number of maxima and minima within any finite interval of «.

3. x(z) has a finite number of discontinuities within any finite interval of ¢, and each of
these discontinuities is finite.

Note that the Dirichlet conditions are sufficient but not necessary conditions for the Fourier
series representation (Prob. 5.8).

F. Amplitude and Phase Spectra of a Periodic Signal:
Let the complex Fourier coefficients ¢, in Eq. (5.4) be expressed as
¢, =lc,) e/ (5.18)
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A plot of |c,| versus the angular frequency w is called the amplitude spectrum of the
periodic signal x(1), and a plot of ¢, versus w is called the phase spectrum of x(t). Since
the index k assumes only integers, the amplitude and phase spectra are not continuous
curves but appear only at the discrete frequencies kw,. They are therefore referred to as
discrete frequency spectra or line spectra.

For a real periodic signal x(t) we have ¢_, = c}. Thus,

IC_kl=le| b =~ (5]9)

Hence, the amplitude spectrum is an even function of w, and the phase spectrum is an odd
function of « for a real periodic signal.

G. Power Content of a Periodic Signal:

In Chap. 1 (Prob. 1.18) we introduced the average power of a periodic signal x(t) over
any period as

1 2
P= ?Ufnlx(r)l d (5.20)

If x(t) is represented by the complex exponential Fourier series in Eq. (5.4), then it can be
shown that (Prob. 5.14)

l o
7| e dr = P2 JeuI? (5.21)

Equation (5.21) is called Parseval’s identity (or Parseval’s theorem) for the Fourier series.

5.3 THE FOURIER TRANSFORM
A. From Fourier Series to Fourier Transform:
Let x(7) be a nonperiodic signal of finite duration, that is,
x(t)=0 [t]> T,

Such a signal is shown in Fig. 5-1(a). Let x,(r) be a periodic signal formed by repeating
x(t) with fundamental period T, as shown in Fig. 5-1(b). If we let T, — o, we have

lim (1) =x(1) (5.22)

0

The complex exponential Fourier scries of x; (1) is given by

ad 2
xp (1) = Y etk Wy = (5.23)
! k= —-x T{l
L 72 ik
where = xp(t) e e dt (5.24a)
T() -Ty/2 ’

Since x (1) = x(¢) for |t| < T,/2 and also since x(¢) =0 outside this interval, Eq. (5.24a)
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x(1)
70T, .
(@)
xTO(I)
/\ 1 A 1 A 1 A 1 A >
-T, T T, 0T, To T, 2T, ot
2 2
()]

Fig. 5-1 (a) Nonperiodic signal x(1); (b) periodic signal formed by periodic extension of x{(1).

can be rewritten as

1

c, = —
k
T,

To/2 , 1 = )
/" x(t)e e de= = [ x(t)e ke de (5.24b)
-Ty/2 0"~

Let us define X(w) as

X(w)= [ x(t)e dr (5.25)

—oc

Then from Eq. (5.24b) the complex Fourier coefficients ¢, can be expressed as
1
= = X(kwy) (5.26)
T,

Substituting Eq. (5.26) into Eq. (5.23), we have

©

1 )
qu([)= Z FX(k“’o)ejkw"'
0

k= —0o

1 i )
or xr(t)= 57 Y X(kawy) e o, (5.27)

k=—o

As Ty— o, w,=27/T, becomes infinitesimal (w,— 0). Thus, let w,=Aw. Then
Eq. (5.27) becomes

1 = v
xrv(r)lruﬂaz— Y X(kAw)e ' Aw (5.28)
™

k= —o
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Therefore,

x(t)= Tlim xr(t)= Alim0 e Z X(kAw)e 2 Aw (5.29)
Vo - k= ~o

The sum on the right-hand side of Eq. (5.29) can be viewed as the area under the function
X(w) e’ as shown in Fig. 5-2. Therefore, we obtain

x(t)= 2—2[ X(w)e™ dw (5.30)

which is the Fourier representation of a nonperiodic x(1).

X(w)er!

Area = X(kAw)e 400 A

Xk Awpekbot = = - = o o

o 4

0 k Awr
Fig. 5-2 Graphical interpretation of Eq. (5.29).

B. Fourier Transform Pair:

The function X(w) defined by Eq. (5.25) is called the Fourier transform of x(t), and
Eq. (5.30) defines the inverse Fourier transform of X(w). Symbolically they are denoted by

X(w) = F{x( }~f x(1)e e~ dt (5.31)

x(t)=F '{X(w)}-—f (w) e dew (5.32)

and we say that x(¢) and X(w) form a Fourier transform pair denoted by
x(t) > X(w) (5.33)

C. Fourier Spectra:
The Fourier transform X(w) of x(¢) is, in general, complex, and it can be expressed as
X(w)=[X(w)l e/* (5.34)

By analogy with the terminology used for the complex Fourier coefficients of a periodic
signal x(t), the Fourier transform X(w) of a nonperiodic signal x(¢) is the frequency-
domain specification of x(t) and is referred to as the spectrum (or Fourier spectrum) of
x(t). The quantity | X(w)| is called the magnitude spectrum of x(t), and ¢(w) is called the
phase spectrum of x(t).
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If x(¢) is a real signal, then from Eq. (5.31) we get

X(-w) =f°° x(t) e’ dt (5.35)

Then it follows that
X(—w)=X*w) (5.36a)
and [ X(—w)l=]X(w) O(—w)=—¢(w) (5.36b)

Hence, as in the case of periodic signals, the amplitude spectrum |[X(w)| is an even
function and the phase spectrum @(w) is an odd function of w.

D. Convergence of Fourier Transforms:

Just as in the case of periodic signals, the sufficient conditions for the convergence of
X(w) are the following (again referred to as the Dirichlet conditions):

1. x(¢) is absolutely integrable, that is,

k(1) de < o0 (5.37)
/

2. x(1) has a finite number of maxima and minima within any finite interval.

3. x(¢) has a finite number of discontinuities within any finite interval, and each of these
discontinuities is finite.

Although the above Dirichlet conditions guarantee the existence of the Fourier transform for
a signal, if impulse functions are permitted in the transform, signals which do not satisfy
these conditions can have Fourier transforms (Prob. 5.23).

E. Connection between the Fourier Transform and the Laplace Transform:

Equation (5.37) defines the Fourier transform of x(t¢) as

X(w)= [ x(t)ye " di (5.38)

The bilateral Laplace transform of x(t¢), as defined in Eq. (4.3), is given by

X(s)= [ x(t)e~dr (5.39)

)

Comparing Eqs. (5.38) and (5.39), we see that the Fourier transform is a special case of
the Laplace transform in which s = jw, that is,

X(8)s=jo = Flx(1)} (5.40)
Setting s = o + jw in Eq. (5.39), we have

X(o+jw)= /w x(1)e otV gy = fw [x(t)e o] e~/ ar

or X(o+jw)=Flx(t)e "'} (5.41)
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which indicates that the bilateral Laplace transform of x(¢) can be interpreted as the
Fourier transform of x(¢)e°".

Since the Laplace transform may be considered a generalization of the Fourier
transform in which the frequency is generalized from jw to s =0 +jw, the complex
variable s is often referred to as the complex frequency.

Note that since the integral in Eq. (5.39) is denoted by X(s), the integral in Eq. (5.38)
may be denoted as X(jw). Thus, in the remainder of this book both X(w) and X(jw)
mean the same thing whenever we connect the Fourier transform with the Laplace
transform. Because the Fourier transform is the Laplace transform with s = jw, it should
not be assumed automatically that the Fourier transform of a signal x(¢) is the Laplace
transform with s replaced by jw. If x(¢) is absolutely integrable, that is, if x(¢) satisfies
condition (5.37), the Fourier transform of x(t) can be obtained from the Laplace
transform of x(¢) with s =jw. This is not generally true of signals which are not absolutely
integrable. The following examples illustrate the above statements.

EXAMPLE 5.1. Consider the unit impulse function 8(¢).
From Eq. (3.73) the Laplace transform of 8(¢) is

Z{s()) =1 all s (5.42)
By definitions (5.3/) and (7.20) the Fourier transform of 8(¢) is

y{a(:)}:fx 8(1) e di =1 (5.43)
Thus, the Laplace transform and the Fourier transform of 8(¢) are the same.

EXAMPLE 5.2. Consider the exponential signal
x(t) =e %u(t) a>0

From Eq. (3.8) the Laplace transform of x(¢) is given by
1
x(t)) =X(s)=— R >~ 5.44
(#(1)) =X(s) = — e(5)> ~a (5.4)
By definition (5.31) the Fourier transform of x(¢) is

Flx(1)) = X(w) =fx e~ utu(t) e~ dt

= [Tetarion gy = : (5.43)
0 a+tjo
Thus, comparing Egs. (5.44) and (5.45), we have
X(w)=X(5)ls2ju (5.46)
Note that x(¢) is absolutely integrable.
EXAMPLE 5.3. Consider the unit step function u(?).
From Eq. (3.74) the Laplace transform of u(¢) is
1
Alu(t)) =— Re(s) >0 (5.47)
R)
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The Fourier transform of u(z) is given by (Prob. 5.30)
1
Flu()) =mé(w) + = (5.48)
w

Thus, the Fourier transform of u(¢) cannot be obtained from its Laplace transform. Note that the unit
step function u(t) is not absolutely integrable.

5.4 PROPERTIES OF THE CONTINUOUS-TIME FOURIER TRANSFORM

Basic properties of the Fourier transform are presented in the following. Many of these
properties are similar to those of the Laplace transform (see Sec. 3.4).

A. Linearity:
a,x,(t) +a,x,(t) = a, X (0)+a,X,(w) (5.49)

B. Time Shifting:

x(t—ty) e e X(w) (5.50)

Equation (5.50) shows that the effect of a shift in the time domain is simply to add a linear
term —w!, to the original phase spectrum 6(w). This is known as a linear phase shift of the
Fourier transform X(w).

C. Frequency Shifting:

el x(t) > X(w ~wy) (5.51)

The multiplication of x(¢) by a complex exponential signal e/’ is sometimes called
complex modulation. Thus, Eq. (5.51) shows that complex modulation in the time domain
corresponds to a shift of X(w) in the frequency domain. Note that the frequency-shifting
property Eq. (5.51) is the dual of the time-shifting property Eq. (5.50).

D. Time Scaling:

! X ( w) 5.52
x(at) - —X|— .
(ar) > x|~ (5.52)
where a is a real constant. This property follows directly from the definition of the Fourier
transform. Equation (5.52) indicates that scaling the time variable ¢ by the factor a causes
an inverse scaling of the frequency variable @ by 1 /a4, as well as an amplitude scaling of
X(w/a) by 1/lal. Thus, the scaling property (5.52) implies that time compression of a
signal (@ > 1) results in its spectral expansion and that time expansion of the signal (a < 1)
results in its spectral compression.
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E. Time Reversal:

x(—1) > X(—w) (5.53)

Thus, time reversal of x(r) produces a like reversal of the frequency axis for X(w).
Equation (5.53) is readily obtained by setting a = —1 in Eq. (5.52).

F. Duality (or Symmetry):

X(t) e 2mx(-w) (5.54)

The duality property of the Fourier transform has significant implications. This property
allows us to obtain both of these dual Fourier transform pairs from one evaluation of
Eq. (5.31) (Probs. 5.20 and 5.22).

G. Differentiation in the Time Domain:

dx(t)
dt

Equation (5.55) shows that the effect of differentiation in the time domain is the
multiplication of X(w) by jw in the frequency domain (Prob. 5.28).

—joX(w) (5.55)

H. Differentiation in the Frequency Domain:

dX(w)
(—j)x(t) & (5.56)
Equation (5.56) is the dual property of Eq. (5.55).
I. Integration in the Time Domain:
t 1
[ x(r)dr > X(0)3(0) + —X(w) (5.57)
— Jw

Since integration is the inverse of differentiation, Eq. (5.57) shows that the frequency-
domain operation corresponding to time-domain integration is multiplication by 1/jw, but
an additional term is needed to account for a possible dc component in the integrator
output. Hence, unless X(0) = 0, a dc component is produced by the integrator (Prob. 5.33).

J. Convolution:

x,(1)* x5(1) = X (@) Xy(w) (5.58)
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Equation (5.58) is referred to as the time convolution theorem, and it states that convolu-
tion in the time domain becomes multiplication in the frequency domain (Prob. 5.31). As
in the case of the Laplace transform, this convolution property plays an important role in
the study of continuous-time LTI systems (Sec. 5.5) and also forms the basis for our
discussion of filtering (Sec. 5.6).

K. Multiplication:

1
x,(1)xy(1) > — Xy(@) x X(w) (5.59)

The multiplication property (5.59) is the dual property of Eq. (5.58) and is often referred
to as the frequency convolution theorem. Thus, multiplication in the time domain becomes
convolution in the frequency domain (Prob. 5.35).

L. Additional Properties:
If x(¢) is real, let

x(1)=x,(1) +x,(1) (5.60)
where x(7) and x (1) are the even and odd components of x(¢), respectively. Let

x(t) & X(0) =A(w) +jB(w)

Then X(-0)=X*0) (5.61a)
x,(1) = Re{X(w)} =A(w) (5.61b)
x,(t) —j Im{X(w)} = jB(w) (5.61c)

Equation (5.61a) is the necessary and sufficient condition for x(¢) to be real (Prob. 5.39).
Equations (5.61b) and (5.61c) show that the Fourier transform of an even signal is a real
function of w and that the Fourier transform of an odd signal is a pure imaginary function
of w.

M. Parseval’s Relations:

f_°° x,(A) X,(A) dA = [_w X,(A)x,(A) dA (5.62)
w 1
f_mx](t)xz(t)dt = —z—wf_le(w)Xz(—w)dw (5.63)

J Ix(e) i = L X)) do (5.64)
—w 27/ o '



222 FOURIER ANALYSIS OF TIME SIGNALS AND SYSTEMS [CHAP. 5

Equation (5.64) is called Parseval’s identity (or Parseval’s theorem) for the Fourier
transform. Note that the quantity on the left-hand side of Eq. (5.64) is the normalized
energy content E of x(¢) [Eq. (1.14)). Parseval’s identity says that this energy content E
can be computed by integrating | X(w)|* over all frequencies w. For this reason | X(w)|? is
often referred to as the energy-density spectrum of x(t), and Eq. (5.64) is also known as
the energy theorem.

Table 5-1 contains a summary of the properties of the Fourier transform presented in
this section. Some common signals and their Fourier transforms are given in Table 5-2.

Table 5-1. Properties of the Fourier Transform

Property Signal Fourier transform
x(1) X(w)
x,(t) X ()
x,(1) XAw)
Linearity ax (1) +a,x,(t) a Xy(w)+a,XAw)
Time shifting x(t—1g) e X (w)
Frequency shifting e/ x(t) X - wgy)
1 w
Time scaling x(at) ——X( — )
lal" \a
Time reversal x(=1) X(-w)
Duality X() 27x(-w)
dx(t) .
Time differentiation 7 joX(w)
dX(w)
Frequency differentiation (—jt)x(t) To
1
Integration fl x(r)dr 7X(0)8(w) + —X(w)
—w jo
Convolution x,(0)* x,(¢) X (w) Xy (w)
1
Multiplication x,(D)x,(1) EXl(w)* Xy(w)
Real signal x()=x,(t) +x (1) X(w)=A(w) + jB(w)
X(-w)=X"(w)
Even component x,(1) Re{ X(w)} = A(w)
0Odd component x,(1) Jj Im{X(w)} = jB(w)

Parseval’s relations
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Table 5-2. Common Fourier Transforms Pairs

x() X(w)
8(1) 1
5(, _ tO) e"j'wlu
1 278(w)
elwo! 278(w — w,)
COS wq! ml8(w — wy) + 8(w + w,)]
sin wyt —jm8(w — wy) — 8(w + wy)]
1
u(t) mo(w)+ —
jo
1
u(—1t) mo(w) — —
jo
1
e u(t),a>0 -
Jo ta
1
te u(t),a>0 S m—
(Jw +a)
el g >0 2a
¢ 4 a’+ w?
1
—_ e-a]ml
a’+1?
e a>0 v-‘n—’e"“’?/“”
a
1 lt|<a sinwa
t =
() 0 > a 2a -
sin at (©) = 1 lw| < a
wt Pt 0 lwl>a
sgn ¢ —
jo
Y 8(¢t—kT) w, Y, 8w - ko), w, = T
k=—o k=—o

fj’ X (MXAN) dA = f X, (M)xy(A) dA

% 1 o
f_ x(Dx(0)dt = Ef_ X (@) X(~w)dw

—

x 1 ®
/ 1x(:)12d1=;f [ X(0))? do

A. Frequency Response:

5.5 THE FREQUENCY RESPONSE OF CONTINUOUS-TIME LTI SYSTEMS

223

In Sec. 2.2 we showed that the output y(z) of a continuous-time LTI system equals the
convolution of the input x(¢) with the impulse response h(t); that is,

y(1) =x(1) (1)

Applying the convolution property (5.58), we obtain

Y(w)=X(w)H(w)

(5.65)

(5.66)
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where Y(w), X(w), and H(w) are the Fourier transforms of y(z), x(¢), and h(1),
respectively. From Eq. (5.66) we have

Y(w)

)= X

(5.67)
The function H(w) is called the frequency response of the system. Relationships repre-
sented by Egs. (5.65) and (5.66) are depicted in Fig. 5-3. Let

H(w) =|H(w)| e (5.68)

Then |H(w)| is called the magnitude response of the system, and 6,(w) the phase response
of the system.

1 H(w)
8(1) LTI L10)]
x(1) system MO=x(1) * h(t)
X(w) Y(w)=X{(w)H(w)}

Fig. 5-3 Relationships between inputs and outputs in an LTI system.

Consider the complex exponential signal

x(t) = e/ (5.69)
with Fourier transform (Prob. 5.23)
X(w)=278(w —wy) (5.70)
Then from Egs. (5.66) and (1.26) we have
Y(w)=27H(w,)8(w — w,) (5.71)

Taking the inverse Fourier transform of Y(w), we obtain
y(t)=H(w,)e™' (5.72)

which indicates that the complex exponential signal e/“* is an eigenfunction of the LTI
system with corresponding eigenvalue H(w,), as previously observed in Chap. 2 (Sec. 2.4
and Prob. 2.17]. Furthermore, by the linearity property (5.49), if the input x(#) is periodic
with the Fourier series

x(t)= Y ce*en (5.73)

k=—-»

then the corresponding output y(1) is also periodic with the Fourier series
y(t)= Y c H(kw,)e* (5.74)

k=~
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If x(¢) is not periodic, then from Eq. (5.30)

1 > )
= jwt
x(1)= 5 f_mX(w) e dw (5.75)
and using Eq. (5.66), the corresponding output y(¢) can be expressed as
1 )
y(t)=?;f_wH(w)X(a))e"‘"dw (5.76)

Thus, the behavior of a continuous-time LTI system in the frequency domain is completely
characterized by its frequency response H(w). Let

X(w) =X (w)lex Y(w) =Y (w)le/ (5.77)

Then from Eq. (5.66) we have
[Y(w)l =X (o)llH(w)l (5.78a)
Oy(w) =bx(w) +0y(w) (5.78b)

Hence, the magnitude spectrum |X(w)| of the input is multiplied by the magnitude
response |H(w)| of the system to determine the magnitude spectrum |Y(w)| of the output,
and the phase response 6,(w) is added to the phase spectrum 6,(w) of the input to
produce the phase spectrum 6,(w) of the output. The magnitude response |H(w)| is
sometimes referred to as the gain of the system.

B. Distortionless Transmission:

For distortionless transmission through an LTI system we require that the exact input
signal shape be reproduced at the output although its amplitude may be different and it
may be delayed in time. Therefore, if x(¢) is the input signal, the required output is

y(1)=Kx(r—1t,) (5.79)

where ¢, is the time delay and K (> 0) is a gain constant. This is illustrated in Figs. 5-4(a)
and (b). Taking the Fourier transform of both sides of Eq. (5.79), we get

Y(w)=Ke X (w) (5.80)
Thus, from Eq. (5.66) we see that for distortionless transmission the system must have
H(w) = |H(w)le/ = Ke /ot (5.81)
Thus,
|H(w)l=K (5.82a)
0y(w)= —jot, (5.82b)

That is, the amplitude of H(w) must be constant over the entire frequency range, and the
phase of H(w) must be linear with the frequency. This is illustrated in Figs. 5-4(c) and (d).

Amplitude Distortion and Phase Distortion:

When the amplitude spectrum [H(w)| of the system is not constant within the
frequency band of interest, the frequency components of the input signal are transmitted
with a different amount of gain or attenuation. This effect is called amplitude distortion.
When the phase spectrum 8,(w) of the system is not linear with the frequency, the output
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x(r) 1H(w)
Al =---
! K
|
1
]
1
I
1
1 > >
0 5 t 0 %)
(a) (c)
A0
N B(w)
'
)
]
1 > >
0 Iy iy I 0 w
Slope = -1,
(b) (d)

Fig. 5-4 Distortionless transmission.

signal has a different waveform than the input signal because of different delays in passing
through the system for different frequency components of the input signal. This form of
distortion is called phase distortion.

C. LTI Systems Characterized by Differential Equations:

As discussed in Sec. 2.5, many continuous-time LTI systems of practical interest are
described by linear constant-coefficient differential equations of the form

Ydh() X ()
PTI A7E

(5.83)
k=0

with M < N. Taking the Fourier transform of both sides of Eq. (5.83) and using the
linearity property (5.49) and the time-differentiation property (5.55), we have

N M
¥ a(jo) Y(w) = ¥ b,(jo) X(w)
k=0 k=0
N M
or Y(w)kf_joak(,'w)" =X(w)k);0bk(jw)k (5.84)
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Thus, from Eq. (5.67)

fbk(jw)k
Y(o) C
H(w)= o] " kgak(jw)k (5.85)
k=0

which is a rational function of w. The result (5.85) is the same as the Laplace transform
counterpart H(s) =Y(s)/X(s) with s = jo [Eq. (3.40)], that is,

H(w)=H(s)ls=jo = H(jo)

5.6 FILTERING

One of the most basic operations in any signal processing system is filtering. Filtering is
the process by which the relative amplitudes of the frequency components in a signal are
changed or perhaps some frequency components are suppressed. As we saw in the
preceding section, for continuous-time LTI systems, the spectrum of the output is that of
the input multiplied by the frequency response of the system. Therefore, an LTI system
acts as a filter on the input signal. Here the word “filter” is used to denote a system that
exhibits some sort of frequency-selective behavior.

A. Ideal Frequency-Selective Filters:

An ideal frequency-selective filter is one that exactly passes signals at one set of
frequencies and completely rejects the rest. The band of frequencies passed by the filter is
referred to as the pass band, and the band of frequencies rejected by the filter is called the
stop band.

The most common types of ideal frequency-selective filters are the following.

1. Ideal Low-Pass Filter:
An ideal low-pass filter (LPF) is specified by

H (o) 1 lol < w, 5 86
(@)= 0 lwl> w, (5.86)
which is shown in Fig. 5-5(a). The frequency w, is called the cutoff frequency.

2. Ideal High-Pass Filter:

An ideal high-pass filter (HPF) is specified by
\H(o)] 0 lw| < w, 587
()= 1 lwl> w, (5:87)

which is shown in Fig. 5-5(b).
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|H(w)] 1H(w)l
i
————————— ] pr——————
® 0 u) ® W, 0 w, @
(@ (b
IH(w)l IH(w)l
1
1
W, o, 0 w, w, w W, -, 0 ©, W, T»
(©) (d)

Fig. 5-5 Magnitude responses of ideal frequency-selective filters.

3. Ideal Bandpass Filter:
An ideal bandpass filter (BPF) is specified by

< <
|H(w)| = { ! o, <lol <o, (5.88)
0 otherwise
which is shown in Fig. 5-5(c).
4. Ideal Bandstop Filter:
An ideal bandstop filter (BSF) is specified by
< <
|H(w)l = {0 w, <lul <a, (5.89)
1 otherwise

which is shown in Fig. 5-5(d).

In the above discussion, we said nothing regarding the phase response of the filters. To
avoid phase distortion in the filtering process, a filter should have a linear phase
characteristic over the pass band of the filter, that is [Eq. (5.82b)],

8,(0) = —wt, (5.90)

where ¢, is a constant.
Note that all ideal frequency-selective filters are noncausal systems.
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B. Nonideal Frequency-Selective Filters:

As an example of a simple continuous-time causal frequency-selective filter, we
consider the RC filter shown in Fig. 5-6(a). The output y(¢) and the input x(t) are related
by (Prob. 1.32)

d
RC—yE(t—l—)- +y(t)=x(r)

Taking the Fourier transforms of both sides of the above equation, the frequency response
H(w) of the RC filter is given by

Y(w) 1 1
X(0) 1+4jwRC  1+jo/w,

H(w) = (5.91)

where w,=1/RC. Thus, the amplitude response |H(w)| and phase response 6,(w) are
given by

1

|H(w)l = (5.92)
1 +}w/w0| [1 n (w/wo)z]l/z
w
0y(w)=—tan™'— (5.93)
@y
IH(w)t
R Wy 0 T

1
? @oje
X0 i(1) _’_ C ¥

(@)

Fig. 5-6 RC filter and its frequency response.
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which are plotted in Fig. 5-6(b). From Fig. 5-6(b) we see that the RC network in
Fig. 5-6(a) performs as a low-pass filter.

5.7 BANDWIDTH
A. Filter (or System) Bandwidth:

One important concept in system analysis is the bandwidth of an LTI system. There are
many different definitions of system bandwidth.

1. Absolute Bandwidth:

The bandwidth Wy of an ideal low-pass filter equals its cutoff frequency; that is,
Wy =w, [Fig. 5-5(a)]. In this case Wy is called the absolute bandwidth. The absolute
bandwidth of an ideal bandpass filter is given by Wy = w, — w, [Fig. 5-5(¢)]. A bandpass
filter is called narrowband if Wy < w,, where w,= }{w, + w,) is the center frequency of
the filter. No bandwidth is defined for a high-pass or a bandstop filter.

2.  3-dB (or Half-Power) Bandwidth:

For causal or practical filters, a common definition of filter (or system) bandwidth is
the 3-dB bandwidth W, .. In the case of a low-pass filter, such as the RC filter described
by Eq. (5.92) or in Fig. 5-6(b), Wy 4, is defined as the positive frequency at which
the amplitude spectrum |H(w)| drops to a value equal to |H(0)|/V2, as illustrated in
Fig. 5-7(a). Note that |H(0)| is the peak value of H(w) for the low-pass RC filter. The
3-dB bandwidth is also known as the half-power bandwidth because a voltage or current
attenuation of 3 dB is equivalent to a power attenuation by a factor of 2. In the case of a
bandpass filter, W, 45 is defined as the difference between the frequencies at which |H(w)|
drops to a value equal to 1,/vV2 times the peak value |H(w, )| as illustrated in Fig. 5-7(b).
This definition of W, 5 is useful for systems with unimodal amplitude response (in the
positive frequency range) and is a widely accepted criterion for measuring a system’s
bandwidth, but it may become ambiguous and nonunique with systems having multiple
peak amplitude responses.

Note that each of the preceding bandwidth definitions is defined along the positive
frequency axis only and always defines positive frequency, or one-sided, bandwidth only.

|H(w)} IH(w)I

Fig. 5-7 Filter bandwidth.
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B. Signal Bandwidth:

The bandwidth of a signal can be defined as the range of positive frequencies in which
“most” of the energy or power lies. This definition is rather ambiguous and is subject to
various conventions (Probs. 5.57 and 5.76).

3-dB Bandwidth:

The bandwidth of a signal x(¢) can also be defined on a similar basis as a filter
bandwidth such as the 3-dB bandwidth, using the magnitude spectrum | X(w)| of the signal.
Indeed, if we replace |H(w)| by | X(w)] in Figs. 5-5(a) to (c), we have frequency-domain
plots of low-pass, high-pass, and bandpass signals.

Band-Limited Signal:
A signal x(¢) is called a band-limited signal if
1X(w)l=0 lwl> @y (5.94)

Thus, for a band-limited signal, it is natural to define w,, as the bandwidth.

Solved Problems

FOURIER SERIES

S.1.  We call a set of signals {¥,(1)} orthogonal on an interval (a, b) if any two signals ¥, (1)
and W, (1) in the set satisfy the condition

[vawza={° m 2k (5.95)

where * denotes the complex conjugate and « # 0. Show that the set of complex
exponentials {e’*“0': k=0, +1,+2,...} is orthogonal on any interval over a period T,
where T, =27/w,.

For any t, we have

- W+ Ty 1
[0 uej,,,,,,“, dt = . ejmm(,f = - glmeotto+ Ty _ ejmwuln)
1y Jmag 1y Jmag
1 )
=- eJ’"wn’u(el’"Z"'— 1)=0 m=#=0 (5.96)
Jmw

since €2 = 1. When m = 0, we have ¢/"“v|,,_, =1 and

[ emen ar = [ T =, (5.97)

ty Ly
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Thus, from Eqgs. (5.96) and (5.97) we conclude that

0 m+#k

T, ek (5.98)

Lo+ Ty Jmwgt ( ,ikawgt % _ [tot Ty /(m k)wgt
e (e’ @' y*dt = dt =
o

fy

which shows that the set {e/¥“o": k =0,+ 1,+ 2,...} is orthogonal on any interval over a period
T,.

Using the orthogonality condition (5.98), derive Eq. (5.5) for the complex Fourier
coeflicients.
From Eq. (5.4)
2

®
x(t) = x Ckejkw"' Wy = ——
k=—o TO

Multiplying both sides of this equation by e ™' and integrating the result from ¢, to
(¢, + T,), we obtain

/lu+
?

T“x(t)e_i’""’”' d[=flo+To( Z cke/kwor]e—jmwot dt
[t

0 0 k= —mo
) _mck[ ot Tog itk =mwor gy (5.99)
Then by Eq. (5.98) Eq. (5.99) reduces to
f'“”“ x(t)e Moot dt =, T, (5.100)

Ip
Changing index m to k, we obtain Eq. (5.5), that is,

1
— [ Tx(1)e ke ar (5.101)

Ck=T
0

fo

We shall mostly use the following two special cases for Eq. (5.101): t;=0 and t,= —T,/2,
respectively. That is,

1 .1, ,
== "x(t)e ke dy 5.102a
= f,x O (5.102a)

1 2
fTD/ x(t)e ket gy

(5.102b)
TO -To/2

Cr =

Derive the trigonometric Fourier series Eq. (5.8) from the complex exponential
Fourier series Eq. (5.4).

Rearranging the summation in Eq. (5.4) as
x(t) = }: cpekert =+ Z (cre™ o +c_ ekwot)
k=—co
and using Euler’s formulas

e tikeot = cos kwgt + jsin kwgt
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we have
x(t) =co+ L [(cx+c_i)coskwot +j(c, —c_,)sin kwyt] (5.103)
k=1
Setting
a9 .
=5 Cete_p=ay iex—c_x) =by (5.104)

54.

Eq. (5.103) becomes

x(r)—; Z (a, cos kwgt + by sin kwyt)

Determine the complex exponential Fourier series representation for each of the
following signals:

(a) x(t)=cos wyt

(b) x(¢) =sin wyt

(c) x(t)= cos(2t + %)
(d) x(t)=cos4t+ sin6t
(e) x(t)=sint

(a) Rather than using Eq. (5.5) to evaluate the complex Fourier coefficients ¢, using Euler’s
formula, we get

1 jwo! —Jjwot 1 —Jjwot 1 Jwgt Jkwot
cosw0t=5(e’°+e “)=5e vt el = Y ¢ ke
Thus, the complex Fourier coefficients for cos wyt are
=1 c_y=3% ¢, =0, lkl=1
(b) In a similar fashion we have

sin wat = i(efwo‘ — e'fwo') = — ie—lwoi + Lelwu' = Z Ckejk‘""'
0 N
2j 2j 2j k= -
Thus, the complex Fourier coefficients for sin wyt are
1 1

c,=2—j c_1=~2—j c,=0,lkl#1

(¢) The fundamental angular frequency w, of x(¢) is 2. Thus,

Z Cx ejkw"t i CkejZkt

k= - k=—

x(t) —cos(2r + — )
o N .
Now x(t) = 005(21 + I) = E(e"z'”'/“’ + i@/

EY
Z i ejZkI

k=-w

1 . 1 .
=_e—;-n-/4e—12f+_e11r/4e}21=
2 2
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Thus, the complex Fourier coefficients for cos(2¢ + /4) are

) 1145 V2
=—e/m/ e = (1 4]
€y € 2 \/5 4( )
1 11-j V2
= —p /A T — —7
€y 2" 25 4(1 7
¢, =0 lkl=+1

(d) By the result from Prob. 1.14 the fundamental period T of x(¢)is 7 and wy,=27/T, = 2.
Thus,

x(t) =cosdt +sin6t= Y cpelkear= Y ¢ /2
- — k= -

Again using Euler’s formula, we have

1 ‘ 1 .
x(t) =cosdt + sin6t = E(e"“ +e7) + ?(e"" —e/o)
J

1 1 1 x
= ——.64/6’4-*e_j4'+“€j4'+—ej6'= ¢ ejZkl
2j 2 2 2j ,(=Z_ o
Thus, the complex Fourier coefficients for cos4¢ + sin6¢ are
1 1 1 1
C_1= — — C_»=— CHy = — Cy= —
3 2; 275 275 372

and all other ¢, =0.
(e) From Prob. 1.16(e) the fundamental period T, of x(¢) is = and wy,=2w/T,= 2. Thus,

o« k]
x(t)=sin’t= Y cpeftor= Y ek
k= —o k= —o

Again using Euler’s formula, we get

elt —e z 1 )
x(t)=sin2t=(———) =—Z(e’2'—2+e"2')

2j
1 11 =
o e _gizt o . el2kt
4 2 4° k:z_x“

Thus, the complex Fourier coefficients for sin® ¢ are

B

==

=

Cp =

N

cC_,=-

and all other ¢, = 0.

5.5.  Consider the periodic square wave x(¢) shown in Fig. 5-8.

(a) Determine the complex exponential Fourier series of x().
(b) Determine the trigonometric Fourier series of x(t).
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x(1)
A
T, 0 0 T T 27, 7
2 2
Fig. 5-8
(a) Let
hd 2m
x(1)= ¥ ek Wo= 7
k=—o TO

Using Eq. (5.102a), we have

I .7 ) 1 102 ‘
e =— | x(t)e koot gt = — [V gkt gt
=7 f 0 I,
A , To/2 A
= e—]kwol

—jkwoTy/2 1
—jkwoT, (e )

0 —Jjkw,T,
A A

= (1—ekmy=_"_J1-(=1*
w1 e jk21-r[1 (-]

since w,T, =27 and e 7*" = (~ DX, Thus,

e =0 k=2m=#0
=— k=2m+1
Cx o m
1 Ty 1 Toy/2 A
=— t)dt = — Adt=—
€o TO/O x(1) Tofo 2
Hence,
4 0 —————A 10
Co= 2 Com = C2m+l_j(2m+1)7r (5 5)
and we obtain
A A =
)= —+ — J2m+ Dwgt 5.106
*(1) =7 jvm£m2m+le (5.106)
(b) From Egs. (5.105), (5.10), and (5.12) we have
ag A
7=CO=? a,,=b,,=0,m+0
2A
azm+1=2Re[sz+1]=0 bymir=—2Im[cy,,,]=

@m+)m
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Substituting these values in Eq. (5.8), we get
A i 1
x(t)=—+ T,,,):(, Y sin(2m + Doyt
A 24 1 1
=3 + —sinwyt + ;smSwut + ESIDSwol + o (5.107)
5.6. Consider the periodic square wave x(¢) shown in Fig. 5-9
(a) Determine the complex exponential Fourier series of x(¢)
(b) Determine the trigonometric Fourier series of x(r).
x(1)
A
L 1 ) —
-Ty g T To 27, !
4 4
Fig. 5-9
(a) Let
ki 2
x(t)= Y, c ek wy=—
k=—x T()
Using Eq. (5./02b), we have
T,/2 ikt To/4 e ~kwat
— ! JRwyy dt JKwy. dl
“ Tf ‘,/’()e Tfrm
— e‘fkwuru/4 — elk“’nru/“)
—]k‘”o 0
kw
— gk /2 _ kw2 — o T
-jk2'rr(e ¢ ) k‘rrsm( 2 )
Thus,
¢, =0 k=2m#0
= k=2m+1
(=D m
Y 1,/2 A
c t)dt= Adt = —
T, 7l T‘,fu 2
Hence,
=(-1 m o
(=1 2m+ 7w

€2y =0, m#0 Com+1

I

(ST

€y
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and we obtain
A 4 = (-H"
= 4+ = J2m+ Dwgt 5.109
*(4) 2 ;2_ 2m + le ( )
(b) From Egs. (5.108), (5.10), and (5.12) we have
a, A
?=CO=? =2Re[cz,,,]=0,m*0
. 24
@ymi1=2Re[C, ] =(—1) Gmi)n by=-2Im[c,]=0
Substituting these values into Eq. (5.8), we obtain
t A + Y . 2 1
x()—2 - m=02m+1cos(m+ Ywgt
(5.110)

(5.108)

= — 4 —
2
Note that x(t) is even; thus, x(¢) contains only a dc term and cosine terms. Note also that

x(¢) in Fig. 5-9 can be obtained by shifting x(¢) in Fig. 5-8 to the left by 7,/4

A 24 1 1
(cos Wyl — 308 3wyt + 5 cos Swyt — )

5.7.  Consider the periodic square wave x(¢) shown in Fig. 5-10
(a) Determine the complex exponential Fourier series of x(r)
(b) Determine the trigonometric Fourier series of x(t).

Note that x(¢) can be expressed as
x(1)=x(t) -

where x,(1) is shown in Fig. 5-11. Now comparing Fig. 5-11 and Fig. 5-8 in Prob. 5.5, we
see that x,(¢) is the same square wave of x(¢) in Fig. 5-8 except that 4 becomes 24

x(1)

2T,

-Ty To
2

Fig. 5-10
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x, (0

Ty Do 0 To T 2T, t

Fig. 5-11

(@) Replacing A by 24 in Eq. (5.106), we have
hd 1

2A
ty=A+ — HZm+ Dwyt
X jm ,,,;Z_,Zm+le
Thus,
2A 2
= -4 = — J2m+ Dyt 5.111
x(1) =x,(t) p= m;ﬁ S T1C ( )

(b) Similarly, replacing 4 by 2A4 in Eq. (5.107), we have
1
2m + 1

44 =
x(1)=A+ — Y sin(2m + D wyt
m=0

Thus,
1
2m+1

44 = .
x(ty=— Y sin(2m + 1wyt
T m=0

44 1
= —|sinwyt + =sin3wyt + —sinSwyt + - - - (5.112)
T 3 S
Note that x(¢) is odd; thus, x(¢) contains only sine terms.
Consider the periodic impulse train §.(¢) shown in Fig. 5-12 and defined by
8,(1)= ) 8(1—kT,) (5.113)
k=—o
STo(f)
&7
8
To 0 T 21, o
Fig. 5-12
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(a) Determine the complex exponential Fourier series of 570(1).
(b) Determine the trigonometric Fourier series of §(1).

(a) Let
d 2
§5-(t) = Jkawqt -
To( ) kEkae Wy T,
Since 8(t) is involved, we use Eq. (5.102b) to determine the Fourier coefficients and we
obtain
¢ =ifr°/2 B(1)e kot df = ~- (5.114)
g Ty’ -7102 Ty .
Hence, we get
hd 1 = ) 2w
dr(t)= X 8(1—kTy)=— X e/ wy=— (5.115)
k=—o TO k=—ox TO
(b) Let
a, hd . 27
Sr(t)=—+ Y (a, cos kwyt + b, sin kwyt) wy= =
2 T,
Since 87(t) is even, b, =0, and by Eq. (5.9a), a, are given by
2 12 2
a = Tof-r"/zs(t)cos kwotdt = 7 (5.116)
Thus, we get
B L, 2 i k il 5.117
t)=—+ — t =— .
r(t) T, T, =, COS Kwq @9 T, ( )

Consider the triangular wave x(¢) shown in Fig. 5-13(a). Using the differentiation
technique, find (a) the complex exponential Fourier series of x(¢), and (b) the
trigonometric Fourier series of x(¢).

The derivative x'(¢) of the triangular wave x(¢) is a square wave as shown in Fig. 5-13(b).
(a) Let

d ) 27
x(t)= ¥ ceter wy=— (5.118)
k= - T()
Differentiating Eq. (5.118), we obtain
()= Y jkwye, e e (5.119)

k= -

Equation (5.119) shows that the complex Fourier coefficients of x'(¢) equal jkw,c,. Thus, we
can find ¢, (k#0) if the Fourier coefficients of x'(¢) are known. The term ¢, cannot be
determined by Eq. (5.119) and must be evaluated directly in terms of x(¢) with Eq. (5.6).
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T o 0 T, 2T, '
2 2
(@)
x(n)
2
TD
T | D 0 To To 2T t
2 2
]
To
)
Fig. 5-13

Comparing Fig. 5-13(b) and Fig. 5-10, we see that x’(¢) in Fig. 5-13(b) is the same as x(¢) in
Fig. 5-10 with A replaced by 24 /T,. Hence, from Eq. (5.111), replacing 4 by 24 /T,, we have

1

(t) = H2m+ Dwgt 512
*(1) jTrTOm:E_mZm+le (3.120)
Equating Eqs. (5.119) and (5.120), we have
=0 k=2m#0
. 44 24
}kwock=m or Ck=_‘trzk2 k=2m+1
From Fig. 5-13(a) and Eq. (5.6) we have
1 .1, A
CO=?0];) x(l)d(=—2—
Substituting these values into Eq. (5.118), we obtain
A 24 =
() =5-—= ————— i+ Dot 5121
=77 ,,,Ew (2m +1)? ( )
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(b) In a similar fashion, differentiating Eq. (5.8), we obtain
x'(t) =Y kwy(b, cos kwyt —a, sin kwgyt) (5.122)
k=1
Equation (5.722) shows that the Fourier cosine coefficients of x'(+) equal nw,b, and that the
sine coefficients equal —nwqya,. Hence, from Eq. (5.112), replacing A by 2A/T,, we have

x'(t) = %mi;() 2m1+ 1 sin(2m + 1) wyt (5.123)
Equating Eqs. (5.122) and (5.123), we have
b, =0 a,=0 k=2m+#0
8A 44
—kw(,ak=m(—) or ak=—W k=2m+1

From Egs. (5.6) and (5.10) and Fig. 5-13(a) we have
ay I .7 A
—=Cy== 1)dt=—
2“7, I OLES
Substituting these values into Eq. (5.8), we get
A 44 =

x(1)y=——-— ——  cos(2m + 1 t 5.124
=5-7 ,,EO (2m + 1) ( o ( )

Consider the triangular wave x(r) shown in Fig. 5-14(a). Using the differentiation
technique, find the triangular Fourier series of x(¢).

From Fig. 5-14(a) the derivative x'(z) of the triangular wave x(t) is, as shown in
Fig. 5-14(b),

A o
X(t)=——=—+A Y 8(t—kT) (5.125)
TO k= —-x
Using Eq. (5.117), Eq. (5.125) becomes
* 24 21
(1) =Y, ——coskwyt wy = — (5.126)
k=1 T() T()
Equating Eqs. (5.126) and (5.122), we have
0, k+0 kwyb 24 b
=0, * = — = —
a, wyby, T, or k=

From Fig. 5-14(a) and Eq. (5.9a) we have
ay 1 T, A
2= dr==
2 Tofg x()dt ==

Thus, substituting these values into Eq. (5.8), we get

A A2 1 2
x(t)=—2-+;r- Z Zsinkwot w,,=T (5.127)
k=1 0
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x(1)

A
-To 0 To 2T, t
(@)
x'(0)
ABl - Ty)
1 I AB(1) A
-To 0 To 2T, T
-AIT,
)
Fig. 5-14

S.11. Find and sketch the magnitude spectra for the periodic square pulse train signal x(r)
shown in Fig. 5-15(a) for (a) d = T, /4, and (b) d = T, /8.

Using Eq. (5.102a), we have

1 .1, ‘ A a0
co=—| "x(t)e ket dt = — [ Ikwol gy
=T [ =) 7,
d
= i .1 e—/kwul = — - (1 _e‘/kwod)
Ty —jkwg o Tojkwg

= e ~ikwod /2( gikwnd /2 _ gikwd /2)
oo
N i sin(kwod/Z)e

= —jkwyd /2
T kwd 2 (5.128)

Note that ¢, = 0 whenever kwyd /2 = mm; that is,

m2m
nw0=T m=0,+1,+2,...
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x(1)
A
T 0 d T 2T IV
(a)
lc,|
x(1)
A
A T
=z l I |
1 lr,] 11, .
0d T ! 0 wy m [
d
b
lc,l
x(1}
A T

L
B 8
)

0d

~

~Y

€ Y

0

.JIIIIII i[lll[r: .

(©)
Fig. 5-15

(@) d=Ty/4kwyd/2=knd/Ty=km/4,

el 4
L‘k—'z-

sin(kw/4)
km/4

The magnitude spectrum for this case is shown in Fig. 5-15(5).
) d=T,/8,kwyd/2=knwd/Ty=kn/8,
A

|Ck|= by

8

sin(kw/8)
km/8

The magnitude spectrum for this case is shown in Fig. 5-15(c).
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If x(¢+) and x,(¢) are periodic signals with fundamental period 7, and their complex
Fourier series expressions are

2

oo
x(t)= X et W= 7

x(0)= T dehe T

k= —c k= -

show that the signal x(¢) =x(¢)x,(¢) is periodic with the same fundamental period 7,
and can be expressed as

E ik wot 2‘“’
Z c,(e’ 0 wy=—
k=—x w()
where ¢, is given by
= Y dpei-m (5.129)
m= —o
Now x(t+Ty) =x(t + Tox (e + Ty) = x ()x,(8) = x(¢)
Thus, x(¢) is periodic with fundamental period T,. Let
i ) 2m
x(t)= Y cefen wo =7~
k=—x 0
1 Ty/2 —jk
Then c t) e koot dt = x(t)x,(t) e ket d
SEA MO wa .
T /T(-lr//zz( Z dmejmmuz)xz(,) e ~Tkwot gy
0 m=—w
= Z [T fn;//zz ,(1) e itk mwt dt} Y dneiom
=— 0"~ m= -~
T,/2 _
since e = ?f UT /sz(t) e ket dy
(U ]
and the term in brackets is equal to e, _,,,.
Let x (1) and x,(¢) be the two periodic signals in Prob. 5.12. Show that
1 71,02
—T—f Tty x,(t)dt = Z dee_, (5.130)
0" -To/2 k= —-n

Equation (5.130) is known as Parseval’s relation for periodic signals.
From Prob. 5.12 and Eq. (5.129) we have

Z dmek—m

m=—w

1 .7,/2 ‘
€ = —f " x,(1)x,(t)e ket dr =
TO -Ty/2
Setting k = 0 in the above expression, we obtain

Z dme—m'—_ Z dke—k

m=—c k=~

1 .1,,2
— x () x,(t)dt=
) xnx()
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5.14. Verify Parseval’s identity (5.21) for the Fourier series, that is,

5.15.

@
Z ICkIZ
k= —o

1 2
T fTOIx(t)I dt =

If ()= Y ¢k
k=—o
*

w ® ®
then x*(t)=( Y ckef"‘““’) = Y creked = Y %, elked
= -

k=— k=—o

(5.131)

where * denotes the complex conjugate. Equation (5.131) indicates that if the Fourier
coefficients of x(¢) are c,, then the Fourier coefficients of x*(¢) are c*,. Setting x,(¢) = x(¢)
and x,(1) =x*(1) in Eq. (5.130), we have d, =c, and e, =c*, or (e_, =c}), and we obtain

] k-
— [ x()xr(1ydi= T epct (5.132)
To/-10/2 k= oo
Vo n2 2 -
or — [ x()Pdr = legl?
Tof—ro/z () kEm ,

(a) The periodic convolution f(¢)=x (1) ® x,(¢) was defined in Prob. 2.8. If d, and
e, are the complex Fourier coefficients of x,(¢) and x,(¢), respectively, then show that
the complex Fourier coefficients ¢, of f(t) are given by

c,=Tyd, e, (5.133)
where T, is the fundamental period common to x (1), x,(¢), and f(z).
(b) Find the complex exponential Fourier series of f(¢) defined in Prob. 2.8(c).

(a) From Eq. (2.70) (Prob. 2.8)

F(1) =x,(2) 8x,(1) =f07"xl(7)x2(:—f)d7

Let x(1)y= Y d ek ()= Y e ekeo
k= - k=—o
To - jkaolt —1)
Then = ["x(n)| L e dr
0 k= -
ad kwot Ty —jkwqor
= Y e 0[ x(r)e ke dr
k=~ 0
Since 4= — [ "oy (1) e~k dr
k TO o
we get

f(t)y= ¥ Tydpe e

k=—-»

(5.134)

which shows that the complex Fourier coefficients ¢, of f(¢) equal Tyd,e,.
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(b) In Prob. 2.8(c), x (1) =x,(¢t)=x(¢), as shown in Fig. 2-12, which is the same as Fig. 5-8
(Prob. 5.5). From Eq. (5.105) we have

n

0 k=2m, m+0

dy=e=75 dk:ek:{A/jkv k=2m+1

2
Thus, by Eq. (5.133) the complex Fourier coefficients ¢, of f(1) are

2
cq=Tydgey = T()T

e Tod B 0 k=2m,m#0
e Y T k=2m+1

Note that in Prob. 2.8(c), f(1)=x,(t) ®x,(¢), shown in Fig. 2-13(b), is proportional to
x(t), shown in Fig. 5-13(a). Thus, replacing 4 by A°T, /2 in the results from Prob. 5.9,
we get

_TA2 /0 k=2m,m=+0
Co= o7 UT —T, A%k k=2m+1

which are the same results obtained by using Eq. (5.133).

FOURIER TRANSFORM

5.16. (a) Verify the time-shifting property (5.50), that is,
x(t—t,) e X (w)

By definition (5.31)
Fla(t - 1)} = fm x(t—ty)e e de

By the change of variable =t —t,,, we obtain

Flx(t—1,)} fx x(7)e it dr

e”‘"’“/z x(r)e ' Tdr=e " X(w)
e
Hence,

x(t—1,) e X(w)

5.17. Verify the frequency-shifting property (5.51), that is,
x(t) e’ > X(w—w,)

By definition (5.31)

Fla(ryey= " x(1) e e dr

= 7 x(0) e e dt = X(w - wy)

CHAP. 5} FOURIER ANALYSIS OF TIME SIGNALS AND SYSTEMS 247

Hence,

x(t) el e X(o - w)

5.18. Verify the duality property (5.54), that is,
X(t) o 2rx(~w)

From the inverse Fourier transform definition (5.32), we have

fm X(w)e" dw = 2mx(1)

Changing ¢ to —t, we obtain
[ X(w)e 7 do=2mx(~1)
Now interchanging ¢ and w, we get

[ Xy e dt =2mx(-w)

Since FX(0)) = [ X(1) et

we conclude that

X(t) > 2mx(-w)

5.19. Find the Fourier transform of the rectangular pulse signal x(¢) [Fig. 5-16(a)] defined
by

1 |tl <
x(f)=Pa(l)={0 It:>z (5.135)
By definition (5.31)

X(w) =/* Pa(t)e”"‘”dt=fa eI dt

—a
1 ) . sin wa sin wa
= —(e/"—e ) =12 =2a
jo ) wa

x(t)

-~y

(@) (b
Fig. 5-16 Rectangular pulse and its Fourier transform.
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Hence, we obtain

sin wa sin wa
p(1) =2 =2a (5.136)
wa
The Fourier transform X(w) of x(¢) is sketched in Fig. 5-16(b).
5.20. Find the Fourier transform of the signal [Fig. 5-17(a)]
sin at
x(t) =
Tt
From Eq. (5.136) we have
sin wa
Po(1) 2
Now by the duality property (5.54), we have
sin at
—27p,(—w)
Dividing both sides by 27 (and by the linearity property), we obtain
sin at
P~ 0) =po(w) (5.137)

where p,(w) is defined by [see Eq. (5.135) and Fig. 5-17(b)]

1 lwl < a

Pl w) = {0

lw| > a

X(w)

ey

(@) (b)
Fig. 5-17 sin at/mt and its Fourier transform.

5.21. Find the Fourier transform of the signal [Fig. 5-18(a)]
x(t)=e" a>0
Signal x(7) can be rewritten as

—at
x(r)=e =€ 0
e t<0
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x(t) X(w)

0 t 0
Fig. 5-18 e~ and its Fourier transform.

ey

Then X(w) =f0 e"'e_j“"dt+/ e eI gy
= 0

I

0 (a—jo) = —(a+jop
[0 ewiondr g ety
—w 0

1 1 2a

a—jo a+jo a*+w?

Hence, we get

P (5.138)
> .
¢ a’+ w?
The Fourier transform X(w) of x(¢) is shown in Fig. 5-18(b).
5.22. Find the Fourier transform of the signal [Fig. 5-19(a)]
1
xX(t)= 5
()= =
From Eq. (5.138) we have
) 2a
¢ - a’+ w?
Now by the duality property (5.54) we have
2a
'az—+t—2 —2me 4wl = Qe alel
x(1) X(w)
Va2 la
~<—
0 . 0 o

Fig. 5-19 1/(a®+ t?) and its Fourier transform.
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Dividing both sides by 2a, we obtain

1 m —alw|
e (5.139)

The Fourier transform X(w) of x(¢) is shown in Fig. 5-19(b).

5.23. Find the Fourier transforms of the following signals:
(@) x(1)=1 (b) x(t) =/
(c) x(r)=e ot (d) x(1) =cos wyt
(e) x(1) = sin wyt
(a) By Eq. (5.43) we have
3(1) =1 (5.140)

Thus, by the duality property (5.54) we get
1 278(~w) =278(w) (5.141)
Figures 5-20(a) and (b) illustrate the relationships in Eqs. (5./40) and (5.141), respec-

tively.
(b) Applying the frequency-shifting property (5.51) to Eq. (5.141), we get

e’ 28 (w — w,) (5.142)
x(1) X(w)
30 1
-
0 ! 0 T)
(@)
x(1) X(w)
1 21d(w)
e
0 1 0 w
(b)
Fig. 5-20 (a) Unit impulse and its Fourier transform; (b) constant (dc) signal and its Fourier

transform.
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(¢) From Egq. (5.142) it follows that
e/ e 278 (w + wg) (5.143)
(d) From Euler’s formula we have
cos Wot = 1(e/0' +e770")
Thus, using Eqgs. (5.742) and (5.143) and the linearity property (5.49), we get
€08 wyt <> T[§{w — wy) +8(w + wy)] (5.144)

Figure 5-21 illustrates the relationship in Eq. (5.144).
(e) Similarly, we have

1 i .
sin wyt = z_j(e/wor — et
and again using Egs. (5.742) and (5.143), we get

Sin wyt < —jr[8(w —w,) — (@ + wy)] (5.145)

x(n) X(w)

WAL
U]

(a) )
Fig. 5-21 Cosine signal and its Fourier transform.

ey

5.24. Find the Fourier transform of a periodic signal x(¢) with period T,.
We express x(2) as

* ) 2m
x(t)= X cpetter Wy = =
k=-= TO

Taking the Fourier transform of both sides and using Eq. (5.142) and the linearity property
(5.49), we get

X(w) =27 ¥, c8(w-kwy) (5.146)

k= -

which indicates that the Fourier transform of a periodic signal consists of a sequence of
equidistant impulses located at the harmonic frequencies of the signal.
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5.25. Find the Fourier transform of the periodic impulse train [Fig. 5-22(a)]
ST(,(') = Z 6(’ —kT,)
k= —o
From Egq. (5.115) in Prob. 5.8, the complex exponential Fourier series of 61.n(r) is given by

| S 2w

S t) = — Jkawgt = —

WO=g B @ T,

Using Eq. (5.146), we get

2 k]
Flon()] = T:k; 5(w—kwy)

=Wy Z (o — kawy) =‘“05wu(“’)

k=—=

or i 5(t - kT,) > w, i 8w —kawy) (5.147)

k= —x k= —o

Thus, the Fourier transform of a unit impulse train is also a similar impulse train [Fig. 5-22(b)].

x(1) X(w)

7, 27, t

w, 20, @

(a) )
Fig. 5-22 Unit impulse train and its Fourier transform.

5.26. Show that

x(t)cos wyt — 1 X (0 —wy) + 31X (@ + wy) (5.148)
and x(1)sin wot > —j [ 1X (@ — @) — X (0 + wy)] (5.149)
Equation (5.148) is known as the modulation theorem.

From Euler’s formula we have
COS Wyt = (e + g iwot)
Then by the frequency-shifting property (5.57) and the linearity property (5.49), we obtain
Fx(t)cos wyt] = F[1x(1) e’ + Lx(t) e /ov]
= %X(‘“ ~wy) + 31X (@ + @)

Hence,

x(t)cos wyt e 21X (w —wy) + 31X (w + wy)
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In a similar manner we have

1 ) 1 )
and Fx(t)sinwgt] = F z—jx(t)e”"“'—Tx(t)e""“"'
J

Hence,

x(t)sin wot e —j[1X (@ — wg) — 1X (@ + wy)]

1 .
sin wgt = z—j(e“"o' —e /o)

1

= 5K (0w -

1
2—jX(a)+¢uo)

5.27. The Fourier transform of a signal x(¢) is given by [Fig. 5-23(a)]
X(w) = %pa(w - (1)0) + %pa(w + (.()0)

Find and sketch x(¢).

From Eq. (5.137) and the modulation theorem (5.148) it follows that

sin at
x(t) = €OS wy!
which is sketched in Fig. 5-23(b).
X(w)
‘A
I 1 I | I 1 I
~wy 4] wy-a w; wyta

(b)
Fig. 5-23

253
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5.28.

5.29.
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Verify the differentiation property (5.55), that is,
de(t)
o —joX(w)
From Eq. (5.32) the inverse Fourier transform of X(w) is
1 o )
x(t) = —2—7;f<mX(w)e"‘”dw (5.150)
Then
d.xd(tl) = —21; % [f:uX( w)ej“"dw]
) R a
= -Z;f‘wX(w)g;(e"‘") dw
1 = )
= E[_mij(w)e"‘” dw (5.151)

Comparing Eq. (5.151) with Eq. (5.150), we conclude that dx(¢)/dt is the inverse Fourier
transform of jwX(w). Thus,

—_— jwX
e X (w)

Find the Fourier transform of the signum function, sgn(¢) (Fig. 5-24), which is defined
as

1 t>0

sgn(t)={ ~1 (<0 (5.152)

The signum function, sgn(¢), can be expressed as
sgn(t) =2u(t) -1
Using Eq. (1.30), we have

d
Esgn(r) =26(1)

sgn(t)

Fig. 5-24 Signum function.
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Let
sgn(t) — X(w)
Then applying the differentiation property (5.55), we have
2
joX(0)=F[28(1)] =2 > X () = 7o
w
Hence,
(5.153)

2
sgn(t)f—']—_(;

Note that sgn(¢) is an odd function, and therefore its Fourier transform is a pure imaginary
function of @ (Prob. 5.41).

Verify Eq. (5.48), that is,

u(t)<—>1r6(w)+jlw (5.154)

As shown in Fig. 5-25, u(t) can be expressed as
u(t) =3+ 3sen(r)

Note that } is the even component of u(t) and ; sgn(¢) is the odd component of u(t). Thus, by
Eqs. (5.141) and (5.153) and the linearity property (5.49) we obtain

u(t) = 7é(w) +}Lw

u(@) %sgn(r)

5.31.

Fig. 5-25 Unit step function and its even and odd components.

Prove the time convolution theorem (5.58), that is,
xi(8)* x,(1) &= X (@) Xy(w)
By definitions (2.6) and (5.31), we have
Flanysx(n] = [ [[m xl(T)xz(t—T)d‘r]e_j""dt

Changing the order of integration gives

Fxi(t)*x,5(0)] =/ijl(r)[/imx2(t —T)e‘j‘”'dt]dr
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By the time-shifting property (5.50)
et = m)e ot dt = Xy(w)e
Thus, we have

Fx(r)» xy(0)] =f:xx(‘f)Xz(w)e""‘"d~r

- [ e xg) = xi(0) xot)
Hence,

x,(8)* x5(1) > X (@) Xy(0)

Using the time convolution theorem (5.58), find the inverse Fourier transform of
X(w)=1/(a +jw).
From Eq. (5.45) we have

e u(t) — (5.155)

a+jo

Now

X(w) =

1 1
a+jolla+je

(a+jw)
Thus, by the time convolution theorem (5.58) we have

x(t)=e " *u(t)y*e "u(t)

= fw e u(t)e " Nu(t—1)dr

t
=e ['dr=te™"u(1)
0
Hence,

te™u(t) e (5.156)

(a+jow)

5.33. Verify the integration property (5.57), that is,

1
f‘ x(7)dr - 7X(0)é(w) + ]_—X(w)
® ()
From Eq. (2.60) we have

fvlmx(‘r)d7'=x(t)*u(l)
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Thus, by the time convolution theorem (5.58) and Eq. (5.154) we obtain

1 1
Flx(t)*u(1)] =X(w)[‘n’5(a)) + ]—l;] =7X(w)é(w) + j:X(a))

1
=7X(0)8(w) + —X(w)
jo
since X(w)é(w) = X(0)6(w) by Eq. (1.25). Thus,

' 1
[f_mx(f) d‘r] —7X(0)8(w) + j—wX(a))

Using the integration property (5.57) and Eq. (1.31), find the Fourier transform of
u(t).

From Eq. (1.31) we have

u(t)=[" 8(r) dr

Now from Eq. (5.140) we have
8(t)e—1
Setting x(7) = 8(7) in Eq. (5.57), we have

x(1)=8(1) > X(w) =1 and X(0)=1

and

t 1
u(t) =f_w5(‘r)df<—>'n'5(w) t o

Prove the frequency convolution theorem (5.59), that is,

1
xy(1)xy(t) & EXx(w)* 2(w@)

By definitions (5.31) and (5.32) we have

0] = [ 1
=f_m

1 = -
= — A —j{w—AN
— [ _x( )[/_wxz(t)e dt]dA

1 = _
E/_MXI(A)e”“ dz\]xz(t)e"“” dr

1 = 1

=3 X((A)X(w =) dr = —X (@) * X,(0)
T/ e 2

Hence,

1
x(£)x(1) = S—Xi(w) * Xy(w)
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5.36. Using the frequency convolution theorem (5.59), derive the modulation theorem
(5.148).

From Eq. (5.144) we have
cos wyt = md(w —wy) + mé(w + wy)

By the frequency convolution theorem (5.59) we have
1
x(t)cos wyl «— 2—X(w) *[m8(w — w) + T8 (@ + wy)]
s
=%X(w—w0) + %X(w-&-wo)

The last equality follows from Eq. (2.59).

5.37. Verify Parseval’s relation (5.63), that is,
© 1 ]
J axndi= = [ X)X (-w0)dw
From the frequency convolution theorem (5.59) we have
1 =
Fla(nxa(D] =5 [ XN Xy(w = 1) dA
that is,
w ) 1
[ [x(nx0)]e™ dt= o= [ X,(A) Xy(@ = 1) dA
—w 2mJ
Setting w = 0, we get
0 1 -]
[ xxa(ydi= o= [ X,(A) Xy(~2) dA
By changing the dummy variable of integration, we obtain

o 1 o
[ x(Ox(ydi= o= [ X(@)Xs(~0) do

5.38. Prove Parseval’s identity [Eq. (5.64)] or Parseval’s theorem for the Fourier transform,
that is,

=] 1 o
2 2
f_Jx(t)l de = _2wf_m(X(‘")| dw
By definition (5.31) we have

Flar(n)) = [ x* (e dr

- [fmwx(t)ej“’dt]* =X*(-w)

where * denotes the complex conjugate. Thus,
(1) > X*(~w) (5.157)
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Setting x,(t) =x(¢) and x,(1) =x*(¢) in Parseval’s relation (5.63), we get

L:x(t)x*(t) dt = zl;f_:X(w)X*(w) do

or

(= = " 1 x() | do
o 277/ %

Show that Eq. (5.61a), that is,
X*(0)=X(-w)
is the necessary and sufficient condition for x(¢) to be real.
By definition (5.31)
X(w) = [ x(1)e e dr
If x(¢) is real, then x*(¢) =x(¢) and
-] * oo
X*(w)= [/ x(t)e"""‘”dl] =f x*(t)e™ dt
= " x()e™ di = X(-w)

Thus, X*(w)=X(—w) is the necessary condition for x(¢) to be real. Next assume that
X*(w)=X(—w). From the inverse Fourier transform definition (5.32)

1 e
x()=—]| X(w)e'dw
27/

Then
X*(1) = if“’ X(w)e do *=lf’° X*(0)e ™ do
o 27 ) o

2/ T

1 o 1 o0
I _ —jwt - At —
f_mX( w)e ' do 217[_,’“)‘)8’ dA =x(1)

- 2
which indicates that x(¢) is real. Thus, we conclude that
X*(0) =X(-w)

is the necessary and sufficient condition for x(¢) to be real.

Find the Fourier transforms of the following signals:

(@) x(1)=u(—1)
(b) x(t)=e*u(—1),a>0
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From Eq. (5.53) we have
x(—t) —X(-w)
Thus, if x(¢) is real, then by Eq. (5.6/a) we have
x(—1) > X(-0)=X*(w) (5.158)
(a) From Eq. (5.154)

1
u(t)y e mé(w) + —
jo
Thus, by Eq. (5.158) we obtain

u(—t)*—*'trb‘(w)~71(; (5.159)

(b) From Eq. (5.155)
1
a+jw

e"u(t)
Thus, by Eq. (5.158) we get

eu(—t) e

(5.160)

a—jw

Consider a real signal x(¢) and let
X(w) = F[x(1)] = A(w) +jB(w)
and
x(t) =x,(1) +x,(1)

where x,(¢) and x,(¢) are the even and odd components of x(t), respectively. Show
that

x(1) —A(w)
x,(t) = JjB(w)
From Eqgs. (1.5) and (1.6) we have
x (1) = 3[x(1) +x(~1)]
x,(1) = 4[x(1) —x(~1)]
Now if x(t) is real, then by Eq. (5.158) we have
x(1) > X(w) = A(w) +B(w)
x(=1) > X(~w) = X*(w) =A(w) - B(w)

Thus, we conclude that

(5.161a)
(5.161b)

x (1) e 1X(0) + 1X*(0) =A(0)
x,(t) = 3X(w) = 3X*(0) = jB(w)

Equations (5.161a) and (5.161b) show that the Fourier transform of a real even signal is a real
function of w, and that of a real odd signal is an imaginary function of w, respectively.
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5.42. Using Eqgs. (5.161a) and (5.155), find the Fourier transform of e~ %! (a > 0).
From Eq. (5.155) we have
a w

a+jo T a2+ o2 Ja2+w2

e "u(t) e

By Eq. (1.5) the even component of e ~*u(t) is given by

te7u(t) + de*u( —t) = Je =
Thus, by Eq. (5.161a) we have

1 Mo R 1 a
fa— a e = —
Ze - a+jow a? + w?

or
2a

a’ + w?

e M e

which is the same result obtained in Prob. 5.21 [Eq. (5.138)].

5.43. Find the Fourier transform of a gaussian pulse signal
x(t)y=e " a>0
By definition (5.31)

X() =[_°° et ivt gy (5.162)

Taking the derivative of both sides of Eq. (5.162) with respect to w, we have
dX(w)

do
Now, using the integration by parts formula

/ﬁudu =uv|? - fﬁvdu

a a

. (® 2
= —]f te™ e dt
—w

and letting

u=e ¥  and dv=te " dt
we have
) 1
du= —jwe™ " dt and r=——e o’
2a
and
L —atl, —jwl g, _ __1_ —ar?, —jwt _ i C —atl, —jt
te e dt = e e J e e dt
Cw 2a e 2a 7 _«
w

= —iz—fm e eI dy
al_«
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since a > 0. Thus, we get

Solving the above separable differential equation for X(w), we obtain
X(w)=Ae /4 (5.163)

where A is an arbitrary constant. To evaluate 4 we proceed as follows. Setting w =0 in
Eq. (5.162) and by a change of variable, we have
2

X(0) =4 =f_w e dt = 2f:e"”zdt = Wf:e*zd,\ -

us
a

Substituting this value of A4 into Eq. (5.7163), we get

X(w) = @e"“’z/“” (5.164)

m
e"‘"z,a>0H]/;e-wZ/4" (5.165)

Note that the Fourier transform of a gaussian pulse signal is also a gaussian pulse in the
frequency domain. Figure 5-26 shows the relationship in Eq. (5.165).

Hence, we have

X(w)

x(8)

———T

[
-

0 t 0

1 4

Fig. 5-26 Gaussian pulse and its Fourier transform.

FREQUENCY RESPONSE

5.44. Using the Fourier transform, redo Prob. 2.25.
The system is described by
y(t) +2y(t) =x(t) +x'(1)
Taking the Fourier transforms of the above equation, we get
jo¥(0) +2¥(w) = X(0) +joX(w)
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or
(Jo +2)Y(w) = (1 +jo) X(w)
Hence, by Eq. (5.67) the frequency response H{(w) is

Y(w) l+jo 2+jw-—1 1
H(w) = = — = . =1- .
X(w) 2+4jw 2+ jw 2+jw

Taking the inverse Fourier transform of H(w), the impulse response h(t) is
h(t)=8(t) —e ?u(t)

Note that the procedure is identical to that of the Laplace transform method with s replaced
by jw (Prob. 3.29).

Consider a continuous-time LTI system described by

dy(1)
7+2y(t)=x(r) (5166)

Using the Fourier transform, find the output y(¢r) to each of the following input
signals:

(a) x(1)=e "u(r)
(b) x(1)=ult)

(a) Taking the Fourier transforms of Eq. (5.166), we have

JoY(w) +2Y(w) = X(w)

Hence,
Y(w) 1
H = =
(@)= X(@) ~2+/w
From Eq. (5.155)
X(@) =T e
and
Y X H ! ! !
(@) =X(w)H(w) = (1+jw)(2+jw) B 1+jw - 2+jw
Therefore,

y(1) = (e~ —eu(1)
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(b) From Eq. (5.154)

1
X(w) =md(w) + -

[CHAP. 5

Thus, by Eq. (5.66) and using the partial-fraction expansion technique, we have

1
2+jw

Jo

1
Y(w)=X(w)H(w)= [11'6(0)) + —

1
+
24jo  jo(2+jw)

=7wé(w)

T 11 1 1

0, 117 1 1
= — +—— —_——
AR R v

where we used the fact that f(w)8(w) = f(0)8(w) [Eq. (1.25)]. Thus,

y(1) = zu(t) - ze”u(t) = 3(1 —e > )u(1)

We observe that the Laplace transform method is easier in this case because of the

Fourier transform of u(?).

5.46. Consider the LTI system in Prob. 5.45. If the input x(¢) is the periodic square
waveform shown in Fig. 5-27, find the amplitude of the first and third harmonics in the

output y(2).

Note that x(¢) is the same x(¢) shown in Fig. 5-8 [Prob. 5.5]. Thus, setting A = 10, T, =2,

and w,=2m/T,=m in Eq. (5.106), we have

0 = 1
=5+ —
() =5+-— L 5

m= -

/@m+ lymt

Next, from Prob. 5.45

1
H(w) = 2470 — H(kwy) =H(km) = -

x(1)
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5.47.

Thus, by Eq. (5.74) we obtain

sHO) + = ¥
= + —
y(O) =SHO)+ == L 30

H[(2m + 1)m]e/?m+bm

5 10 2 1
-y — j2m+ e 5.167
2w, = Cmr )[2+j2m+ A © (5.167)

y(t)= ¥ dyeter

k=~
The harmonic form of y(¢) is given by [Eq. (5.15)]
y(t) =Dy+ ¥ D, cos(kwyt — ¢)
k=1

where D, is the amplitude of the kth harmonic component of y(¢). By Eqs. (5.11) and (5.16),
D, and d, are related by

D, =2ld,l (5.168)
Thus, from Eq. (5.167), with m =0, we obtain

D, =2ld,| =2

10 1.71
jm (2 +jm) s

With m = 1, we obtain

D,=2ldy| =2 =022

Jm(3)(2 +j3m)

The most widely used graphical representation of the frequency response H(w) is the
Bode plot in which the quantities 20log,o|H(w)| and 6,,(w) are plotted versus , with
o plotted on a logarithmic scale. The quantity 20log /H(w)| is referred to as the
magnitude expressed in decibels (dB), denoted by [H(w)l,g. Sketch the Bode plots for
the following frequency responses:

Jjw
(@) Hw)=1+ —

10
1
(b) H(w)= Tw/lo_(j
(© Hw)= 104(1 +jw)
=00+ jw)(100 +jw)
(a) IH(w)ldB=20|0g,0|H(w)|=2010gm1+j;0—0'

For w <« 10,

w
fH((u)IdB=2010gmll+jﬁ‘—>2010gml=0 as w —0
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For w > 10,

w @
|H(w)|d3=2010gm1+jﬁ'—»2010gm(T6) asw—

On a log frequency scale, 20log,,(w /10) is a straight line with a slope of 20 dB/decade
(a decade is a 10-to-1 change in frequency). This straight line intersects the 0-dB axis at
w = 10 [Fig. 5-28(a)]. (This value of w is called the corner frequency.) At the corner
frequency w = 10

H(10)]45 = 20log 41 +j1] = 20log,,v2 = 3 dB
The plot of |[H(w)|yp is sketched in Fig. 5-28(a). Next,

w
0,(w)=tan"' —

10
Then
0,,(w)=tan“l—a;-——>0 as @ — 0
w ™
GH(a))=tan"T6—>5 as w —

At @ =10, 6,(10)=tan"'1=7/4 radian (rad). The plot of 8,(w) is sketched in
Fig. 5-28(b). Note that the dotted lines represent the straight-line approximation of the
Bode plots.

’= —20log |1 +J

)
100 ’

1
=20 -
|H(w)|gp=201l0g,q 1+jw,/100

For w < 100,

as w —0

w
| H(w) |4 = —20log |1 +jﬁ‘ — —20log,,1=0

For o > 100,

as w — x

w w
| H(@) gy = ~2010g,0|1 + 705 | — = 20108.0( 105

On a log frequency scale —20log,(w/100) is a straight line with a slope of
—20 dB/decade. This straight line intersects the 0-dB axis at the corner frequency
o = 100 [Fig. 5-29(a)]. At the corner frequency w = 100

H(100)[4p = —20log,,v2 = —3 dB
The plot of |H(w)|yg is sketched in Fig. 5-29(a). Next

0y (w) = —tan™! 100
Then
-1 @
0,(w) = —tan 17.—6-—>0 as w —0
1 w m
0,(w) = —tan 0" 3 as w —

At =100, 6,(100)= —tan~'1= —7/4 rad. The plot of 6,(w) is sketched in
Fig. 5-29(b).
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(c) First, we rewrite H(w) in standard form as
10(1 +jw
H(w) = - ( )
(1+jw/10)(1 +jw/100)

Then
|H(@)|q =20log o 10 + 201l0g,ol1 + jo!

w

1 +jm.
Note that there are three corner frequencies, w =1, w = 10, and w = 100. At corner
frequency w = 1

H(1)|4p = 20 + 20l0g,, V2 — 2010g,, V1.0l — 20log,,V1.0001 =23 dB
At corner frequency w = 10

H(10)|4p = 20 + 201log,, V101 — 20log,,v2 — 20log,,V1.01 =~ 37 dB

At corner frequency w = 100

H(100) |45 = 20 + 201og,,v10,001 — 20log,, V101 —20log,;v2 = 37 dB

The Bode amplitude plot is sketched in Fig. 5-30(a). Each term contributing to the
overall amplitude is also indicated. Next,

w
—20log,o|1 +j1—0‘— 201log,q

) )
Oy (o) =tan“w—tan"ﬁ—tan‘11—06
Then
0(w)y=—0-0-0=0 as w —0
T T ow T
BH(“’)=—’—2“E—5=—5 as w — ®
and

0,(1) =tan"'(1) — tan"'(0.1) — tan"!(0.01) = 0.676 rad
6,,(10) = tan~!(10) — tan~!(1) ~ tan~'(0.1) = 0.586 rad
6,;(100) = tan~'(100) — tan~'(10) — tan~'(1) = —0.696 rad
The plot of 8,(w) is sketched in Fig. 5-30(b).

5.48. An ideal (—/2) radian (or —90°) phase shifter (Fig. 5-31) is defined by the frequency

response

_ Je #m/D w>0
H(w)= {ef<"/2> <0 (5.169)

(a) Find the impulse response A(t) of this phase shifter.
(b) Find the output y(t) of this phase shifter due to an arbitrary input x(t¢).
(¢) Find the output y(¢z) when x(t) = cos w,!.
(a) Since e™/?= —j and ¢’"/? = j, H(w) can be rewritten as
H(w) = —jsgn(w) (5.170)
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x(1) ‘ pﬁa;f;:‘;ge, Y0=%(1)
Fig. 5-31 - /2 rad phase shifter.
where
sgn(w)={_} Zzg (5.171)
Now from Eq. (5.153)
sgn(t) e j—w
and by the duality property (5.54) we have
P —27sgn(—w) = —2msgn(w)
or
—;H—jsgn(w) (5.172)

since sgn(w) is an odd function of w. Thus, the impulse response A(t) is given by

1
h(t) = F'[H(w)] = F'[-jsen(w)] = —

wt

(5.173)

(b) By Eq. (2.6)

1 1 = T
y(0) =x(0)r —=— [ (") 4y (5.174)

—x =T

The signal y(t) defined by Eq. (5.174) is called the Hilbert transform of x(¢) and is
usually denoted by £(¢).

(¢) From Egq. (5.144)
cos wyt <= m[8(® — wy) + 8(w + wp)]
Then
Y(w) =X(w)H(w)=7[8(w—wy) +8(w +w0)][—jsgn(w)]

—Jm sgn(wg)8(w ~ w,) — jm sgn( ~w,)8(w + wy)

—jmé(w —wy) +jmé(w + wy)
since sgn(w,) = 1 and sgn(—w,) = —1. Thus, from Eq. (5.145) we get
y(t) =sin wyt

Note that cos(wyt — m/2) = sin w,!.

5.49. Consider a causal continuous-time LTI system with frequency response
H(w)=A(w) +jB(w)

Show that the impulse response A(¢) of the system can be obtained in terms of A(w)
or B(w) alone.
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Since the system is causal, by definition
h(t)=0 t<0
Accordingly,
h(-t)=0 t>0
Let
h(1) =h(1) +h,(1)

where h,(t) and h(¢) are the even and odd components of A(¢), respectively. Then from
Egs. (1.5) and (1.6) we can write

h(t) =2h,(1) = 2h (1) (5.175)
From Egs. (5.61b) and (5.61c) we have
h(t) —A(w) and k(1) —jB(w)
Thus, by Eq. (5.175)
h(t) =2h,(1) =25 [ A(w)] >0 (5.176a)
h(t) =2k, (1) = 25 [iB(w)] (>0 (5.176b)

Equations (5.176a) and (5.176b) indicate that h(t) can be obtained in terms of A(w) or B(w)
alone.

Consider a causal continuous-time LTI system with frequency response
H(w)=A(w) +jB(w)

If the impulse response A(r) of the system contains no impulses at the origin, then
show that 4(w) and B(w) satisfy the following equations:

A(w) = %fi f(_)‘i dA (5.177a)
1 = A(A)
B(w)= — — dA (5.177b)

As in Prob. 5.49, let
h(1) =h (1) +hy(1)
Since h(t) is causal, that is, A(t) =0 for ¢ < 0, we have
h(t) = —h,(t) <0
Also from Eq. (5.175) we have

h(t)=h,(t) t>0
Thus, using Eq. (5.152), we can write
h(t)=h,(t)sgn(t) (5.178a)
ho(t) =h(t)sen(t) (5.178b)

Now, from Egs. (5.61b), (5.61c), and (5.153) we have

2
h() = A(w) (1) iB(@)  sea(r)
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Thus, by the frequency convolution theorem (5.59) we obtain

A(0) = B0} — = 2By ==~ [ D g
2 Jo T w T/ oxw—A
and
1 2 1 1
fB(w)=;A(w)*j—a;=—i;A(w)*;
or
1 1 1 = A(A)
B(w)=—;A(w)*;=—;/Axw‘Ad/\

Note that A(w) is the Hilbert transform of B(w) [Eq. (5./74)] and that B(w) is the negative of
the Hilbert transform of A(w).

5.51. The real part of the frequency response H(w) of a causal LTI system is known to be
m8(w). Find the frequency response H(w) and the impulse function A(t) of the
system.

Let
H(w) =A(w) +jB(w)
Using Eq. (5.177b), with A(w) = m8(w), we obtain
1 = 78(A) - 1 1
B(w)= - — A= - ——dA= - —
(w) et RO e -
Hence,
1 1
H(w)=78(w) —j—=mé(w) + —
® jw
and by Eq. (5.154)
h(t) = u(t)
FILTERING
5.52. Consider an ideal low-pass filter with frequency response

1 lo| < w,

H(w)= 0 lw] > w,

The input to this filter is

(a) Find the output y(¢) for a < w,.
(p) Find the output y(¢) for a > w,.
(¢) In which case does the output suffer distortion?
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(a) From Eq. (5.137) (Prob. 5.20) we have

lw| <a
0 lw| > a

) =P, (w) =

Then when a <w,, we have
Y(w)=X(w)H(w)=X(w)
Thus,

sin at

y(1) =x(1) =

(b) When a > w,, we have
Y(w)=X(w)H(w) =H(w)
Thus,

smw ¢

y(t) =h(t) =

(¢) In case (a), that is, when w, >a, y(t)=x(¢) and the filter does not produce any
distortion. In case (b), that is, when o, <a, y(¢) = h(¢) and the filter produces distortion.

Consider an ideal low-pass filter with frequency response
1 lw) < 47
H =
(@) {0 lw| > 47

The input to this filter is the periodic square wave shown in Fig. 5-27. Find the output
y(1).
Setting 4 =10, Ty =2, and w,=27/T, = in Eq. (5.107) (Prob. 5.5), we get
20 1 1
x(t)=5+ —-(sinﬂ't + = sin3wt + —sinSwt + - - -
T 3 5

Since the cutoff frequency w, of the filter is 4 rad, the filter passes all harmonic components
of x(t) whose angular frequencies are less than 47 rad and rejects all harmonic components of
x(t) whose angular frequencies are greater than 47 rad. Therefore,

20 20
y(t) =5+ —sinmt + — sin 3wt
T 3

Consider an ideal low-pass filter with frequency response

H(w) _ lwl <w,
0 lw} > w,
The input to this filter is
x(t)=e"*u(t)
Find the value of w, such that this filter passes exactly one-half of the normalized
energy of the input signal x(z).
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From Egq. (5.155)

X =
(@) 2+jw
Then
1
- lwl| <o,
Y(w)=X(w)H(w)={ 2+jo
0 lwl > w,
The normalized energy of x(t) is
-] oc ]
— 2 — —41 - _
E,—f_mlx(t)l dt j(') e =
Using Parseval’s identity (5.64), the normalized energy of y(f) is
3 1 © 1 w, dw
2 2 1
E, =/_xly(t)| di=5=[ V()] do= gf_w(—‘, —
1 w 1 1
[ “—t 1 Lo _F =~
nfo +o? Mmooy TR
from which we obtain
w, T
7=tanz=l and w.=2rad/s

The equivalent bandwidth of a filter with frequency response H(w) is defined by

f |H ()]’ do (5.179)

Wea =
I H(w) lmax
where |H(w)l,,,, denotes the maximum value of the magnitude spectrum. Consider the
low-pass RC filter shown in Fig. 5-6(a).
(a) Find its 3-dB bandwidth W, 4.
(b) Find its equivalent bandwidth W,
(a) From Eq. (5.9]) the frequency response H(w) of the RC filter is given by
1

H(w) = 1+j(w/wy)

1 +jwRC ~
where w,=1/RC. Now

IH(w)I [1+(w/w0)2]1/2
The amplitude spectrum |H(w)| is plotted in Fig. 5-6(b). When w=wy,=1/RC,
|[H(wy)l = 1/v2 . Thus, the 3-dB bandwidth of the RC filter is given by
1
RC

Wigp=wo=
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(b) From Fig. 5-6(b) we see that [H(0)| =1 is the maximum of the magnitude spectrum.
Rewriting H(w) as
1 1 1
" 1+jwRC _ RC 1/RC +jw
and using Eq. (5.179), the equivalent bandwidth of the RC filter is given by (Fig. 5-32)
1 ® dw 1 g T

W. = = -
“ (RC)zfo(l/RC)zwz (RC)? 2/RC  2RC

H(w)

4 H)2

ey

eq

Fig. 5-32 Filter bandwidth.

5.56. The risetime ¢, of the low-pass RC filter in Fig. 5-6(a) is defined as the time required
for a unit step response to go from 10 to 90 percent of its final value. Show that

0.35

- f3 dB
where f; 45 = Wy /27 =1/27RC is the 3-dB bandwidth (in hertz) of the filter.

From the frequency response H(w) of the RC filter, the impulse response is

t

1 .
h(t) = R—Ce"/Rcu(f)

Then, from Eq. (2.12) the unit step response s(¢) is found to be

t

s(t) =f0’h(1)df= A %e"/’*cdr= (1—e"RYu(r)
which is sketched in Fig. 5-33. By definition of the risetime
tr=t2—tl
where
s(t)=1-e"/RC=01 e 1/RC=09
s(t,)=1-e 2/RC=09— ¢ 2/RC =01

Dividing the first equation by the second equation on the right-hand side, we obtain
elta=/RC _ g
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Fig. 5-33
and

5.57.

2.197 0.35

2mf348 - fiam

which indicates the inverse relationship between bandwidth and risetime.

t,=t,—t;=RCIn(9) =2.197RC =

Another definition of bandwidth for a signal x(¢) is the 90 percent energy containment
bandwidth W, defined by
1 Weo 2 1 Weo 2
Z?f_ Ww; X(w)|’ do = ;jo | X(0))* dw = 0.9E, (5.180)

where E, is the normalized energy content of signal x(z). Find the W, for the
following signals:

(a) x(t)=e"u(t),a>0

sin at
b) x(1)=
!

(a) From Eq. (5.155)

x(t)=e"u(t) > X(w) = atje

From Eq. (1.14)
o = 1
E = ) dt=[edr=—
= [ x)Fdi= [ >
Now, by Eq. (5.180)

1 Woo 2 1 Wy
— X do = —
— [ 1) dw Trjo

= — tan =09—
a*+w® am 2a

do 1 _,(W%) 1
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from which we get
W,
tan"(—%) =0.457
a
Thus,
Wy =atan(0.457) = 6.31a rad/s
(b) From Eq. (5.137)
B sin at _ 1 lw) < a
x(1) = — HX(w)—p,,(w)—{O o
Using Parseval’s identity (5.64), we have
I = 2 1 = , 1 a
E, = ﬁf4|X(w)| dt = ;fo | X(w)) dw = ;[0 dw =~
Then, by Eq. (5.180)
1 i W, a
— [" 1 X(@) dw = = [ dw = —2 =09
70 -0 ki ™
from which we get
Wy =0.9a rad/s
Note that the absolute bandwidth of x(¢) is a (radians /second).
5.58. Let x(1) be a real-valued band-limited signal specified by [Fig. 5-34(b)]
X(w)=0 lw] > w,y
Let x () be defined by
x(1)=x(1)3, (1) =x(1) L 8(t - kT,) (5.181)
k=—x

(a)
(b)

(a)

Sketch x (1) for T, <w/w,, and for T, > 7 /w,,.

Find and sketch the Fourier spectrum X(w) of x(¢) for T, <w/w, and for
T,>m7/wy.

Using Eq. (1.26), we have

x,(1) =x(8)8;(1) =x(1) i 8(1 —KT))

k=—
= Y x(1)8(t—kT,)= Y x(KT.)8(¢—kT,) (5.182)
k= - k=-x
The sampled signal x (1) is sketched in Fig. 5-34(c) for T, < 7 /w,,, and in Fig. 5-34(/) for

T,>7/wy.
The signal x(t) is called the ideal sampled signal, T, is referred to as the sampling
interval (or period), and f, = 1/T, is referred to as the sampling rate (or frequency).
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-7

5

(©)

X{1)

-
-
Pl

PO )

X(w)

-
‘\ //

\\ /,f
T, 0

AT 71~
N
\
AY
. | 1\,
2T 4 -y “wy

T, 0 wyy wg @
(e) )
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Fig. 5-34 Ideal sampling.
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(b) From Eq. (5./147) (Prob. 5.25) we have
b —w, T do—ke) w7
Let
x(t) = X (w)
Then, according to the frequency convolution theorem (5.59), we have

] o
Xs(w)=9’[X(l)5r,(f)]=§ X(w)rw, ¥ 8(w-ko,)

k= -

1 x
=7 Y X(w)*xd(w-kw,)

s k= -
Using Eq. (1.26), we obtain

1 x
X(0)=7 L X(w-ke,)

S k=~

(5.183)

which shows that X (w) consists of periodically repeated replicas of X(w) centered about
kw, for all k. The Fourier spectrum X (w) is shown in Fig. 5-34(f) for T, < m/w,, (or
w;>2wy,), and in Fig. 5-34(j) for T, > 7 /w,, (or w, <2w,), where o, =27/T,. It is
seen that no overlap of the replicas X(w — kw,) occurs in X,(w) for w, > 2w,, and that
overlap of the spectral replicas is produced for w; <2w,,. This effect is known as
aliasing.

5.59. Let x(1) be a real-valued band-limited signal specified by

X(w)=0
Show that x(¢) can be expressed as

* sin w,, (t — kT,)
x(n)y= X x(kﬂ)m

|w| > wy

(5.184)
where T, = 7 /w,,.
Let
x(t) = X(w)
x (1) =x(1)87(1) > X (w)
From Eq. (5.183) we have
[X(0)= )L X(w-kw)

k=-m

(5.185)

Then, under the following two conditions,

T
(1) X(w)=0,lol>wy and (2) T,=—
Wy

we see from Eq. (5.185) that

X(w) = le:(w) lw] <y, (5.186)

M
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Next, taking the Fourier transform of Eq. (5.182), we have

o

X, (w)= Y, x(kT,)e 7T (5.187)
k= —x
Substituting Eq. (5.187) into Eq. (5.186), we obtain
T ad )
X(w)=-— ¥ x(kT,)e T lwl < wpy (5.188)

DM k= -

Taking the inverse Fourier transform of Eq. (5.188), we get
L " x(w)erd
t) = ©
x()= 5= [ X(w)e™ do

1 )y

=-— Y x(KT)e“" T de
2wy,

—Wpk=—c

o

1 oy
Y x(kT)—— [ e T dg

P 2wp 7 -0y,
* sinwy, (¢ —kT,)
= kT ) —M s/
R Ty

From Probs. 5.58 and 5.59 we conclude that a band-limited signal which has no frequency
components higher that f,, hertz can be recovered completely from a set of samples taken at
the rate of f, (= 2f,,) samples per second. This is known as the uniform sampling theorem for
low-pass signals. We refer to T,=m/w,=1/2f,, (wy=27f,) as the Nyquist sampling
interval and f,=1/T,=2f,, as the Nyquist sampling rate.

Consider the system shown in Fig. 5-35(a). The frequency response H(w) of the ideal
low-pass filter is given by [Fig. 5-35(b)]

T lw] < @
H = T = 5 c
(w) spmc(w) O le >wC

Show that if w, = w,/2, then for any choice of 7,,
y(mT,) =x(mT,) m=0,+1,+2,...

H(w)

x,(D b40]
H(w)

£y

*
by =% 8- kT) -w, 0 W,
k=%

(a) (b)
Fig. 5-35
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From Eq. (5.137) the impulse response A(t) of the ideal low-pass filter is given by

sinw.t T,w, sinw_.t
h(t):T;_ [4 — 5 c c

Tt ™ w.t

(5.189)

From Eq. (5.182) we have

©

x,(1) =x(1)d7(t) = XL x(kT,)8(t—KT,)

k= —o

By Eq. (2.6) and using Egs. (2.7) and (1.26), the output y(¢) is given by

o

L x(KT)8(t —KT,)|*h(t)

k=—-w

y() =x,(t)*h(1)

x

L x(KT)[h(1)8(1 - kT))]

k=-—o

S x(KT)h(i - KT))

k= -—-x

Using Eq. (5.189), we get

> T,w,. sinw. (1 —kT,)
Y(t)—k;lwx(km w el —kT)

If w.=w,/2, then Tw_ /7 =1 and we have

= sin[w,(t - KT,) /2]
w0 = LK) =

Setting ¢ = mT, (m = integer) and using the fact that o, T, = 27, we get

Y(mT,)=k=Z_xx(kT,)%%r’ii_;—;l
Since
sinw(m - k) _{0 m+k
m(m—-k) \1 m=k
we have
y(mT,) = x(mT) m=0,+1,+2,...

which shows that without any restriction on x(¢), y(mT,) = x(mT,) for any integer value of m.

Note from the sampling theorem (Probs. 5.58 and 5.59) that if w, =27 /T, is greater than
twice the highest frequency present in x(¢) and w, = w,/2, then y(1)=x(¢). If this condition
on the bandwidth of x(¢) is not satisfied, then y(z)+x(s). However, if w.=w,/2, then
y(mT,) = x(mT,) for any integer value of m.

CHAP. 5] FOURIER ANALYSIS OF TIME SIGNALS AND SYSTEMS 283

Supplementary Problems

5.61. Consider a rectified sine wave signal x(¢) defined by
x(t) = |Asin e

(a) Sketch x(¢) and find its fundamental period.
(b) Find the complex exponential Fourier series of x(¢).
(¢) Find the trigonometric Fourier series of x(r).

Ans. (a) X(t) is sketched in Fig. 5-36 and T, = 1.

24 = 1
)= — — Jjk2mt
b) x(¢) - k§m4k2_le
© xn=2_H5 k2
)= — - — —_— t
¢) x - wk=]4k2—-lcos T
x(0
A
1 0 1 2 ¢
Fig. 5-36

5.62. Find the trigonometric Fourier series of a periodic signal x(¢) defined by

x(ty=t, —w<t<m and  x(1+27)=x(¢)

7?2 x (=1)*
Ans. x(t)=— +4Y 5— cos kt
3 N2 Tk
5.63. Using the result from Prob. 5.10, find the trigonometric Fourier series of the signal x(¢) shown
in Fig. 5-37.
* 1 27
Ans. x(t) = 57 ;kglzsmkwot wy= 7,0—
x(1)
A
T, 0 T, 27, '
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5.64.

5.65.

5.66.

5.67.

5.68.

FOURIER ANALYSIS OF TIME SIGNALS AND SYSTEMS [CHAP. 5

Derive the harmonic form Fourier series representation (5.15) from the trigonometric Fourier
series representation (5.8).

Hint: Rewrite a, cos kw,t + b, sin kwyt as

2 2

aj + b cos kwyt + 773 Sin kwy!

% %k
(a2 +b3)"* (a2 +b})

and use the trigonometric formula cos( A4 — B) = cos A cos B + sin A sin B.

Show that the mean-square value of a real periodic signal x(t) is the sum of the mean-square
values of its harmonics.

Hi;;t: Use Parseval’s identity (5.21) for the Fourier series and Eq. (5.168).

Show that if
x(t) > X(w)
then

n

x(1) = ) = (jo)" X ()

dr"

Hint: Repeat the time-differentiation property (5.55).

Using the differentiation technique, find the Fourier transform of the triangular pulse signal
shown in Fig. 5-38.

sin(wd /2) |
Ans. _—
wd/2
x()
A
d 0 d 7
Fig. 5-38
Find the inverse Fourier transform of
X(w) :
w)= ——x
(a+jw)”
Hint: Differentiate Eq. (5.155) N times with respect to (a).
(N
—at
Ans. We u([)
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5.69. Find the inverse Fourier transform of

5.70.

5.71.

5.72.

1
X =
()= 7 e
Hint:  Note that
2-w?+ 30 =2+ (jw)’ +j30=(1+jo)(2+jo)
and apply the technique of partial-fraction expansion.

Ans. x(t)=(e ™" — e u(t)

Verify the frequency differentiation property (5.56), that is,
dX(w)
dw

(=) x(1) —

Hint:  Use definition (5.37) and proceed in a manner similar to Prob. 5.28.

Find the Fourier transform of each of the following signals:
(@) x(t)=cos wytu(t)

(b) x(¢) =sin wyru(t)

(c) x(t)=e *coswytu(t), a>0

(d) x(1)=e “sinwytu(t),a>0

Hint:  Use multiplication property (5.59).

T ™ jo
Ans. (@) X(w)= Eé(w —wp) + 35(‘” +wp) + m
(B) X(@) = =80 — ) — ~—8(w + wg) + ——o—
WIT e T T gple el T
a+jo
() Xw)=——7F—
(a+jw) +wﬁ
]
(@) X(w)=

(a+jw)’ +wf
Let x(z) be a signal with Fourier transform X(w) given by
¥o-{o 0l
Consider the signal
dx(1)
dr?

y(1) =

Find the value of
f [y(#) I* dr

Hint: Use Parseval’s identity (5.64) for the Fourier transform.
Ans. 1/3m

285
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5.73. Let x(¢) be a real signal with the Fourier transform X(w). The analytical signal x ,(t)
associated with x(¢) is a complex signal defined by

x, (1) =x(1) +iE(1)
where £(¢) is the Hilbert transform of x(¢).

(a) Find the Fourier transform X, (w) of x,(¢).
(b) Find the analytical signal x_(r) associated with cos w,¢ and its Fourier transform X, (w).

Ans. (@) X, (0)=2X(o0)u(w)= (Z)X(w) w>0

w<0
b)) x, (1)=& X (0)=27 8w —wy)

5.74. Consider a continuous-time LTI system with frequency response H{(w). Find the Fourier
transform S(w) of the unit step response s(¢) of the system.

Hint: Use Eq. (2.12) and the integration property (5.57).
Ans. S(w)=7H0)é(w) + (1/jw)H(w)

5.75. Consider the RC filter shown in Fig. 5-39. Find the frequency response H(w) of this filter and
discuss the type of filter.

Ans. H(w)= , high-pass filter

jw
(1/RC) +jw

C
e
]

x(1) R g ¥

Fig. 5-39

5.76. Determine the 99 percent energy containment bandwidth for the signal
1
l = e——_—
x(1) t2+a?

Ans. Wyg = 2.3 /a radians /second or fy = 0.366/a hertz

5.77. The sampling theorem in the frequency domain states that if a real signal x(¢) is a duration-
limited signal, that is,

x(t)=0 [l >ty
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then its Fourier transform X(w) can be uniquely determined from its values X(nw/t,,) at a
series of equidistant points spaced m/t,, apart. In fact, X(w) is given by
( nw ) sin(wty, — nw)

wly —nm

X(o)= Y X|—
n=—ow tM
Verify the above sampling theorem in the frequency domain.

Hint: Expand x(¢) in a complex Fourier series and proceed in a manner similar to that for
Prob. 5.59.



Chapter 6

Fourier Analysis of Discrete-Time
Signals and Systems

6.1 INTRODUCTION

In this chapter we present the Fourier analysis in the context of discrete-time signals
(sequences) and systems. The Fourier analysis plays the same fundamental role in discrete
time as in continuous time. As we will see, there are many similarities between the
techniques of discrete-time Fourier analysis and their continuous-time counterparts, but
there are also some important differences.

6.2 DISCRETE FOURIER SERIES
A. Periodic Sequences:

In Chap. 1 we defined a discrete-time signal (or sequence) x[n] to be periodic if there
is a positive integer N for which

x[n+N] =x[n] all n (6.1)

The fundamental period N, of x[n]is the smallest positive integer N for which Eq. (6.1) is
satisfied.
As we saw in Sec. 1.4, the complex exponential sequence

x[n] zef(z‘"'/Nn)" =efQu” (62)
where Q, =2m/N,, is a periodic sequence with fundamental period N,. As we discussed
in Sec. 1.4C, one very important distinction between the discrete-time and the continuous-

time complex exponential is that the signals e’“' are distinct for distinct values of w,, but
the sequences e’®" which differ in frequency by a multiple of 27, are identical. That is,

ej(110+21-rk)n — ejﬂ(,n ejZ‘rrkn — ejﬂ(,n (63)
Let
JkQun 2m
‘l’k[n]=e " QO=V k=0,i1,i2,... (64)
0

Then by Eq. (6.3) we have
W[ n] =¥, [n] Y [n] =¥y .\ [7] ¥, [n] =Wy «[n]
(6.5)
and more generally,
Vi [n] =Veimn,[n] m = integer (6.6)
Thus, the sequences W, [n] are distinct only over a range of N, successive values of k.
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B. Discrete Fourier Series Representation:

The discrete Fourier series representation of a periodic sequence x[n] with fundamen-
tal period N, is given by

No—1 ) 21T
x[n] = ) c,e*n Q= — (6.7)
k=0 No
where ¢, are the Fourier coefficients and are given by (Prob. 6.2)
1 No—-1
C=— Z x[n] e—jknn" (68)
NO n=0
Because of Eq. (6.5) [or Eq. (6.6)], Egs. (6.7) and (6.8) can be rewritten as
) 2m
x[n]= L c, et Q= (6.9)
k={(Ng> No
1 .
co=— Y x[n]e ik (6.10)
Ny n=(Ng)

where L,_ 5, denotes that the summation is on k as k varies over a range of N,
successive integers. Setting k =0 in Eq. (6.10), we have
1
Co=— Y, x[n] (6.11)

No =g

which indicates that ¢, equals the average value of x[n] over a period.
The Fourier coefficients ¢, are often referred to as the spectral coefficients of x[n].

C. Convergence of Discrete Fourier Series:

Since the discrete Fourier series is a finite series, in contrast to the continuous-time
case, there are no convergence issues with discrete Fourier series.

D. Properties of Discrete Fourier Series:
1. Periodicity of Fourier Coefficients:
From Egs. (6.5) and (6.7) [or (6.9)], we see that
Cr+Ny = Ck (6.12)

which indicates that the Fourier series coefficients ¢, are periodic with fundamental
period N,.
2. Duality:

From Eq. (6.12) we see that the Fourier coefficients ¢, form a periodic sequence with
fundamental period N,. Thus, writing ¢, as c[k], Eq. (6.10) can be rewritten as

1
c[k]= X Fx[n]e"m"" (6.13)

n={(Ny) "'0
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Let n = —m in Eq. (6.13). Then

1 .
k] = T gral-m]entm
m=(Nyy *70

Letting k =n and m = k in the above expression, we get
1
cn]= Y —x[-k]ekn (6.14)
k={Np) Ny

Comparing Eq. (6.14) with Eq. (6.9), we see that (1/N,)x[ —k] are the Fourier coefficients
of ¢[n]. If we adopt the notation

x[n] 5 ¢, = c[k] (6.15)

to denote the discrete Fourier series pair, then by Eq. (6.14) we have
1
c[n] &5 —x[-k] (6.16)
NO

Equation (6.16) is known as the duality property of the discrete Fourier series.
3. Other Properties:
When x[n] is real, then from Eq. (6.8) or [Eq. (6.10)] and Eq. (6.12) it follows that
C_j=Cpy-k =C§ (6.17)
where * denotes the complex conjugate.
Even and Odd Sequences:
When x[n] is real, let
x[n] =x.[n] +x,[n]
where x [n] and x [n] are the even and odd components of x[n], respectively. Let

x["]*'D’F_S"Ck

Then
x,[n] &5 Re[c,] (6.18a)
x,[n] & Im[c,] (6.18b)

Thus, we see that if x[n] is real and even, then its Fourier coefficients are real, while if
x[n]is real and odd, its Fourier coefficients are imaginary.

E. Parseval’s Theorem:

If x[n] is represented by the discrete Fourier series in Eq. (6.9), then it can be shown
that (Prob. 6.10)

1
= I = E gk (6.19)
0 n={(Ny> k={Ny>

Equation (6.19) is called Parseval’s identity (or Parseval’s theorem) for the discrete
Fourier series.
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6.3 THE FOURIER TRANSFORM
A. From Discrete Fourier Series to Fourier Transform:

Let x[n] be a nonperiodic sequence of finite duration. That is, for some positive
integer N,,

x[n]=0 Inl> N,

Such a sequence is shown in Fig. 6-1(a). Let xNO[n] be a periodic sequence formed by
repeating x[n] with fundamental period N, as shown in Fig. 6-1(b). If we let N, — %, we
have

NluiwaN"[n] =x[n] (6.20)

The discrete Fourier series of x Nn["] is given by

) 2
xy[n] = X et Qy=— (6.21)
k={(Ng) Ny
where
1 .
G== X xn,[n] g ~kGan (6.22a)
NU n={Ny)

x[n]

<
[
<
<
<
<
<
[
[
<
[
[
<
1»
[ ]
= ‘y

Iyln)

b)
Fig. 6-1 (a) Nonperiodic finite sequence x[n]; (b) periodic sequence formed by periodic extension of
x[n].
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Since x, [n]=x[n] for |n| <N, and also since x[n]=0 outside this interval, Eq. (6.22a)
can be rewritten as

P M _ 1z .
=1 o x[n]e”m”"=ﬁ L x[n]ekaom (6.22b)

NO n=-N; On=—-xo

Let us define X(Q) as

X(Q)= Y x[n]e (6.23)

n=—ow

Then, from Eq. (6.22b) the Fourier coefficients ¢, can be expressed as
1
= FOX(kQO) (6.24)
Substituting Eq. (6.24) into Eq. (6.21), we have

1 .
xNu[n] = Z __X(an)eJkﬂun
k={Ny) 0

or xy,[n] = L Y X (kQ,) e’ Q, (6.25)
2 k= (N

From Eq. (6.23), X(Q) is periodic with period 27 and so is e’*". Thus, the product
X(Q) e’ will also be periodic with period 27. As shown in Fig. 6-2, each term in the
summation in Eq. (6.25) represents the area of a rectangle of height X(k,)e’*®" and
width Q. As N, = »,Q, =27 /N, becomes infinitesimal ({, — 0) and Eq. (6.25) passes
to an integral. Furthermore, since the summation in Eq. (6.25) is over N, consecutive
intervals of width Q,=2m/N,, the total interval of integration will always have a width
2. Thus, as N, — < and in view of Eq. (6.20), Eq. (6.25) becomes

x[n] = %L"X(Q)em"dﬂ (6.26)

Since X(Q)e /" is periodic with period 27, the interval of integration in Eq. (6.26) can be
taken as any interval of length 2.

X( Q)ejnn

X(kQ) ekl

2

1 .
2w - 0 Ky o 2w

Fig. 6-2 Graphical interpretation of Eq. (6.25).

L i

oy
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B. Fourier Transform Pair:

The function X(Q) defined by Eq. (6.23) is called the Fourier transform of x[n], and
Eq. (6.26) defines the inverse Fourier transform of X((Q). Symbolically they are denoted by

X(Q)=Flx[n]} = i x[n} et (6.27)

n=—wo

x[n] = F Y X(Q)} = E%LwX(Q)ef“"dQ (6.28)

and we say that x[rn] and X(£)) form a Fourier transform pair denoted by
x[n] > X(Q) (6.29)
Equations (6.27) and (6.28) are the discrete-time counterparts of Eqs. (5.37) and (5.32).

C. Fourier Spectra:
The Fourier transform X(£)) of x[n] is, in general, complex and can be expressed as
X(Q) =1X(Q)le/* ™ (6.30)

As in continuous time, the Fourier transform X() of a nonperiodic sequence x[n] is the
frequency-domain specification of x[n] and is referred to as the spectrum (or Fourier
spectrum) of x[n]. The quantity | X(Q)lis called the magnitude spectrum of x[n], and $(Q)
is called the phase spectrum of x[n]. Furthermore, if x[n] is real, the amplitude spectrum
| X(€)) is an even function and the phase spectrum () is an odd function of (.

D. Convergence of X(Q):

Just as in the case of continuous time, the sufficient condition for the convergence of
X(Q) is that x[n] is absolutely summable, that is,

S lx[n]l<e (6.31)

n= -«

E. Connection between the Fourier Transform and the z-Transform:

Equation (6.27) defines the Fourier transform of x[n] as

X(Q)= i x[n] e/ (6.32)

The z-transform of x[n], as defined in Eq. (4.3), is given by

X(z)= i x[n]z™" (6.33)

n=—o

Comparing Egs. (6.32) and (6.33), we see that if the ROC of X(z) contains the unit circle,
then the Fourier transform X(Q) of x[n] equals X(z) evaluated on the unit circle, that is,

X(0) = X(2)lsem (6.34)

Note that since the summation in Eq. (6.33) is denoted by X(z), then the summation
in Eq. (6.32) may be denoted as X(e’?). Thus, in the remainder of this book, both X(Q)
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and X(e’?) mean the same thing whenever we connect the Fourier transform with the
z-transform. Because the Fourier transform is the z-transform with z = ¢/®, it should not
be assumed automatically that the Fourier transform of a sequence x[n] is the z-transform
with z replaced by e/, If x[n] is absolutely summable, that is, if x[n] satisfies condition
(6.31), the Fourier transform of x[n] can be obtained from the z-transform of x[n] with
z = ¢’ since the ROC of X(z) will contain the unit circle; that is, |e/®| = 1. This is not
generally true of sequences which are not absolutely summable. The following examples
illustrate the above statements.

EXAMPLE 6.1. Consider the unit impulse sequence 8[n].
From Eq. (4.14) the z-transform of 8[n] is

3{8[n]} =1 all z (6.35)
By definitions (6.27) and (1.45) the Fourier transform of 8[n] is
Floln]} = L d[nle7t= (6.36)

Thus, the z-transform and the Fourier transform of 8{n] are the same. Note that 6[n] is absolutely
summable and that the ROC of the z-transform of 8[n] contains the unit circle.

EXAMPLE 6.2. Consider the causal exponential sequence
x[n]=a"u[n)] a real

From Eq. (4.9) the z-transform of x[n] is given by

1
X(Z)=? |z1> |al

1
2
Thus, X(e/) exists for lal < 1 because the ROC of X(z) then contains the unit circle. That is,
) i
X(e/?) = T lal <1 (6.37)

Next, by definition (6.27) and Eq. (1.91) the Fourier transform of x[n] is

©

i anu[n]e—/ﬂn= i ae i = Z (ae”'”)"
n=0

n=0

X(Q)

1 -
=1 ae lae " =lal <1 (6.38)
Thus, comparing Eqgs. (6.37) and (6.38), we have
X(Q)=X(2)l;-em

Note that x[n] is absolutely summable,

EXAMPLE 6.3. Consider the unit step sequence u[n].
From Eq. (4.16) the z-transform of u[n] is

B{uln]) = 1—_—12—. lz[>1 (6.39)

The Fourier transform of u[n] cannot be obtained from its z-transform because the ROC of the
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z-transform of u[n] does not include the unit circle. Note that the unit step sequence u[n] is not
absolutely summable. The Fourier transform of u[n] is given by (Prob. 6.28)

Fluln]) =w8(Q) + 5 Q< (6.40)

— e /0
6.4 PROPERTIES OF THE FOURIER TRANSFORM

Basic properties of the Fourier transform are presented in the following. There are
many similarities to and several differences from the continuous-time case. Many of these
properties are also similar to those of the z-transform when the ROC of X(z) includes the
unit circle.

A. Periodicity:

X(Q+27) =X(Q) (6.41)

As a consequence of Eq. (6.41), in the discrete-time case we have to consider values of ()
(radians) only over the range 0 < Q <27 or —m < <, while in the continuous-time
case we have to consider values of w (radians/second) over the entire range —% <@ < .

B. Linearity:

ax,[n] +a,x,[n] > a, X (Q) +a,X,(Q) (6.42)
C. Time Shifting:
x[n—ng] > e MMX(Q) (6.43)
D. Frequency Shifting:
e Mx[n] > X(Q - Q) (6.44)
E. Conjugation:
x*[n] > X*(-Q) (6.45)

where * denotes the complex conjugate.
F. Time Reversal:

x[-n] > X(~Q) (6.46)
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G. Time Scaling:

In Sec. 5.4D the scaling property of a continuous-time Fourier transform is expressed
as [Eq. (5.52)]

x(at)«-—»%X(%) (6.47)

However, in the discrete-time case, x[an] is not a sequence if a is not an integer. On the
other hand, if a is an integer, say a = 2, then x[2n] consists of only the even samples
of x[n]. Thus, time scaling in discrete time takes on a form somewhat different from

Eq. (6.47).
Let m be a positive integer and define the sequence

x[n/m| =x|k if n =km, k = integer
Xemln] = [n/m] =x[#] . (6.48)
0 if n # km
Then we have
Xm[n] e X(mQ) (6.49)

Equation (6.49) is the discrete-time counterpart of Eq. (6.47). It states again the inverse
relationship between time and frequency. That is, as the signal spreads in time (m > 1), its
Fourier transform is compressed (Prob. 6.22). Note that X(m{)) is periodic with period
27 /m since X(Q) is periodic with period 2.

H. Duality:

In Sec. 5.4F the duality property of a continuous-time Fourier transform is expressed
as [Eq. (5.54)]

X(t) e 2mx(-w) (6.50)

There is no discrete-time counterpart of this property. However, there is a duality between
the discrete-time Fourier transform and the continuous-time Fourier series. Let

x[n] = X(0Q)
From Eqgs. (6.27) and (6.41)
X(Q)= Y x[n]e /" (6.51)
X(Q+27)=X(Q) (6.52)
Since (1 is a continuous variable, letting } =¢ and n = —k in Eq. (6.51), we have
X(t)= Y x[—k]eX (6.53)
k= —o
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Since X(¢) is periodic with period T, = 27 and the fundamental frequency w, =27 /T, = 1,
Eq. (6.53) indicates that the Fourier series coefficients of X(¢) will be x[—k]. This duality
relationship is denoted by

X() e, =x[-k] (6.54)

where FS denotes the Fourier series and ¢, are its Fourier coefficients.

I. Differentiation in Frequency:

dX(Q)
nx[n] <>} 29 (6.55)
J. Differencing:
x[n] —x[n—1] & (1 -7 X(Q) (6.56)

The sequence x[n]—x[n —1] is called the first difference sequence. Equation (6.56) is
easily obtained from the linearity property (6.42) and the time-shifting property (6.43).

K. Accumulation:

i x[k]«——ver(O)é(Q)+1—_—1;_}—.ﬂX(Q) Q< (6.57)

k=—»

Note that accumulation is the discrete-time counterpart of integration. The impulse term
on the right-hand side of Eq. (6.57) reflects the dc or average value that can result from
the accumulation.

L. Convolution:

xi[n] * x,[n] X, (Q) X,(Q) (6.58)
As in the case of the z-transform, this convolution property plays an important role in the

study of discrete-time LTI systems.

M. Multiplication:

1
xl[n]xz[n]H—z—;X,(Q)®X2(Q) (6.59)
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where ® denotes the periodic convolution defined by [Eq. (2.70)]
Table 6-1. Properties of the Fourier Transform

X,(Q)®X,(Q) = f X,(0)X,(Q—0)do (6.60) Property Sequence Fourier transform
2 x[n] X(Q)
The multiplication property (6.59) is the dual property of Eq. (6.58). x,[n] X,(Q)
x,[n] X,()
N. Additional Properties: Periodicity x[n] X(Q+27)=X(Q)
If x{n] is real, let Linearity a,x\[n]+a,x,[n] a, X,(Q) +a, X,(Q)
Time shifting x[n —ny) e o x(Q)
x[n] =x.[n] +x,[n] Frequency shifting e/ x[n] X(Q-Qy)
where x [n] and x [n] are the even and odd components of x[n], respectively. Let Conjugation x*[n] X*(~Q)
) Time reversal x[—n] X(-Q)
x[n] & X(2) =A(2) +jB(Q) = X(Q)leHD (6.61)
. . x[n/m] if n=km
Time scaling Xmlnt] = ) X(mQ)
Then 0 if n#km
ax(Q
X(-Q)=Xx*Q) (6.62) Frequency differentiation nx[n] J d(.Q )
x,[n] & Re{X(Q)} =A(Q) (6.63a) First difference x[n] —x[n —1] 1 -e " ™MX(Q)
x,[n] —jIm{X(Q)} =jB(Q) (6.63b) Accumulation Y xlk] 7 X(0)8(Q) + ]—_mX(Q)
k= —x —e
Equation (6.62) is the necessary and sufficient condition for x[n] to be real. From Q<
Eqgs. (6.62) and (6.61) we have Convolution x(n]% x,(n] X)X Q)
A(—-Q)=A(Q B(-Q)=-B(Q 6.64a 1
( ) () (-0) (@) ( ) Multiplication x,[nlx,[n] —Z—X,(Q)®X2(.O.)
X(-Q)l=1X(Q 0(-Q) = —6(Q 6.64b T
X( )I=1x(2) ( ) (@) ( ) Real sequence x[nl=x[n)+x [n] X(Q) =A(Q) +jB(Q)
From Egs. (6.63a), (6.63b), and (6.64a) we see that if x[n] is real and even, then X(Q) is X(-Q)=X*Q)
real and even, while if x[n] is real and odd, X(Q) is imaginary and odd. Even component x.[n] Re{X(Q)) = A(Q)
Odd component x,[n] FIm{X(Q)} =;B(Q)
O. Parseval’s Relations: Parseval’s relations
bl 1
Y x,[nlx,ln]= 5[2 X(Q)X(-Q)dQ
P 1 n=-w '"'
x,[n]lx,[n]l=—{ X(Q)X,(-Q)dQ 6.65 ol 1
L xlnlxgln] =5 [ Xi(@)X(~0) (6.65) 5 il = L [ Ixrdo
" 27 o
d 1
L lx[n]l= o= [ 1X(Q) d0 (6.66)
ne o 27 Jon

Equation (6.66) is known as Parseval’s identity (or Parseval’s theorem) for the discrete-time
Fourier transform.

Table 6-1 contains a summary of the properties of the Fourier transform presented in
this section. Some common sequences and their Fourier transforms are given in Table 6-2.
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Table 6-2. Common Fourier Transform Pairs
x[n] X(Q)
S(n} 1
oln —nyl e /o
x[nl=1 278(0), Q) <
oJihon 278(Q - Q) 10,1l <7
cos Qyn m[6(Q - Q) +8(Q+ QL IQLIQ <7
sin Q,n —jm[8(Q - Q) - 8(Q+Q)LIQLIQ <7
u[n] To(Q) + W,‘Q‘S‘n’
—u[-n—-1] —rd() + ———5. Q<7
[-e™
1
a"ll[”].lﬂ' <1 ’i_—aem
1
—a"ul-n~ 1} lal> 1 P——T

(n+ Da"uln)lal < 1

a”,la) < 1

1 nl <N,

Anl=ho s N,

sin Wn

LO< W<
mh

x

Y 8ln —kN,)

k- -

1
(l~ae’”')2
| —a?
1 -2acos Q+a?
sin[ (N, + )]
sin((2,/2)
1 0<lQl<w

X((2)={0 W<lQl<m

* 2
Q, Y 8Q-kQ),Q,=—

k= - Ny

6.5 THE FREQUENCY RESPONSE OF DISCRETE-TIME LTI SYSTEMS

A. Frequency Response:

[CHAP. 6

In Sec. 2.6 we showed that the output y[n] of a discrete-time LTI system equals the
convolution of the input x[n] with the impulse response A[n]; that is,

y[n] =x[n]*h[n|

Applying the convolution property (6.58), we obtain

Y(Q) =X(Q)H(Q)

(6.67)

(6.68)
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where Y(Q), X(Q), and H(Q) are the Fourier transforms of y[n], x[n], and h[n],
respectively. From Eq. (6.68) we have

H(Q (@) (6.69)
Relationships represented by Eqgs. (6.67) and (6.68) are depicted in Fig. 6-3. Let
H(Q) =|H(Q)|e/D (6.70)

As in the continuous-time case, the function H(Q) is called the frequency response of the
system, | H()| the magnitude response of the system, and 8,,(Q}) the phase response of the
system.

d[n) hln|

hin] N
xln] H) Mnl=xin] « hin]

| !

X Y()=X(Q)H()
Fig. 6-3 Relationships between inputs and outputs in an LTI discrete-time system.

Consider the complex exponential sequence
x[n] =e/om (6.71)
Then, setting z = ¢’ in Eq. (4.1), we obtain
y[n] = H(e™%) ¢1%" = H(0,) &% (6.72)

which indicates that the complex exponential sequence e’®" is an eigenfunction of the
LTI system with corresponding eigenvalue H((},), as previously observed in Chap. 2
(Sec. 2.8). Furthermore, by the linearity property (6.42), if the input x[n] is periodic with
the discrete Fourier series

2

xn]= L gt 0=
0

k={Ny>

(6.73)

then the corresponding output y[n] is also periodic with the discrete Fourier series

y[n] = %‘, >c,(H(kQO)e“‘“"" (6.74)
k={(N,

If x[n]is not periodic, then from Egs. (6.68) and (6.28) the corresponding output y[n] can
be expressed as

1 )
y[n] =5 <21T>H(Q)X(Q)e’n aQ (6.75)
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B. LTI Systems Characterized by Difference Equations:

As discussed in Sec. 2.9, many discrete-time LTI systems of practical interest are
described by linear constant-coefficient difference equations of the form

Y awyln—k] = ¥ byx[n k] (6.76)
k=0 k=0

with M < N. Taking the Fourier transform of both sides of Eq. (6.76) and using the
linearity property (6.42) and the time-shifting property (6.43), we have

N M
Y a, ey (Q)= Y b, e X (Q)
k=0 k=0
or, equivalently,

M
b, e kQ
) L b

X)) T8
k=0

The result (6.77) is the same as the z-transform counterpart H(z) =Y(z)/X(z) with
z =e/ [Eq. (4.44)]; that is,

(6.77)

H(Q) =H(z)l,oom=H(e™®)

C. Periodic Nature of the Frequency Response:
From Eq. (6.41) we have
H(Q)=H(Q+2m) (6.78)

Thus, unlike the frequency response of continuous-time systems, that of all discrete-time
LTI systems is periodic with period 2. Therefore, we need observe the frequency
response of a system only over the frequency range 0 < Q3 <27 or —m < Q < 7.

6.6 SYSTEM RESPONSE TO SAMPLED CONTINUOUS-TIME SINUSOIDS

A. System Responses:

We denote by y[n], y[n], and y[n] the system responses to cos Qn, sin Qn, and e/,
respectively (Fig. 6-4). Since e’ = cos Qn + jsin Qn, it follows from Eq. (6.72) and the
linearity property of the system that

y[n] =y [n] +jy,[n] = H(Q) e (6.79a)
y.[n] =Re{y[n]} = Re{H(Q) &/} (6.79b)
y,(n] = Im{y[n]} = Im{ H(Q) e/""} (6.79c¢)
o y[n)=H(Q)e/tn
— Q)
cos Qn ye[nl=Re[H(Q)esftn)
sin Qn y,[n)=Im{H(Q)e/)

Fig. 6-4 System responses to e’*", cos (n, and sin Qn.
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When a sinusoid cos 0n is obtained by sampling a continuous-time sinusoid cos w!?
with sampling interval T, that is,

cos {dn = cos wt|,_,1, = cos wT,n (6.80)

all the results developed in this section apply if we substitute T, for ):
O =T, (6.81)

For a continuous-time sinusoid cos w¢ there is a unique waveform for every value of w in
the range 0 to . Increasing w results in a sinusoid of ever-increasing frequency. On the
other hand, the discrete-time sinusoid cos 2n has a unique waveform only for values of ()
in the range 0 to 27 because

cos[(Q + 2mm)n] = cos(Qn + 2wmn) = cos Qn m = integer (6.82)
This range is further restricted by the fact that
cos(m + €))n = cos wn cos Qn F sin wnsin Qn
=(-1)"cos Qn (6.83)
Therefore,
cos(m + Q)n =cos(m — Q)n (6.84)

Equation (6.84) shows that a sinusoid of frequency (7 + ) has the same waveform as one
with frequency (7 — Q). Therefore, a sinusoid with any value of () outside the range 0 to
7 is identical to a sinusoid with () in the range O to 7. Thus, we conclude that every
discrete-time sinusoid with a frequency in the range 0 < Q < has a distinct waveform,
and we need observe only the frequency response of a system over the frequency range
0<Q<m.

B. Sampling Rate:

Let w, (=27f,) be the highest frequency of the continuous-time sinusoid. Then
from Eq. (6.81) the condition for a sampled discrete-time sinusoid to have a unique
waveform is -
oy, <m->T,<— or fi>2fy (6.85)

Wyr
where f,=1/T, is the sampling rate (or frequency). Equation (6.85) indicates that to
process a continuous-time sinusoid by a discrete-time system, the sampling rate must not
be less than twice the frequency (in hertz) of the sinusoid. This result is a special case of
the sampling theorem we discussed in Prob. 5.59.

6.7 SIMULATION

Consider a continuous-time LTI system with input x(7) and output y(r). We wish to
find a discrete-time LTI system with input x[n] and output y[n] such that

if x[n] =x(nT,) then y[n] =y(nT,) (6.86)

where T, is the sampling interval.
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Let H.(s)and H,z) be the system functions of the continuous-time and discrete-time
systems, respectively (Fig. 6-5). Let

x(t) =e'* x[n] =x(nT,) =e/™¥ (6.87)
Then from Egs. (3.1) and (4.1) we have
y(t) =H(jw) e y[n] = Hy(e’T) emT: (6.88)
Thus, the requirement y[n]=y(nT,) leads to the condition
H (jw) €T = H,(e7) e

from which it follows that

H (jw)=Hy(e™") (6.89)
In terms of the Fourier transform, Eq. (6.89) can be expressed as
H(w)=H,/(Q) 0 =wT, (6.90)

Note that the frequency response H,({1) of the discrete-time system is a periodic function
of w (with period 27 /T,), but that the frequency response H (w) of the continuous-time
system is not. Therefore, Eq. (6.90) or Eq. (6.89) cannot, in general, be true for every w. If
the input x(¢) is band-limited [Eq. (5.94)], then it is possible, in principle, to satisfy
Eq. (6.89) for every w in the frequency range (—m/T,,w/T,) (Fig. 6-6). However, from
Eqs. (5.85) and (6.77), we see that H (w) is a rational function of w, whereas H,(Q) is a
rational function of ¢/ (Q = wT,). Therefore, Eq. (6.89) is impossible to satisfy. However,
there are methods for determining a discrete-time system so as to satisfy Eq. (6.89) with
reasonable accuracy for every w in the band of the input (Probs. 6.43 to 6.47).

x(® y)
== H(s)
ejot H (jw)e/!

x()

I

L—-—' Hd(z) ————

x[n)=x(nT,) yln]
ejnwl; Hd(eju:T!)ejm.:Tr

Fig. 6-5 Digital simulation of analog systems.

H (w) H,(e/oTy)

PulCl o
(=]

Sia L
€

Fig. 6-6
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6.8 THE DISCRETE FOURIER TRANSFORM

In this section we introduce the technique known as the discrete Fourier transform
(DFT) for finite-length sequences. It should be noted that the DFT should not be confused
with the Fourier transform.

A. Definition:
Let x[n] be a finite-length sequence of length N, that is,

x[n}=0 outside the range 0 <n <N — 1 (6.91)
The DFT of x[n], denoted as X[k], is defined by
N-1
X[k]= ) x[n]Wkn k=0,1,...,N-1 (6.92)
n=0

where W, is the Nth root of unity given by

W, =e #@m/N) (6.93)
The inverse DFT (IDFT) is given by
N-1
x[n]=1—v- > X[ k)Wt n=0,1,...,N—1 (6.94)
n=0
The DFT pair is denoted by
x[n] > X[k] (6.95)

Important features of the DFT are the following:

There is a one-to-one correspondence between x[n] and X[k].

2. There is an extremely fast algorithm, called the fast Fourier transform (FFT) for its
calculation.

3. The DFT is closely related to the discrete Fourier series and the Fourier transform.

4. The DFT is the appropriate Fourier representation for digital computer realization
because it is discrete and of finite length in both the time and frequency domains.

Note that the choice of N in Eq. (6.92) is not fixed. If x[n] has length N; <N, we want to
assume that x[rn] has length N by simply adding (N — N,) samples with a value of 0. This
addition of dummy samples is known as zero padding. Then the resultant x[r] is often
referred to as an N-point sequence, and X[k] defined in Eq. (6.92) is referred to as an
N-point DFT. By a judicious choice of N, such as choosing it to be a power of 2,
computational efficiencies can be gained.

B. Relationship between the DFT and the Discrete Fourier Series:

Comparing Eqs. (6.94) and (6.92) with Egs. (6.7) and (6.8), we see that X[k] of finite
sequence x[n] can be interpreted as the coefficients ¢, in the discrete Fourier series
representation of its periodic extension multiplied by the period N, and N, = N. That is,

X[k] =Ne, (6.96)

Actually, the two can be made identical by including the factor 1/N with the DFT
rather than with the IDFT.
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C. Relationship between the DFT and the Fourier Transform:

By definition (6.27) the Fourier transform of x[n] defined by Eq. (6.91) can be
expressed as
N-1
X(Q)= Y x[n]e ™ (6.97)
n=90

Comparing Eq. (6.97) with Eq. (6.92), we see that

kz”) (6.98)

X[k] =X(Q)|n=k2,/N=X(—N——

Thus, X[k] corresponds to the sampled X({1) at the uniformly spaced frequencies
QO =k2mw/N for integer k.

D. Properties of the DFT:

Because of the relationship (6.98) between the DFT and the Fourier transform, we
would expect their properties to be quite similar, except that the DFT X[k] is a function
of a discrete variable while the Fourier transform X((}) is a function of a continuous
variable. Note that the DFT variables n and k must be restricted to the range 0 <n,
k <N, the DFT shifts x[n —n,] or X[k —k,] imply x[n—ngloan OF X[k —=koluodns
where the modulo notation [m],, 4y means that

[M])poan =m +iN (6.99)
for some integer i such that
0<[m]poan <N (6.100)
For example, if x[n]=8[n — 3], then
x[n - 4]mod6 = 5[” - 7]mod6 =5[n -7+ 6] = 5[" - 1]
The DFT shift is also known as a circular shift. Basic properties of the DFT are the
following:

1. Linearity:
ayx,[n] +a,x,[n] > a X\ [k] +a,X,[k] (6.101)
2. Time Shifting:
x[n = ng)moan > WamX k] Wy =e/@m/M) (6.102)
3. Frequency Shifting:
Wi rox(n] > X[k = kol moan (6.103)
4. Conjugation:
x*[n) o X*[~k) an (6.104)

where * denotes the complex conjugate.
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5. Time Reversal:

X[ =nlamos v = X[ =K]moan (6.105)
6. Duality:
X[n] > Nx[—k]poq v (6.106)
7. Circular Convolution:
x,[n] ®x,[n] — X,[k] X,[ ] (6.107)
where x,[n] ®x,[n] = Nilx,[i]xz[n — ] mod N (6.108)

i=0
The convolution sum in Eq. (6.108) is known as the circular convolution of x,[n] and
x,[n].

8. Multiplication:

wnlxs(n] o X, k] © X (K] (6.109)
where X\ [(k]®Xa[k] = T Xy[i]Xalk = i]os

9. Additional Properties:
When x[n] is real, let
x[n] =x,[n] +x,[n]
where x,[n] and x[n] are the even and odd components of x[n], respectively. Let
x[n] > X[k] =A[k] +jB[k] =X [k]le/ ]

Then X[ =k]moan =X*1k] (6.110)
x[n] «>Re(X[k]}=A[k] (6.111a)
x,[n] «»jIm{X[k]} =jB[k] (6.111b)
From Egq. (6.110) we have
A[_k]modN=A[k] B[_k]modN= '_B[k] (61120)
X[ ~Kllmoan =IX (K]l O[~K] g = ~6[K] (6.1125)
10. Parseval’s Relation:

N-1 1 N-1

Y Ix[n]l*= v Y IX[k]”? (6.113)

Equation (6.7113) is known as Parseval’s identity (or Parseval’s theorem) for the DFT.
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Solved Problems

DISCRETE FOURIER SERIES

6.1.

We call a set of sequences {W,[n]} orthogonal on an interval [N, N,] if any two signals
¥ [n] and ¥,[n] in the set satisfy the condition

Z - [n] W) —{ m#k (6.114)

n=N, m=k

where * denotes the complex conjugate and a # 0. Show that the set of complex
exponential sequences

W, [n] = e/kGm/Nn k=0,1,...,N-1 (6.115)
is orthogonal on any interval of length N.
From Eq. (1.90) we note that
N-1 N a=1
’E:OOI" B 11__aaN a#1 (6.116)
Applying Eq. (6.116), with a = ¢’*@"/N) we obtain
N-1i N _ k=0,+N,+2N,...
L etermn=g 1o =0 otherwise (6.117)

n=0 1 — ¢ik@m/N)

since e/¥@7/NWN = ¢/k27m — 1 Since each of the complex exponentials in the summation in
Eq. (6.117) is periodic with period N, Eq. (6.1/7) remains valid with a summation carried over
any interval of length N. That is,

¥ efk(er/N)n={N k=0,£N,£2N,... (6.118)
ne N 0 otherwise
Now, using Eq. (6.718), we have
Z \l,m[n]\yzc[n] = Z ejm(Z‘rr/N)ne—[‘k(Z‘rr/N)n
n={(N) n=(N>»
im — N m=k
— Hm—kX2m /Nyn _

":§N>e {0 m ek (6.119)
where m, k < N. Equation (6.119) shows that the set {¢/*C7/¥): k =0,1,..., N — 1} is orthog-

onal over any interval of length N. Equation (6.714) is the discrete-time counterpart of
Eq. (5.95) introduced in Prob. 5.1.
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6.2.

6.3.

Using the orthogonality condition Eq. (6.119), derive Eq. (6.8) for the Fourier
coefficients.

Replacing the summation variable k by m in Eq. (6.7), we have

N-1
x[n]= Y ¢, e/m@m/Non (6.120)
m=0
Using Eq. (6.115) with N = N, Eq. (6.120) can be rewritten as
No—1
x[n]l= ¥ ¢, ¥,[n] (6.121)
m=0

Multiplying both sides of Eq. (6.121) by ¥*[n] and summing over n = 0 to (N, — 1), we obtain

Np—1 No—1 [ Np-1
£ staitol - (5 covalal vt
n=0 n=0 \ m=0

Interchanging the order of the summation and using Eq. (6.119), we get

No—1 Ng=1 [ Ne—1
¥ <nl¥in= & ( > wm[nm[nl) Moty (6.22)
n=0 m=0 n=0

Thus,

1 Ny—1 1 No—1
== 3 x[n]¥E[n)=-— ¥ x[n)eskCm/Non
k N0n=0[]k[] Non};o[]

Determine the Fourier coefficients for the periodic sequence x[n] shown in Fig. 6-7.
From Fig. 6-7 we see that x[{n] is the periodic extension of {0, 1,2,3} with fundamental
period N; = 4. Thus,

Qy=— and e M= 2/ = pim /2 =

By Eq. (6.8) the discrete-time Fourier coefficients ¢, are

123 1 3
CO=X ZX[ ]=Z(0+1+2+3)——

i N o2 11
OX["]( )= (0-j1=2+4j3) = == +j3

_] .2n_l _ _ ___l_
=5 Lln)(=)"=7(0-1+2-3)= ~ 5

n=

i ‘3"10'12'3 Ll
=3 =X["]( N =70+/1~ —1)——5—15

Note that ¢;=c¢,_, =c¥ (Eq. (6.17)].
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x(nj

I

43210 1234567 n
Fig. 6-7

Consider the periodic sequence x[n] shown in Fig. 6-8(a). Determine the Fourier
coefficients ¢, and sketch the magnitude spectrum |c,|.

From Fig. 6-8(a) we see that the fundamental period of x[n] is Ny=10 and Q,=
2w /N, =m/5. By Eq. (6.8) and using Eq. (1.90), we get

14 1 1—e
=g L s
10,7, 10 1 —e %/

1 e—/‘k-rr/Z(e/kﬂ/Z _ e—jk‘rr/Z)

= 10 ¢ KT /T ik /10 _ =k /10y

=_l_e*ik(Zﬂ/S)M k=0,1,2,...,9
10 sin( k7/10)
The magnitude spectrum |c,| is plotted in Fig. 6-8(b).
xn}
X
01234567809 n

Y

012 345 67 89 k

(b)
Fig. 6-8
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6.5.

6.6.

Consider a sequence

x[n]= Y 8[n-4k]
k=—»
(a) Sketch x[n].
(b) Find the Fourier coefficients ¢, of x[n].

(a) The sequence x[n] is sketched in Fig. 6-9(a). It is seen that x[n] is the periodic extension
of the sequence {1,0,0, 0} with period N, = 4.

x[n)

~Y

(b) From Egs. (6.7) and (6.8) and Fig. 6-9(a) we have
3 3
x[n]= % ¢, ek /o _ Y ¢, ek /Dn
k=0 k=0
] > —jkQ2m /4)n l 1
and =7 Y x[n]e™ ZZX[O]=Z all &

n=0

since x[1] =x[2] =x[3] = 0. The Fourier coefficients of x[n] are sketched in Fig. 6-9%(b).
Determine the discrete Fourier series representation for each of the following se-
quences:

_ m
(a) x[n]= cos—n

T T
(b) x[n]= cos—gn + sin 2"

(¢) x[n]l= cosz(%n)
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(a) The fundamental period of x[n]is Ny=38, and Q= 2m/N,=m/4. Rather than using
Eq. (6.8) to evaluate the Fourier coefficients c,, we use Euler’s formula and get

T | ) 1 r
cos—n = A(el(ﬂ/ﬂ’l + e'!(ﬂ'/“)") = _elﬂoﬂ + ._.e_/nu"
4 2 2 2
Thus, the Fourier coefficients for x[n] are ¢, =13, c_,=c_,,y=c¢,=1%, and all other

¢, = 0. Hence, the discrete Fourier series of x[n] is
T 1 1
iQon 1000
x[n]l=cos—n = =/t 4 —e/7 O, =—
[n] 47 2 2 ¢4

(b) From Prob. 1.16(/) the fundamental period of x[n]is Ny =24, and Q,=2m/Ny=mw/12.
Again by Euler’s formula we have

1 ) 1
x[n] = E(el(v/J)n +e-1(ﬂ/3)n) + _27(21(17/4)n _e—J(fr/4)")

— %6 —jasyn +j%€_j3n“" _j%eﬂﬂ(,n + %ejdﬂ(,n

Thus, 3= —j(3),¢4 = 7,€ 4 =C_4420=C20= 1, €_3=C_3,24 = =J(3), and all other
¢, = 0. Hence, the discrete Fourier series of x[n] is
1 1 1 1 T
x[nl=— -_e)lﬂ(,n + _e;AﬂUn+ *812()”“" + '_2121(10" n =
[n}= i3 2 2 2 "1

(c) From Prob. 1.16(j) the fundamental period of x[n]is Ny= 38, and Q,=2m/N,=m/4.
Again by Euler’s formula we have

= (Loitm/Bm o Ly=sm/Om\E _ L itm/an L L= /an
x[n]=(ze + 37T/ = Lefm/ O 4 S 4 feT I/
= lein 4 1y 10
Thus, cy=3,¢,=1%,c_,=c_,,y=c;=14, and all other ¢, =0. Hence, the discrete

Fourier series of x[n] is

1 1 1 T
= — 4 —eiflen 4 _ o700 0. =—
x[n] 5 4e i 0= 7

Let x[n] be a real periodic sequence with fundamental period N, and Fourier
coefficients ¢, = a, + jb,, where a, and b, are both real.

(a) Show that a_, =a, and b_, = —b,.

(b) Show that cy, ,, is real if N is even.

(c) Show that x[n] can also be expressed as a discrete trigonometric Fourier series of

the form
(Ny=1/2 -
x[n]=co+2 Y (a,coskQon—b,sinkQyn) Q,= N (6.123)
k=1 0
if N, is odd or
(Nog—2)/2
x{n] =cy+ (- 1)"0,\,0/2 +2 Y (a,cos kQyn —b,sinkQyn) (6.124)
k=1

if N, is even.
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If x[n] is real, then from Eq. (6.8) we have

*

1 Ny—1 No—1 i
cp=— % x[n]e*Pn=|— ¥ x[n]e *%n| =cf
NO =0 NO n=0

Thus,
cop=a_p+jb_,=(a,+jb)* =a,—jb,
and we have

a_,=a; and b_,=-b,

If N, is even, then from Eq. (6.8)

No—1 1 M-t
= — Y x[nle-iNo/Den/Non = — ¥ y[ple-im
Ny /2 N, ")50 [n] N, ”go [n]
No—1
=-— ¥ (-1)"x[n] =real
NO n=0
Rewrite Eq. (6.7) as
No—1 No—1
x[n]= Y c et =c,+ Y ek
k=0 k=1

If Ny is odd, then (N, — 1) is even and we can write x[n] as

(Ny=1)/2
x[n)=co+ L (ck€* M ey, e/ NomR0m)
k=1
Now, from Eq. (6.17)
CNy—k =cf
and e;(N(,—k)QDn = e;'N(,ﬂone~jkn(,n = ejZ'rrnerjkﬂun = e—)kﬂon
Thus,
(Ng—1)/2
x[n]l=co+ X (cpe™ o + cre Ik om)
k=1
(Ng—=1)/2
=co+ 2 2Re(c,e*m)
k=1
(Ny=1)/2
=co+2 Y Re(a,+jb,)(coskQqon +jsin kQyn)
k=1
(No=1)/2
=co+2 Y, (ajcoskQyn—b,sinkQyn)
k=1

If Ny is even, we can write x[n] as
No—1
x[n]l=cy+ ¥ c ek
k=1
(Ng-2)/2

— JkQon {(Nog—k)Q, No/2)$2
=cy+ Z (Cke o +cNu-ke]( o—k) u") +CN(,/ze'( o/ 2D)8gn

k=1
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Again from Eq. (6.17)

Chyi =Ck and e/ No=k)Qon — o =jkQon
and eI No/ DR . pi(No/ 2027/ N . pimn (- l)n
(No~2)/2

Then x[n]=co+(=1)cyyo+ L 2Re(ce)
k=1

(Ny-2)/2
=co+(=1)"cy,2+2 L (a,coskQyn — b, sin kQyn)
k=1

6.8. Let x,[n] and x,[n] be periodic sequences with fundamental period N, and their
discrete Fourier series given by

No—1 Ny 2
xi[n] = ¥ d,e* x[n] = X et Qo= N
k=0 k=0 0

Show that the sequence x[r]=ux[nlx,[n] is periodic with the same fundamental
period N, and can be expressed as

Ny—1 2

x[n] = ¥ cpett Q=+
k=0 Ny
where ¢, is given by
Np—1
=Y dnei_m (6.126)
m=0

Now note that
x[n+Nol=x,[n+NyJx,[n+Ny] =x,[n]x,[n]=x[n]

Thus, x[n] is periodic with fundamental period N,,. Let

N~ 27
x[n]= ¥ cetr Q= N
k=0 0
1 M- [ M-l
Then ce=— 3 x[n]e = — ¥ x[n]xy[n]e k"
No 420 Ny 20
1 No=1 [ Ny—1
= — E ( E dmeimﬂ(,n)xz[n]evikllon
NO n=0 \ m=0

No-1 [ M-t Np—1
- a5 £ mtrlenomn] R e,
0 n=0 m=0
1 Ny—1
since &%= Y xy[n]eKSton
0 n=0

and the term in parentheses is equal to e, _ ..
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6.9.

6.10.

Let x,[n}and x,[n] be the two periodic signals in Prob. 6.8. Show that
No—1 No—1
N L xy[n]xy[n] = X die 4 (6.127)
0 n=0 k=0

Equation (6.127) is known as Parseval’s relation for periodic sequences.

From Eq. (6.126) we have
No-1 No-1

Ck = Z xl[”]xz["]eiim""= Z dpn€sm
N() n=0 m=0

Setting k = 0 in the above expression, we get

1 MNo-1 No—1 Ny—1
A Z x([n]x,[n]= 2 d,e_,= Z die_y
0 n=0 m=0 k=0

(a) Verify Parseval’s identity [Eq. (6.19)] for the discrete Fourier series, that is,

1 M-t No—1
- T lxlnl= T el
0 n=0 k=0

(b) Using x[n] in Prob. 6.3, verify Parseval’s identity {Eq. (6.19)].
(a) Let

No—1
A[n]= T coemr
k=0
No—1
and x*[n]= Y d e*n
k=0
No-1 1 Moo .
Then d, = A Y x*[n]e ko = A Y x[n]e* %o} =c*, (6.128)
0 n=0 9 n=0

Equation (6.128) indicates that if the Fourier coefficients of x[n] are ¢, then the Fourier
coefficients of x*[n] are c*,. Setting x,[n]=x[n] and x,[n]=x*[n] in Eq. (6.127), we
have d, =c, and e, =c*, (or e_, = c}) and we obtain

Ny—1 Ny—1
— ¥ x[nlx*[n]= ¥ cpck (6.129)
NO n=0 k=0
1 M-l Ny—1
or — L Ix[n]P= X lel?
NO n=0 k=0
(b) From Fig. 6-7 and the results from Prob. 6.3, we have
1 Noz! 1 14 7
2 2, 92, 22
— =—(0+1°4+2°+3)= — = —
N, E’O Ixn]”= 2 ) =773

el ) ]

L= ()| )

and Parseval’s identity is verified.
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FOURIER TRANSFORM

6.11. Find the Fourier transform of
x[n) = —a"u[-n—1] a real

From Eq. (4.12) the z-transform of x[n] is given by
1
X(2)= 1= |zl <lal

Thus, X(e/?) exists for |al > 1 because the ROC of X(z) then contains the unit circle. Thus,

1
X(Q) =X(e) = T lal > 1 (6.130)

6.12. Find the Fourier transform of the rectangular pulse sequence (Fig. 6-10)
x[n] =u[n] —u[n - N]

Using Eq. (1.90), the z-transform of x[n] is given by
N

N-1 1-z
X(2)= L 2"= — lz1>0 (6.131)
n=0

Thus, X(e’/®) exists because the ROC of X(z) includes the unit circle. Hence,

1 __e—jQN e—jﬂN/Z(ejﬂN/Z__ejIlN/Z)

X(Q)=X(ejn)= 1_e—jﬂ a e*j(l/Z(ej(l/Z_e—j(!/Z)

sin(QAN/2)
—p JUN-Vy2 __* T 7 6.1
€ sin(2/2) (6.132)
x[n)
14 I |
T T 01 23 V-1 n
Fig. 6-10

6.13. Verify the time-shifting property (6.43), that is,
x[n—ngy| s e MX(Q)

By definition (6.27)

©

Flxln-nl}= L x[n-ngle”

n=—x

CHAP. 6] FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS AND SYSTEMS 317

By the change of variable m = n — n,, we obtain

©

Faln-myl = ¥ x[m]esaomm

m=—w

=e 70 Y x[m]e ¥ = MMx(Q)

m=—o

Hence,
x[n—ny)eme X (Q)

6.14. (a) Find the Fourier transform X({) of the rectangular pulse sequence shown in

Fig. 6-11(a).

x[n] x,[n]

(b
Fig. 6-11

(b) Plot X(Q) for N,=4 and N, =8.
(a) From Fig. 6-11 we see that
x[n]=x,[n+N,]
where x,[n] is shown in Fig. 6-11(b). Setting N = 2N, + 1 in Eq. (6.132), we have
X, (Q) =M S'"[nggl/;)%)]
Now, from the time-shifting property (6.43) we obtain

X(Q) =e®Mx,(Q) = %ﬁ—)] (6.133)

(b) Setting N, =4 in Eq. (6.133), we get
sin(4.5Q)

XM = Gn0s0)
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which is plotted in Fig. 6-12(a). Similarly, for N, = 8 we get
sin(8.52)

X = S0

which is plotted in Fig. 6.12(b).

(®)

(a)
Fig. 6-12

6.15. (a) Find the inverse Fourier transform x[n] of the rectangular pulse spectrum X(()
defined by [Fig. 6-13(a)}

1 Ql<w
X(Q)=
(@) 0 w<lQlsm
(b) Plot x[n] for W=1m/4.
X
]
1 1 1 ) -
2w - W 0 w ™ 2w 4]
(a)
x|n}
[l
44
432101234 10 n
(b)
Fig. 6-13
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(a) From Eq. (6.28)
sin Wn

1 1 3 1 w .
snl= o [ x(Q) = o [* a0 - ——

Thus, we obtain
sin Wn 1 Q< W (6.134)

0 wW<|Ql<m

HX(9)={

mn

(b) The sequence x[n] is plotted in Fig. 6-13(b) for W = /4.

6.16. Verify the frequency-shifting property (6.44), that is,
e Mx[n] > X(Q - Q)

By Eq. (6.27)
Flex[nl} = ¥ e/Mx[n]e~ i

n=-ow

= X x[n]e @0 =X(Q - Q)
Hence,
e Mx[n] > X(Q-Q,)

6.17. Find the inverse Fourier transform x[n] of
X(Q)=2786(Q~-Q,) QL 1Q <7

From Egs. (6.28) and (1.22) we have

1 . ,
x[n]= ﬁf_f”‘s(“ —0,) e dQ = /%o

Thus, we have

e/ 28— Q) 1QL1Q <7 (6.135)
6.18. Find the Fourier transform of
x[n] =1 all n
Setting Q, =0 in Eq. (6.135), we get
x[n] =1 278(Q) Q< (6.136)
Equation (6.136) is depicted in Fig. 6-14.
x(n] X(€)
! 2180
B J | l ] l ]
| > 1 | ] >
2-10 1 2 n - 1] L 9]

Fig. 6-14 A constant sequence and its Fourier transform.
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6.19. Find the Fourier transform of the sinusoidal sequence
x[n] =cos Qyn [Qol<m
From Euler’s formula we have
cos Qon = 5( /o 4 ¢~/ hom)

Thus, using Eq. (6.135) and the linearity property (6.42), we get

X(Q)=1T[B(Q—QO)+6(Q+QO)] 1QLIQ <7
which is illustrated in Fig. 6-15. Thus,
cos Qgn Hw[S(Q—QO) +8(Q+Q0)] 1QL1Qy <7 (6.137)
x{n] X((1)
B+ Q) mB(A1 - )
1
—>
1 1 >
0 n 0 Q, 0 Q, o O

Fig. 6-15 A cosine sequence and its Fourier transform.

6.20. Verify the conjugation property (6.45), that is,
x*[n] > X*(-Q)
From Eq. (6.27)

Flxl) = T X*[n]e‘fﬂ"=( > x[,,]e,m)*

5 x[nle-f<-“>")'=x*<—n>

n=—o

Hence,
x*n]—X*(-0)

6.21. Verify the time-scaling property (6.49), that is,
Xm[n] = X(mQ)
From Eq. (6.48)

x[n/m] =x[k] if n=km, k = integer

*eln] =1 if 1+ km

Then, by Eq. (6.27)

?[x(m)[n]}= i x(m)[n]e‘m"

n=-—o
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6.22,

Changing the variable n = km on the right-hand side of the above expression, we obtain

o

f{x(m)[n]}= i Xy k] eIk = Y x[k]e HmDk = X(mQ)

k= - k=-w
Hence,
x(m)[n] —X(mQ)

Consider the sequence x[n] defined by

x[n] = 1 Inl<2
0 otherwise

(a) Sketch x[rn] and its Fourier transform X((}).
(b) Sketch the time-scaled sequence x,[n] and its Fourier transform X, ({2).
(c) Sketch the time-scaled sequence x;[n] and its Fourier transform X;(().
(a) Setting N, =2 in Eq. (6.133), we have

sin(2.54)

The sequence x[n] and its Fourier transform X(€1) are sketched in Fig. 6-16(a).

X(Q (6.138)

x[n) (V)

A

C
C
.

(@)

Xln) Xo(Q) = X(20)

0 n
()]
xglnl X5,()) = X(3()
1
<
0 n

Fig. 6-16
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6.23.

6.24.
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(b) From Egs. (6.49) and (6.138) we have

sin(5Q)

sin( Q)
The time-scaled sequence x,[n] and its Fourier transform X,(Q}) are sketched in Fig.
6-16(b).

(¢) In a similar manner we get

X () =X(2Q) =

sin(7.5€)
sin(1.5Q))

The time-scaled sequence x[n] and its Fourier transform X () are sketched in Fig.
6-16(c).

X3() =X(3Q) =

Verify the differentiation in frequency property (6.55), that is,
dx(Q)
dQ

nx[n] <]

From definition (6.27)

X(Q)= Y x[n]e7"
n=—c
Differentiating both sides of the above expression with respect to €} and interchanging the
order of differentiation and summation, we obtain

dx(Q) d * ) i d )
- — —jQn | — (.- i0n
aQ dn(ﬁj["]" ) nE;‘["]dn“ )
=—j T mln]er
Multiplying both sides by j, we see that
* ) ax(Q
Flual) = £ mlnlemn - S
Hence,
dx(Q)
mnl—i—3q

Verify the convolution theorem (6.58), that is,
xi[n]* x,[n] & X,(2) X,(2)
By definitions (2.35) and (6.27), we have
y{xl[”]* xz["]} = X ( X xi[k]xy[n _k]) e

n=-~-w \k= -0

Changing the order of summation, we get

F{x,[n)* x,[n]) = y x,[k]( 7 xz[,,_k]e-mn)

k=—w n=—ow
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By the time-shifting property Eq. (6.43)

Thus, we have

Hence,

Y xy[n—kle M =e/%X,(Q)

n=—-w

F{xllnl*le"]}:kg x,[k]e 7 X,(Q)
-[  ntkre o - xqarx)

x [n]x x,[n] = X,(Q) X,(Q)
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Using the convolution theorem (6.58), find the inverse Fourier transform x[n] of

X(0) = lal < 1

(1- ae"")2

From Eq. (6.37) we have

Now

a"u[n] lal <1

1—ae ®

X(Q)=

oy~ (= (=)
(1 _ae—jﬂ)z \1-ae /{1 —ge®

Thus, by the convolution theorem Eq. (6.58) we get

Hence,

x[n)=a"u[n]*a"u[n] = )E a*ulkla" *u[n — k]

k=-—w

=qa" i 1=(n+1)a"u[n]
k=0

(n+1)a"u[n] lal <1

(1 —ae_m)Z

Verify the multiplication property (6.59), that is,

Let x[n] =

By Eq. (6.28)

1
xy[n]x;[n] EXI(Q) ® X,(Q)

x,[n]x,[n]. Then by definition (6.27)

©

X(Q) = Z xl["]xz["]e_jn"

n=—w

1 :
x[n]= E;r—j; X,(8) e de
m

(6.139)
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6.27.

6.28.
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©

Then X(Q)= ¥ [Zi-[ Xl(G)e"”"dOIxz[n]e”n"
™ 2

n=-—®

Interchanging the order of summation and integration, we get

X(m=% Xl(e)( » xZ[nJe-"“*‘”"]de

n=—%

—-f X(0) X;(2 - 0) df = ——X,(02) ®X,(0)

Hence,

1
x[n]x,[n] = ?;XI(Q) 8 X,(Q)

Verify the properties (6.62), (6.63a), and (6.63b); that is, if x[n] is real and
x[n] =x,[n] +x,[n] > X(Q)=A4(Q) +jB(Q) (6.140)
where x,[n] and x[n] are the even and odd components of x[n], respectively, then
X(-Q)=X*(Q)
x[n] > Re(X(Q)) =4(Q)
x,[n] > Im{X(Q)} =/B(Q)
If x[n]is real, then x*[n]=x[n], and by Eq. (6.45) we have
x*n] > X*(-Q)
from which we get
X(Q)=X*(-Q) or X(-0Q)=X*Q)
Next, using Eq. (6.46) and Eqgs. (1.2) and (/.3), we have

—n]=x[n] -x,[n] > X(-Q) =X*(Q) =4(Q) - jB(Q) (6.141)
Adding (subtracting) Eq. (6.141) to (from) Eq. (6.140), we obtain
x [n] = A(Q) = Re{X(Q)})
x,[n]«jB(Q) =j Im{ X(Q)}
Show that
1
uln] —wd(Q)+ ——=a Q<7 (6.142)
Let

uln] > X(Q)
Now, note that
8[n)=u[n] —u[n-1)

Taking the Fourier transform of both sides of the above expression and by Egs. (6.36) and
(6.43), we have

1=(1-e7)X(Q)
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6.29.

6.30.

Noting that (1 —e ™) =0 for Q =0, X(Q2) must be of the form

X(Q)=A45(0)+ . Q<

where A is a constant. To determine 4 we proceed as follows. From Eq. (1.5) the even
component of u[n] is given by

u[n] =73+ 38[n]
Then the odd component of u[n] is given by

up[n] =uln] —u[n]=uln] -3 -38[n)

1
and f{uo[n]]=A6(Q)+ﬁ—176(ﬂ)—5
From Eq. (6.63b) the Fourier transform of an odd real sequence must be purely imaginary.

Thus, we must have A =, and

1
u[n]<—>-n~6(Q)+:_—jﬁ (Q'S‘IT
Verify the accumulation property (6.57), that is,
Y x[k]e—»wX(O)B(Q)+ _JQX(Q) Ql<m

k=—-x

From Eq. (2.132)

n

Y x[k]=x[n]*uln]

k= —o
Thus, by the convolution theorem (6.58) and Eq. (6.142) we get

n 1
Z x[k]<—>X(Q) 175(0.) +m

k= —o

Q<

=7X(0)8(Q) + ——=X(Q)

_In

since X(Q) 6(Q) = X(0) () by Eq. (1.25).

Using the accumulation property (6.57) and Eq. (1.50), find the Fourier transform of
u[nl

From Eq. (1.50)
uln] =} 8[k]

k= —c
Now, from Eq. (6.36) we have
8[n}e1
Setting x[k]=8[k] in Eq. (6.57), we have
x[n]=8[n]e>X(Q)=1 and  X(0)=
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n 1
and uln]l= Y, 6[k]<——»7r§(ﬂ)+1_e_jn Q<7

k= -

FREQUENCY RESPONSE

6.31. A causal discrete-time LTI system is described by

yln] = ayln=1) +5y[n -2 =x[n]

[CHAP. 6

(6.143)

where x[n] and y[n] are the input and output of the system, respectively (Prob. 4.32).

(a) Determine the frequency response H({)) of the system.
(b) Find the impulse response A[n] of the system.
(a) Taking the Fourier transform of Eq. (6.143), we obtain
Y(Q) - 2e72Y(Q) + fe 22Y(Q) = X(Q)
or
(1-2e7% 4 Le20)Y(Q) = X(Q)
Thus,

1) = Y(Q) 1 1

X(Q) a 1 -3¢ /M4 Lo 20 = (1- %e"“)(1~}e‘f“)

(b) Using partial-fraction expansions, we have
1 2 1

1) = - — = — — -
H) = oy Tem) T8 T lem

Taking the inverse Fourier transform of H((1), we obtain
hln) = [2(3)" = (4)"]uln)

which is the same result obtained in Prob. 4.32(b).
6.32. Consider a discrete-time LTI system described by
y[n] = 3y[n = 1] =x[n] + 3x[n — 1]

(a) Determine the frequency response H{{}) of the system.
(b) Find the impulse response h[n] of the system.
(¢) Determine its response y[n] to the input

o
x[n] =cos—2-n

(a) Taking the Fourier transform of Eq. (6.144), we obtain
Y(Q) - Le70Y(Q) = X(Q) + Le 70X (Q)

(6.144)
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Thus,
Y(Q 1+ 1e /¢
H(Q) = L = —fﬁ
X(Q)  1-le
1 e
= — 4+ — .
(b) H(Q) =L 37 om

Taking the inverse Fourier transform of H({)), we obtain

h[n]=(%)nu[n]+%(—;-)n_lu[n1]={z%)n—| ::(1)
(¢) From Eq. (6.137)
X(Q)=w[5(ﬂ—%)+6(ﬂ+%)] Q<7

Then
1,-j0

Y(Q) = X(Q)H(Q) =w[a(n— %) +5(n+ %)]%

1+ 3e7m/? T 1+ Leim/? T
| 5(0——)+w T 5(Q+5)

1—fe/m/? 2 1—gem/?

1-j3% T 1453 T
= —f 5(9——-)+7T }_f 5(Q+7)
1+]§ 2 1—}7 2

=,-,-5(Q - Z) e—lean"1(|/2)+7T5(Q + f_) e/2tan~'/2)
2 2

Taking the inverse Fourier transform of Y({) and using Eq. (6.135), we get

y[n] - 181'(11'/2)" e—jZ(an"(l/Z) + le—/(v/Z)e,'zxan"(l/Z)
2 2
T 5 . 1
=cos{ —n—2tan" ' —
2 2

6.33. Consider a discrete-time LTI system with impulse response
sin(wn/4)

mh

h[n] =

327

Find the output y[n] if the input x[n] is a periodic sequence with fundamental period

N, =5 as shown in Fig. 6-17.
From Eq. (6.134) we have
1 Ql<m/4

H(Q) = 0 /4 <|Ql<mw

Since Q= 2m/N,=2m/5 and the filter passes only frequencies in the range |} <7 /4, only

the dc term is passed through. From Fig. 6-17 and Eq. (6.11)

1 4 3

Co= gngox[n] =3
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2-101 23 435 n
Fig. 6-17

Thus, the output y[n] is given by

y[n]=1% all n

6.34. Consider the discrete-time LTI system shown in Fig. 6-18.
(a) Find the frequency response H({1) of the system.
(b) Find the impulse response A[n] of the system.
(c) Sketch the magnitude response |H(£})| and the phase response 8({}).
(d) Find the 3-dB bandwidth of the system.

(a) From Fig. 6-18 we have

y[n}=x[n] +x[n -1} (6.145)
Taking the Fourier transform of Eq. (6.145) and by Eq. (6.77), we have
Y(Q ) ) ) .
H(Q) = }% =1+e /P =e/0/2(/V2 4 i1/
) Q
=2e"n/2cos(§) Q< (6.146)

(b) By the definition of A[rn] [Eq. (2.30)] and Eq. (6.145) we obtain
h[n]=6[n]+8[n—1]

_J1 O<n<l
or hln] = {0 otherwise

(¢) From Eq. (6.146)

Q
lH(Q)[=2cos(E) Q<

x[n) -~ fz\ yln) _

Fig. 6-18
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and 0(Q) = —

Q
= Q<
2

which are sketched in Fig. 6-19.

IH()I

oy

3
N;:l ~

8(Q)

NYE

Fig. 6-19

(d) Let Q,4, be the 3-dB bandwidth of the system. Then by definition (Sec. 5.7)
1
IH(Q:!dB)l = —EIH(Q)’max

we obtain

Qj348 1 T
cos( 5 )=—E and 93"5:5

We see that the system is a discrete-time wideband low-pass finite impulse response
(FIR) filter (Sec. 2.9C).

6.35. Consider the discrete-time LTI system shown in Fig. 6-20, where a is a constant and
0<acx<l.

x[n] y(n)

> KEX >
+
l
1

Fig. 6-20
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(a) Find the frequency response H({)) of the system.

. . Since —1 = ¢’™, we can write
(b) Find the impulse response A[n] of the system.

. h{n)=(-1)"h =el™h 6.152
(c) Sketch the magnitude response |H()| of the system for a = 0.9 and a = 0.5. (7] = (=1) hrpeln] = " hipeln] ( )
. Taking the Fourier transform of Eq. (6.152) and using the frequency-shifting property (6.44),
(a) From Fig. 6-20 we have we obtain
y[n]—ay[n - 1] =x[n] (6.147) H(Q) =Hpe(Q—7)
Taking the Fourier transform of Eq. (6./47) and by Eq. (6.77), we have which represents the frequency response of a high-pass filter. This is illustrated in Fig. 6-22.
1
H(Q) = ——— lal < 1 (6.148)
1-ae Hypr( Q) H(Q) = Hypl ) - )
(b) Using Eq. (6.37), we obtain
h[n] =a"u[n] ' X '
[ | 1
(¢) From Egq. (6.148) 1 ' ) )
] 1 ] 1
1 1 1 1 1 1
H(Q) = = 1 1 > 1 1 1 L
() 1-ae”® 1-acosQ+jasinQ - -Q, 0 Q. ™ Q - em Q) 0 -0, w 0
and Fig. 6-22 Transformation of a low-pass filter to a high-pass filter.
1 1
|IH(Q)| = 7 (6.149)

[(1——acosQ)2+(asinQ)2]l/2 (1+a*-2acos )"
hich is sketched in Fig. 6:21 f —09 and 2 =0.5 6.37. Show that if a discrete-time low-pass filter is described by the difference equation
which is sketched in Fig. 6- or a=0.9 and a =0.5. M

We see that the system is a discrete-time low-pass infinite impulse response (IIR) J
filter (Sec. 2.9C). ylnl = "El"k”""k]*k:obkx["_k] (6.153)
then the discrete-time filter described by
Al k u k
y[n] == X (=D'ay[n—k] + X (=1)"bx[n - k] (6.154)
k=1 k=0

is a high-pass filter.

Taking the Fourier transform of Eq. (6.153), we obtain the frequency response H pp({2) of
the low-pass filter as

M
b —JjkQ
vy  E0¢
Hipp(2) = X - X (6.155)
Fig. 6-21 1+ Y ae /%
k=1
If we replace ) by (2 — 7) in Eq. (6.155), then we have
M M
6.36. Let h,peln] be the impulse response of a discrete-time low-pass filter with frequency by e k@-m Y b (-1 e
response H\ pp(Q). Show that a discrete-time filter whose impulse response hln] is Hypp(Q) = Hypp(Q - ) = —2=% = k=0 (6.156)
given by 1+ Yae @™ 14 ¥ (1) ae
h(n] = (=1)"hype[n] (6.150) ! o

. which corresponds to the difference equation
is a high-pass filter with the frequency response P d

N M
H(Q) =Hpp(— ) (6.151) yln]=- % (‘l)kaky["_k] + X (_l)kbkx["_k]
k=1 k=0
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6.38.

6.39.
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Convert the discrete-time low-pass filter shown in Fig. 6-18 (Prob. 6.34) to a high-pass
filter.

From Prob. 6.34 the discrete-time low-pass filter shown in Fig. 6-18 is described by [Eq.
(6.145)]

y[n]=x[n]+x[n-1]
Using Eq. (6.154), the converted high-pass filter is described by
yln]=x[n]-x[n—-1]

which leads to the circuit diagram in Fig. 6-23. Taking the Fourier transform of Eq. (6.157) and
by Eq. (6.77), we have

(6.157)

H(Q) =1 e o e-jn/z(ejn/z _ e—m/z)

Q _ Q
=j2e”n/zsin5 =2¢ltm—/2 sin-z— Q< (6.158)

From Eq. (6.158)

Q
IH(Q)| =2 sin(;)' Q<
(m-Q)/2 0<Q<w
and 0“”={(—w—npq —r<0<0

which are sketched in Fig. 6-24. We see that the system is a discrete-time high-pass FIR filter.

x[n]) yin]

2 -1
-

Fig. 6-23

The system function H(z) of a causal discrete-time LTI system is given by

b+z!

H(z)= (6.159)

1—az!
where a is real and |a] < 1. Find the value of b so that the frequency response H({})
of the system satisfies the condition

[H(Q)l=1 all ) (6.160)
Such a system is called an all-pass filter.
By Eq. (6.34) the frequency response of the system is
b+e
H(Q)=H(Z)|:=(./sl=m (6.161)
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IH(Q)!
2
1 1 1 1 >
T 12’ 0 % T Q
8(Q)

6.40.

3
o
3

=)

Fig. 6-24
Then, by Eq. (6.160)
‘ b+e i
[H(Q)]= T e

which leads to

b+e =1 —ae?
or |b+ cos Q —jsin Q=11 —acos Q +jasin Q]

or 1+b2+2bcosQ=1+a*—2acos (6.162)

and we see that if b= —a, Eq. (6.162) holds for all ) and Eq. (6.160) is satisfied.

Let A[n] be the impulse response of an FIR filter so that
h{n] =0 n<0,n>N
Assume that A[n] is real and let the frequency response H({}) be expressed as

H(Q) = |H(Q)]e*D
(a) Find the phase response () when A[n] satisfies the condition [Fig. 6-25(a)]
h{n) =h[N—-1-n] (6.163)
(b) Find the phase response 6(() when h[n] satisfies the condition [Fig. 6-25(5)]
h[n] = —=h[N =1 —n] (6.164)



334 FOURIER ANALYSIS OF DISCRETE-TIME SIGNALS AND SYSTEMS [CHAP. 6
hln) hin]
! ]
! 1
1
N odd : N even
1
L] LLELL]
]
—o- *—o—o > * —LL * >
0o v " R v
2 2
(@)
hln) hin]
1 I
' 1
' 1
: Nodd : N even
1 '
i [
. ;rll== . . :I — N
0 l | gt N n 0 l N o
' 1
) Nt
7

(a)

(b)

Fig. 6-25

Taking the Fourier transform of Eq. (6.163) and using Eqgs. (6.43), (6.46), and (6.62), we
obtain

H(Q) =H*(Q) e N-00

or [H()e®D =|H(Q)|e /00 ¢ =iN=-1E
Thus,

6(Q)=-0(2)-(N-1)Q
and Q)= -HN-1Q (6.165)
which indicates that the phase response is linear.
Similarly, taking the Fourier transform of Eq. (6.164), we get

H(Q) = —H*(Q) e /¥-ht
or [H( Q)| = |H(Q)|e/™ ¢ /8D g =AN-DA
Thus,

0(Q)=7~-8(2)-(N-1)Q

T 1

and B(Q)=E—§(N—1)Q (6.166)

which indicates that the phase response is also linear.
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6.41. Consider a three-point moving-average discrete-time filter described by the difference
equation

(a)
(b)
(¢)

(a)

(b)

y[n] =3{x[n] +x[n—1] +x[n -2]} (6.167)

Find and sketch the impulse response h{n] of the filter.
Find the frequency response H(() of the filter.
Sketch the magnitude response |H(Q)| and the phase response () of the filter.

By the definition of A[n] [Eq. (2.30)] we have

h[n] = 3{8[n]+8[n— 11+ 8[n—2]} (6.168)
or h[n]={§ O<n<2
0 otherwise

which is sketched in Fig. 6-26(a). Note that h[n] satisfies the condition (6./63) with
N=3.
Taking the Fourier transform of Eq. (6.168), we have

H(Q)=3{1+e 7 +e 27

IH(Q)!

hin]

=3 J

3
=) J

(b)
Fig. 6-26
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By Eq. (1.90), with « = ¢/, we get
1 l_e—j3ﬂ 1 e—j}ﬂ/Z(ejSQ/Z_e—j3Q/2)

H(Q)=§ 1—e® 3 ¢ I0/2(0/2 oI/
1 sin(3Q/2) ,
-——p A~ 7 —jst
=3e / Sn(9/2) H(Q)e (6.169)
Q) = 1 sin(3Q/2)
where H(Q) = 3 m (6.170)
(¢) From Eq. (6.169)
B 1 sin(3Q/2)
IH(M)=1H, ()= 3| sin(Q/2)
P -Q when H,(Q1) >0
and 6(Q) = -Q+7 when H,(Q) <0

which are sketched in Fig. 6-26(b). We see that the system is a low-pass FIR filter with
linear phase.

6.42. Consider a causal discrete-time FIR filter described by the impulse response
h(n} =1{2,2,-2,-2}

(a) Sketch the impulse response A[n] of the filter.
(b) Find the frequency response H(Q) of the filter.
(¢) Sketch the magnitude response |H(Q)| and the phase response 6(Q)) of the filter.

(a) The impulse response h[n] is sketched in Fig. 6-27(a). Note that h[n] satisfies the
condition (6.164) with N =4,

(b) By definition (6.27)
H(Q)= Y h[n]e =242/ —2¢7 /20~ 27730

n=—w
= 2(1 - P0) 42710 - ¢ 20
— 2e—j3(1/2(ej3ﬂ/2 _ e—]}ﬂ/Z) + 28—1'30/2(ejﬂ/2 _ e—jQ/Z)

. Q 3Q
=je"3“/2(sin7 + sin—z—) =H (Q) lm/D-602/2) (6.171)
h H () = sin[ 2 + sin[ 22
where ( )—snn(7)+sm(—2—)
(¢) From Eq. (6.171)
Q 30
|[H(Q)=1H (Q)|= sin(— +sin(~)

2 2

. /2 -30 H(Q)>0

(@)= -7/2-30 H/(Q)<0

which are sketched in Fig. 6-27(b). We see that the system is a bandpass FIR filter with
linear phase.
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1H(QY
154
hln} L ¢ 1 —r>
™ = 0 T m Q
2 2

6((2)

3
/
T

[MIE}

f=o) J

(@)

(b)
Fig. 6-27

SIMULATION

6.43. Consider the RC low-pass filter shown in Fig. 6-28(a) with RC = 1.

(a) Construct a discrete-time filter such that
ha[n) =h(t)i-nr,=h(nT;) (6.172)

where h(¢) is the impulse response of the RC filter, A [n] is the impulse
response of the discrete-time filter, and 7, is a positive number to be chosen as
part of the design procedures.

(b) Plot the magnitude response | H (w)| of the RC filter and the magnitude response
|H (oT))| of the discrete-time filter for 7, =1 and T, = 0.1.

(a) The system function H.(s) of the RC filter is given by (Prob. 3.23)

1
=— 6.173
H{(s) = — (6.173)
and the impulse response 4 (¢) is
h(t)y=e""u(t) (6.174)

By Eq. (6.172) the corresponding h[n] is given by

hy[n)=e"Tuln] = (e ") uln) (6.175)
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R
T T
l +
x(t) y(1)

[

yin]

(a)

-
+
3
e’
o o

)
Fig. 6-28 Simulation of an RC filter by the impulse invariance method.

x[n)

Then, taking the z-transform of Eq. (6./75), the system function H,(z) of the discrete-
time filter is given by

1
H(z)=————
4(2) l—e Tig !
from which we obtain the difference equation describing the discrete-time filter as

y[n]—e Ty[n—1]=x[n]

from which the discrete-time filter that simulates the RC filter is shown in Fig. 6-28(b).
By Eq. (5.40)

(6.176)

1
Hr(w) =H¢'(S)‘S’JW= jw+1
Th |H ()l !
cn WN=E ————1 >3
¢ (1 +w2)1/2
By Egs. (6.34) and (6.81)
1
Hy(oT)) =H/(z)l,zenm = —-—‘—1 e Tig e,

From Eq. (6.149)
1

[1+e 20— 2¢ T cos(wT,)]

|Hy(wT)l = 1,2
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From 7, =1,
1

[1+e72- Ze"cos(w)]l/2

|H (Tl =

For T, =0.1,
1

[1+e792=2e7" cos(0.1w)]

'Hd(wTs)|= 1/2

The magnitude response |H.(w)| of the RC filter and the magnitude response |H (wT,)|
of the discrete-time filter for T, =1 and T, = 0.1 are plotted in Fig. 6-29. Note that the
plots are scaled such that the magnitudes at w = 0 are normalized to 1.

The method utilized in this problem to construct a discrete-time system to simulate
the continuous-time system is known as the impulse-invariance method.

1H (w)l
IHAwT,)

' 1H (w)! /]V ) -
0 5 10 15
Fig. 6-29

6.44. By applying the impulse-invariance method, determine the frequency response H,(Q)
of the discrete-time system to simulate the continuous-time LTI system with the
system function

~ 1
s+ 1)(s+2)

Using the partial-fraction expansion, we have

H(s)

c

1

H‘(S)=s+1 Ts+2

Thus, by Table 3-1 the impulse response of the continuous-time system is
h(t)=(e™" —e *)u(1)
Let h,[n] be the impulse response of the discrete-time system. Then, by Eq. (6.177)
halnl=h(nT) = (e~ —e"")uln]

(6.177)
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and the system function of the discrete-time system is given by

Hy(z) = ]_e—lnr,zvl - 1__8—12,-1,2-1 (6.178)
Thus, the frequency response H, () of the discrete-time system is
1 1
Hy(Q) = H(2)emor = T = —=a ~ T ,=om pom (6.179)
Note that if the system function of a continuous-time LTI system is given by
NoA,
H(s) = /E ra (6.180)

then the impulse-invariance method yields the corresponding discrete-time system with the
system function H,(z) given by

N

A
HA(2) = ¥ T——orT (6.181)
oy 1—e oz

6.45. A differentiator is a continuous-time LTI system with the system function [Eq. (3.20)]

H(s)=s (6.182)

A discrete-time LTI system is constructed by replacing s in H.(s) by the following
transformation known as the bilinear transformation:

2 1-z7"!
T, 14z

s (6.183)

to simulate the differentiator. Again T, in Eq. (6.183) is a positive number to be

chosen as part of the design procedure.

(a) Draw a diagram for the discrete-time system.

(b) Find the frequency response H Q) of the discrete-time system and plot its
magnitude and phase responses.

(a) Let Hy(z) be the system function of the discrete-time system. Then, from Eqgs. (6.182)
and (6.183) we have

2 1-27"
H ()= 157 (6.184)
Writing H,(z) as
2( 1 .
Hi(2) =% ﬁ)(l‘l )

then, from Probs. (6.35) and (6.38) the discrete-time system can be constructed as a
cascade connection of two systems as shown in Fig. 6-30(a). From Fig. 6-30(a) it is seen
that we can replace two unit-delay elements by one unit-delay element as shown in Fig.
6-30(b).
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x[n] yln]
—(% ) >z
+ +

2

- - T
' - > z7
(a)
x{n)
(-
+

(®

Fig. 6-30 Simulation of a differentiator.

(b) By Eq. (6.184) the frequency response H, () of the discrete-time system is given by
2 l—e_m 2 e—jn/Z(ejn/z_e-jn/z)

?s 1+e 2 = f e—jn/Z(ejn/z +e—jﬂ/2)

2 sinQ/2 2 Q 2

Q
_iZ =j—tan— = —tan—e’™/? 6.185
it s 012 ;T:t:am2 T:tanze ( )

5

Hy(Q) =

Note that when ) < 1, we have

H,(Q 2 L 6.186
Al )—JTxtan? =i e (6.186)
if Q=wT, (Fig. 6-31).
rny
/ T
' VLT
1 1
[ i
] s
1 4 1
| [
1 1
1 1
m 0 ™ 5
i '
] P ]
] 7’ '
(I ]
14 ]
L t
. ' t

Fig. 6-31
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6.46. Consider designing a discrete-time LTI system with system function H,(z) obtained by

applying the bilinear transformation to a continuous-time LTI system with rational
system function H(s). That is,

Hy(z)=H.(s)s=@/mx1-2h+:7h (6.187)

Show that a stable, causal continuous-time system will always lead to a stable, causal
discrete-time system.

Consider the bilinear transformation of Eq. (6.183)

2 1-z7"
S=il+2_, (6.188)
Solving Eq. (6.188) for z, we obtain
1+(T,/2)s
z= W (6189)
Setting s =jw in Eq. (6.189), we get
1 +jw(T,/2)
=== 190
=TT, 2) (6.190)

Thus, we see that the jw-axis of the s-plane is transformed into the unit circle of the z-plane.
Let

=re’?  and s=0+jw
Then from Eq. (6.188)
2 z-1 2 re’ -1
5= ?S z+1 N TS rei® 1+ 1
2 ri-1 2rsin §}

.
T.\1+4r%+2rcosQ T3+ 2rcos Q

Hence,
. 6.191
0qi?+r2+2rcosﬂ (6.191a)
2 2rsin
(6.191b)

CU=Fsl+r2+2rcosQ

From Eq. (6.191a) we see that if » < 1, then ¢ <0, and if r > 1, then ¢ > 0. Consequently, the
left-hand plane (LHP) in s maps into the inside of the unit circle in the z-plane, and the
right-hand plane (RHP) in s maps into the outside of the unit circle (Fig. 6-32). Thus, we
conclude that a stable, causal continuous-time system will lead to a stable, causal discrete-time
system with a bilinear transformation (see Sec. 3.6B and Sec. 4.6B). When r =1, then =0
and

2 sin(} 2 Q 6.192
—fl+cosﬂ—7‘_tan7 (6:192)

s

w
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7.

Im(z)

s-plane z-plane

6.47.

Re(z)

Unit circle

2l =1

Fig. 6-32 Bilinear transformation.

w 5
or Q=2tan"7 (6.193)
From Eq. (6.193) we see that the entire range —» <w < is mapped only into the range
—-T<Q<T.

Consider the low-pass RC filter in Fig. 6-28(a). Design a low-pass discrete-time filter
by the bilinear transformation method such that its 3-dB bandwidth is = /4.

Using Eq. (6.192), Q1 45 = w/4 corresponds to

2 0,y 2 2w 0828
w3da—?tan ) —?tang— T,

s

(6.194)

From Prob. 5.55(a), w445 = 1/RC. Thus, the system function H_(s) of the RC filter is given by
H _O828/T, 6.195
()= Toss/T (6.193)

Let H,(z) be the system function of the desired discrete-time filter. Applying the bilinear
transformation (6.183) to Eq. (6.195), we get

0.828/T,
21-z! 0828
___+__
T, 1+z7} T,

s

0.293(1+27")

H -
a(2) 1-0414z"

(6.196)

from which the system in Fig. 6-33 results. The frequency response of the discrete-time filter is
0.293(1 + e"’“)
1-0.414¢7¢

At Q=0,H,0)=1, and at Q=m/4,|H(w/4)=0.707=1/V2, which is the desired re-
sponse.

H,(Q) = (6.197)
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xn) 0.293
: ~ ¥ln)

ty
™M
{
M

|
J=

Fig. 6-33 Simulation of an RC filter by the bilinear transformation method.

6.48. Let h[n] denote the impulse response of a desired IIR filter with frequency response
H(Q) and let 4 [n] denote the impulse response of an FIR filter of length N with
frequency response H ({). Show that when

h O0<n<N-1
h,[n) ={ (7] "= (6.198)
0 otherwise
the mean-square error ¢2 defined by
1 = )
e?=s—[ |H(Q)-H,(Q)’dQ (6.199)
27,
is minimized.
By definition (6.27)
H(Q)= Y hln]e’™ and H(Q)= Y, h[n]e "
Let E(Q)=H(Q) ~H(0)= ¥ (h[n]=h,[n])e "
= Y e[n]e i (6.200)
where e[n] = h[n] — h [n]. By Parseval’s theorem (6.66) we have
1 T @ 2
2= — [(IE(@)Fd= ¥ le[n]’= ¥ Ih[n]-h,[n]?
2m - n=-x n=—%
N-1 -1 o«
= L lhln]=h[n)?+ ¥ Ih[n]i*+ ¥ [A[n]? (6.201)
n=0 n=-w n=N
The last two terms in Eq. (6.201) are two positive constants. Thus, £? is minimized when
h(n)-h,Jn]=0 0<n<N-1
that is,
hln)=hn) 0<n<N-1
Note that Eq. (6.798) can be expressed as
ho(n]l=h[nlw[n] (6.202)
where w[n] is known as a rectangular window function given by
1 0<n<N-1
wlnl = {0 otherwise (6.203)
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DISCRETE FOURIER TRANSFORM

6.49. Find the N-point DFT of the following sequences x[n]:

(a) x[n)l=8ln]
(b) x[nl=uln)—uln —N]

(a) From definitions (6.92) and (1.45), we have

N-1
X[k]= X 8[nlwy" = k=0,1,...,N—1
=0

n

Figure 6-34 shows x[n] and its N-point DFT X[k].

345

x[n] X[k]
1 1
- - n 0 ) 7N-l

Fig. 6-34

(b) Again from definitions (6.92) and (1.44) and using Eq. (1.90), we obtain

N-1 1__wﬁN
X[k]= 2: Ww"=‘ii:;V7’=0 k+0
n=0 N

since WM = e J@m/ NN = g=ikim = 1
N-1 N-1
X[0]= ¥ wy= L 1=N
n=0 n=0

Figure 6-35 shows x[n] and its N-point DFT X[k].

x(n) X[k)

.
-

x~

1111 I -

Fig. 6-35

=
(=]
z

~y
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6.50. Consider two sequences x[n] and A[n] of length 4 given by

ar
x[n] =c0s(5n) n=0,1,2,3

)’ n=0,1,2,3

|-

hin] = (

(@) Calculate y[n]=x[n] ® A[n] by doing the circular convolution directly.
(b) Calculate y[n] by DFT.

(@) The sequences x[n] and A[n] can be expressed as
x[n}={1,0,-1,0) and  h{n]={1.3.5.1)
By Eq. (6.108)

y[n)=x[n)®h[n]= Zox{i]h[n“i]mm

The sequences x[i] and Aln —i] 44 for n =0,1,2,3 are plotted in Fig. 6-36(a). Thus, by
Eq. (6.108) we get

and NOEICERE Y
which is plotted in Fig. 6-36(b).
(b) By Eq. (6.92)

3
X[k)= X x[n]wfn=1-Wzk k=0,1,2,3
n=0

3
Hik)= L h[nlWem =1+ 30+ Wi g k=0.1,2,3

n=0
Then by Eq. (6.107) the DFT of y[n] is
Y{k)=X[k]H[K] = (1 - W)(1+ 3wk + 1w+ L)
=1+ g Wl = JWR = Wk — W - Wt
Since W = (W% = 1¥ and W* = W** Dk = Wk we obtain
Y[k =3+ iWf—aw—gw  k=0,1,2,3
Thus, by the definition of DFT [Eq. (6.92)] we get

ylnl={%5-3.-3)
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(i) hl- 1)
4 1
PE ] :
I ., e .
o1 3 i 3210 i
g
hin - i) ous h(n -] s
1 1
' n=0 \ n=1
T 2
? [] ., e | .
01 23 i 0123 i
AR - i) o AR - 1) noga
1 1
1 l n=2 1 l n=3
2 2
[, ; 1] .
01 23 i 0123 i
(@

(=1
PSS VY

[ e %)

=y

(b)
Fig. 6-36

6.51. Consider the finite-length complex exponential sequence

x[n]={"’m"" 0<n<N-1
0 otherwise

(a) Find the Fourier transform X(Q) of x[n].
(b) Find the N-point DFT X[k] of x[n].
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6.53.
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(a) From Eq. (6.27) and using Eq. (1.90), we have

@ N—-1 N-1
X(ﬂ) — Z x[n]e~}(ln = Z elnu"e’/“" — 2 e-;(ﬂ—ﬂu)n
n=-—o n=0 n=0
1 — e HQ-QN e—j(ﬂ—(h,)N/Z(ej(n—Qu)N/Z — e—j(““ﬂu)N/Z)

1 e i0-ay e T2 (I @002 g A-00/7)

sin[(Q — Qy)N/2]
sin[(Q - Q) /2]

= HA-QXN=1/2

(b) Note from Eq. (6.98) that
k2w
X[k] =X(n)|n=k2,/~=x(7)

we obtain

2
sin[(wk - QO)
= o/@m/ Nk~ QN - 1)/2)
X[k]=¢’ 727
sin (Wk - 00)

N = | Z

|
|

Show that if x[n] is real, then its DFT X[k] satisfies the relation

X[N—-k]=X*k] (6.204)
where * denotes the complex conjugate.
From Eq. (6.92)
N-1 N-1
X[N=k]= L s[n]Wf=on = % x{n]esir/vxn-on
n=0 n=0
Now e*j(Z‘rr/N)(NAk)n = e—-1'21rn ej(er/N)kn - ej(21r/N)kn
Hence, if x[n] is real, then x*{n]=x[n] and
N—t N-1 *
X[N—-k]: Z x[n]el,(lw/N)kn___ 2 x[n]e—j(Z‘rr/N)kn ___X*[k]
n=0 n=0
Show that
1
x[n] = IDFT{X[k]} = }—V—[DFT{X*[k]}]* (6.205)

where * denotes the complex conjugate and
X[k] = DFT{x[n]}
We can write Eq. (6.94) as

1[~-t ) 1 [~-1 ) *
x[n]=5| X X[k]e"”/’”*"] = 5| L X*[k]eremsmnk
n=0 n=0
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6.54.

Noting that the term in brackets in the last term is the DFT of X*[k], we get
1
x[n) = IDFT( X[k} = < [DFT{X*[]}]*

which shows that the same algorithm used to evaluate the DFT can be used to evaluate the
IDFT.

The DFT definition in Eq. (6.92) can be expressed in a matrix operation form as

X = Wyx (6.206)
where
x[0] x{0]
o x[:l] . XEI]
[N 1] X[N-1]
M 1 1 1
1 W, w2 . Wy
w, =1 Wi Wy Wi (6.207)
R S -

The N X N matrix Wy, is known as the DFT matrix. Note that Wy, is symmetric; that is,
WJ = W,,, where W) is the transpose of W,,.

(a) Show that
wol= _lw*
N N N
where Wy ! is the inverse of W, and W} is the complex conjugate of W,,.
(b) Find W, and W, ' explicitly.

(a) If we assume that the inverse of Wy, exists, then multiplying both sides of Eq. (6.206) by
W, !, we obtain

(6.208)

x=Wy'X (6.209)

which is just an expression for the IDFT. The IDFT as given by Eq. (6.94) can be
expressed in matrix form as

1
x= WX (6.210)
Comparing Eq. (6.210) with Eq. (6.209), we conclude that

1
WJ'=NWKf
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(b) Let W, ,,, denote the entry in the (n + 1)st row and (k + 1)st column of the W,
matrix. Then, from Eq. (6.207)

Wisi ka1 = Wik = e7i@m/nk o g=itm/Dnk — (_ jy" (6.211)
and we have
1 1 1 1 1 1 1 1
1 -J -1 j o1 1 J -1 —J
W=l -1 1 -1 Wor=gl g -1 1 -1
1 i -1 -j 1 -j -1 j
(6.212)
(a) Find the DFT X[k] of x[n]1=1{0,1,2,3}.
(b) Find the IDFT x[n] from X[k] obtained in part (a).
(a) Using Egs. (6.206) and (6.212), the DFT X{k] of x[n] is given by
Xx[0] 1 1 1 1o 6
x| | 1 —j -1 i) | -2+52
x[2)| | 1 -1 1 -1fl2 | -2
X[3) 1 j -1 —-ill3 —2-j2
(b) Using Egs. (6.209) and (6.212), the IDFT x[n] of X[k] is given by
x[0] 1 1 1 1 6 0 0
x[l] _1 1 J -1 —J -2+j2 _1 4 _ 1
x[2)| 4| 1 -1 1 -1 -2 | 48] |2
x[3] 1 —j —1 ill —2-j2 12 3
Let x[n] be a sequence of finite length N such that
x[n]=0 n<0,n=N (6.213)
Let the N-point DFT X[k] of x[n] be given by [Eq. (6.92)]
N-1
X[k] = ¥ x[n]wkn Wy = e f@m/N) k=0,1,...,N-1 (6.214)
n=0

Suppose N is even and let
fln] =x[2n]
gln] =x[2n+1]

(6.215a)
(6.215b)

The sequences f[n] and g[n] represent the even-numbered and odd-numbered
samples of x[n], respectively.

(a) Show that

N
outsideOsns—Z— ~1

flnl=g[n] =0 (6.216)
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(c)

(d)

(a)

(b)
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Show that the N-point DFT X[k] of x[n] can be expressed as

N
X[k] =F[k] + WyGl[k] k=0,1,...,5 =1 (6.2I7a)
N N
X|k+ 5| =F[k] - WyG[k] k=01,..,— =1 (6217)
(N/2)-1 N
where F[k)= Y fln)wé, k=01,..., 5 ~1 (6.218a)
n=0
(N/2)-1 N
Glk]= ¥ g[n]Wy); k=0,1,..,5 -1  (6.218)

n=0

Draw a flow graph to illustrate the evaluation of X[k] from Eqs. (6.217a) and
(6.217b) with N =8,

Assume that x[n] is complex and W,(,"‘ have been precomputed. Determine the
numbers of complex multiplications required to evaluate X[k] from Eq. (6.214)
and from Egs. (6.217a) and (6.217b) and compare the results for N = 2'0 = 1024.

From Eq. (6.213)
N
fln]l=x[2n]=0,n<0  and f[—2—]=x[N]=0
N

n<0,n>—

Thus fln]=0 3

Similarly

N
gln]=x[2n+1]=0,n<0  and g[?]=x[N+1]=0

Thus, g[n]=0

<0,nz=—
n n>2

We rewrite Eq. (6.214) as
X[kl= X x[nlWf"+ ¥ x[n]Wy"

neven nodd
(N/2-1 (N/2-1
= Y x[2m]wim*+ Y x[2m+ 1]Ww @Ok (6.219)
m=0 m=0
But W2 = (e7I@m/N)? < gitém /Ny i /N/D — (6.220)
With this substitution Eq. (6.219) can be expressed as
(N/2-1 (N/2-1
X[kl= X flmIWih+wi ¥ elmIwih
m=0 m=0
=F[k] + WkG[k] k=01,...,N-1 (6.221)
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(c)

(d)
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(N/2)— N
where Flkl= X flnlwis, k=0,1,...,?—1
n=0
(N/2)—1 N
Glkl= X sglnlwi, k=0,1,.., > -1

n=0
Note that F[k] and G[k] are the (N/2)-point DFTs of f[n] and g[n], respectively. Now
WEN/2 = WEWN/ = — Wk (6.222)
since W2 = (el /N NVD _pmjm (6.223)

Hence, Eq. (6.221) can be expressed as

N
X[k]=F[k]+WkG[k] k=01, 5 -1

N N
X|k+ = | =F[k] - WiG[k] k=01, > =1

The flow graph illustrating the steps involved in determining X[k] by Egs. (6.217a) and
(6.217b) is shown in Fig. 6-37.

To evaluate a value of X[k} from Eq. (6.214) requires N complex multiplications. Thus,
the total number of complex multiplications based on Eq. (6.214) is N . The number of
complex multiplications in evaluating Flk} or G[k] is (N/2)%. In addition there are N
multiplications involved in the evaluation of Wy Glk]. Thus, the total number of complex
multiplications based on Egs. (6.217a) and (6.217b) is 2AN/2)*+ N =N?2/2+N. For
N =2"=1024 the total number of complex multiplications based on Eq. (6.214) is
220 = 10° and is 10°/2 + 1024 = 10°/2 based on Egs. (6.217a) and (6.217b). So we see
that the number of multiplications is reduced approximately by a factor of 2 based on
Egs. (6.217a) and (6.217b).

The method of evaluating X[k] based on Egs. (6.217a) and (6.217b) is known as the
decimation-in-time fast Fourier transform (FFT) algorithm. Note that since N/2 is even,
using the same procedure, F{k] and G[k] can be found by first determining the
(N /4)-point DFTs of appropriately chosen sequences and combining them.

F10]

(0] X10)
x(2] o \ / X1
Wl NN

x(4]

x{6] ————

X(3)

x( 1 | =—————v

™ X[4]

Wb
Gy

x(3] wpom > X151
> X[6]

1
! i / \ X

x(7 >
7 b T

Fig. 6-37 Flow graph for an 8-point decimation-in-time FFT algorithm.
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6.57. Consider a sequence
x[n]={1,1,-1,-1,-1,1,1,— 1}
Determine the DFT X[k] of x[n] using the decimation-in-time FFT algorithm.
From Figs. 6-38(a) and (b), the phase factors W,* and Wy are easily found as follows:

W40=1 W4l =-j W4z= -1 W43 =]
and wd=1 WB‘=L—jL WE=—j W3=—L—j—1—
V2 V2 ¢ ¢ V2 V2
Wi =-1 W85=—L+j-1— We=j W7=L+j—1—
V2 V2 ¢ R

Next, from Eqs. (6.215a) and (6.215b)
fln]=x[2n] = {x[0], x[2], x[4], x[6]} = {1,—- 1,- 1,1}
gln]=x[2n+1] = {x[1], x[3], x[5), x[7]} = {1,-1,1,—- 1}
Then, using Eqgs. (6.206) and (6.212), we have

r ar E r

353

F[0]] 1 1 1 1 1 0
Fl11| | 1 -j -1 i -1] _[2+i2
F[21] | 1 -1 1 -1l-1] | o
F[3]] | 1 j -1 -i|l 1] [2-i2
Glo)l] [ 1 1 1 [ 1] [o
G| | 1 -j -1 iff-1]_{o
G[2]1| | 1 -1 1 -1 1| (4
G[31] | 1 j -1 -ij[-1] [0
Im(z) Im(z)
n=37 n=614
Izl=1
IzI=1
Re(z) Re(2)
= n=08
n=210 W8"=e’17"
(@) ®

Fig. 6-38 Phase factors W," and W,
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and by Egs. (6.217a) and (6.217b) we obtain
X[0]=F[0] + WSOG[O] =0
X[1]=F[1] + WiG[1] =2 +j2
X[2] =F[2] + W&G[2] = —j4
X[3] = F[3] + W@G[3] = 2-j2

[CHAP. 6

X[4]=F[0] - W2G[0] =0
X[5]=F[1] - W¢G[1] =2 + 2
X[6] = F[2] - W¢G[2] = j4
X[7]=F[3] - W{G[3] =2 - j2

Noting that since x[n] is real and using Eq. (6.204),. X{7], X[6], and X[5] can be easily
obtained by taking the conjugates of X[1], X[2], and X[3], respectively.

Let x[n] be a sequence of finite length N such that

x[n] =0

n<0,n>=N

Let the N-point DFT X[k] of x[n] be given by [Eq. (6.92)]

N-1

X[k]= ¥ x[n]wn Wy =e~im/N) k=0,1,...,N—-1 (6.224)
n=0
Suppose N is even and let
N N
p(n] =x[n] +x n+~2— 05n<? (6.225a)
N N
q[n]=(x[n]—x n+ = )W,{,’ 05n<3 (6.225b)
(a) Show that the N-point DFT X[k] of x[n] can be expressed as
N
X[2k]) =P[k] k=0,1,...,?—l (6.226a)
N
X[2k +1] = Q[K] k=01, ~1 (6.226b)
(N/2) -1 N
where Plkl= Y p[n]Ws, k=01,...,5 ~1 (6.227a)
n=0
(N/2)-1 N
Qlkl= X aln]Wi), k=01, =1 (6.227)
n=0

(b) Draw a flow graph to illustrate the evaluation of X[k] from Egs. (6.226a) and

(6.226b) with N = 8.

(a) We rewrite Eq. (6.224) as
(N/D-1

X[k]= X

n=0

[nlWgr+ ¥ xln]win

N-1
(6.228)
n=N/2

Changing the variable n =m + N /2 in the second term of Eq. (6.228), we have

(N/2D)-1

X[k)= X

n=0

x[n]WEn + wiN/DE S

(N/D-1
W (6.229)

m+ —
m=0 2
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Noting that [Eq. (6.223)]
WAk = (-1

Eq. (6.229) can be expressed as

(N/2)-1 N
X[k]= ¥ {x[n]+(—l)kx n+— }W,{,‘" (6.230)
n=0
For k even, setting k = 2r in Eq. (6.230), we have
(N/2)-1 (N/2)-1 N
X[2rl= L plnW¥"= ¥ plnlWi, r=0,1,..., 5 1 (6.231)
m=0 n=0

where the relation in Eq. (6.220) has been used. Similarly, for k odd, setting k = 2r + 1
in Eq. (6.230), we get

(N/2)-1 (N/D~1 N
X[2r+1]= ¥ gqlnlWi"= Y qlnlW, r=0,l,...,—2——1 (6.232)
m=0 n=0

Equations (6.231) and (6.232) represent the (N /2)-point DFT of p[n] and g[n], respec-
tively. Thus, Egs. (6.231) and (6.232) can be rewritten as

N
X[2k]=P[k] k=0,1,...,3—1
N
X[2k+1)=Q[k] k=0,1,. 5 1
(N/2)-1 N
where Plk)= X plnlwir, k=0,1,...,7—1
n=0
(N/2)—1 N
Qlkl= ¥ q[nlWi, k=0,1,...,?—1
n=0

The flow graph illustrating the steps involved in determining X[k] by Eqgs. (6.227a) and
(6.227b) is shown in Fig. 6-39.

The method of evaluating X[k] based on Egs. (6.227a) and (6.227b) is known as the
decimation-in-frequency fast Fourier transform (FFT) algorithm.

pI0] X10]

x[0] L=
A \ / 2 oo X(2]
2] \ 3¢ / o DT X[4)

A3 Ll X161

x[4) X(1]

5] W 4-point X3
qzn * DFT

x[6] X[5]

A7) / NG X17)

-1
3
w8

Fig. 6-39 Flow graph for an 8-point decimation-in-frequency FFT algorithm.
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6.59. Using the decimation-in-frequency FFT technique, redo Prob. 6.57.
From Prob. 6.57
x[n]={1,1,-1,-1,-1,1,1,—- 1}
By Egs. (6.225a) and (6.225b) and using the values of Wy obtained in Prob. 6.57, we have

2
={(1-1D,(1+1),(-1+1),(-1-1)} ={0,2,0,2}

aln]= (X[n]—x[n+ %])w;

={(1+ WY, (1 - )W, (-1- DHwd, (-1 + W)

pln) =x[n] +x[n + N

={2,0,j2,0
Then using Eqs. (6.206) and (6.212), we have
'P[0)] [ 1 1 1 1] o 0 ]
payE o1 -j -1 j 2| | -4
P21 | 1 -1 1 -1 of | o0
P3| | 1 j -1 -j |l -2 i |
[Q[0] ] ( 1 1 1 1][ 2 2+j2]
ot} | 1 =J -1 ilfo] f2-j2
o) | 1 -1 1 —-1{{j2| [2+j2
okl | 1 i -1 -jj| o 2-j2|
and by Egs. (6.226a) and (6.226b) we get
X[0}=P[0] =0 X[4]=P[2] =0
X[1]=Q[0] =2 +j2 X[5]=0[2]=2+j2
X[2]=P[1] = -4 X[6] =P[3] =j4
X[3]=0Q[1]=2~j2 X[7)=0[3]=2-j2

which are the same results obtained in Prob. 6.57.

6.60. Consider a causal continuous-time band-limited signal x(¢) with the Fourier transform

X(w). Let

x[n] =T,x(nT,) (6.233)
where T, is the sampling interval in the time domain. Let

X[k] =X(kAw) (6.234)

where Aw is the sampling interval in the frequency domain known as the frequency
resolution. Let T, be the record length of x(¢) and let w,, be the highest frequency of
x(t). Show that x[n] and X[k] form an N-point DFT pair if

T, 2wy wy T,

?S A =N  and N2> - (6.235)
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Since x(¢) = 0 for t <0, the Fourier transform X(w) of x(¢) is given by [Eq. (5.31)]
X(w)= [~ x(tye i di= ["x(r) et (6.236)
-0 0

Let T, be the total recording time of x(¢) required to evaluate X(w). Then the above integral
can be approximated by a finite series as

N-1
X(w)=At Y x(t,)e
n=0
where ¢, =n At and T, = NAt. Setting w = w, in the above expression, we have

N—-1
X(wy)=At Y, x(t,)e /o (6.237)
n=0

Next, since the highest frequency of x(¢) is w,,, the inverse Fourier transform of X(w) is given
by [Eq. (5.32)]

)= [ X(w) e do = — [ X(w) e 6.238
() =5—] X(w)e™ dw=-" (w) e dw (6.238)

TWyy
Dividing the frequency range —w, < < w,, into N (even) intervals of length Aw, the above
integral can be approximated by

© (VD=1

x(=5- L X(w)e
27"k=—N/2

where 2w,, = NAw. Setting ¢t =, in the above expression, we have

(N/2)-1
x(t)==— Y  X(w,)e"rn (6.239)
2m -N/2

Since the highest frequency in x(¢) is w,,, then from the sampling theorem (Prob. 5.59) we
should sample x(¢) so that

2

T,

s

22wy

where T, is the sampling interval. Since T, = At, selecting the largest value of At (the Nyquist
interval), we have

o
At=—
Wy
d il il 6.240
an v T, (6.240)
Thus, N is a suitable even integer for which
T, 2w wyT
LM _N and N>21L (6.241)
T, Aw T

s

From Eq. (6.240) the frequency resolution Aw is given by

Ao=— - - (6.242)
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Let t,=nAt and w, =k Aw. Then

A0Y(k Bw) =nk L 2T 27 6.243
tw, = t =nk——=— .
n®i (n )( w) n N Tl N n ( )
Substituting Eq. (6.243) into Egs. (6.237) and (6.239), we get
N—1
X(kAw)= Y Atx(nAt) e JCm/Nomk (6.244)
n=0
(N/D-1
and x(nAt)y=— Y X(kAw)e?™/Nink (6.245)
2m 4o —N/2
Rewrite Eq. (6.245) as
(N/D-1 -1
x(nAt)=—-——| Y X(kAw)e/P™/Mrk N X(k Aw) e/3T/ NIk
2m | Do k=-N/2

Then from Eq. (6.244) we note that X(k Aw) is periodic in k with period N. Thus, changing
the variable k =m — N in the second sum in the above expression, we get

Aw [(N/2-1 . N-1 .
x(nat) =—— Y X(kAw)e@™/Nk T X(mAw) e/3T/Nmm
k=0 m=N/2

Aw N-1 _
=— Y X(kAw)e/?m/Nink (6.246)
27 2o

Multiplying both sides of Eq. (6.246) by At and noting that Aw At =27 /N, we have
1 M-l _
x(nAt) A== T X(kAw)e’m/Mmk (6.247)
k=0

Now if we define
x[n] = Ax(nAt) = T,x(nT,) (6.248)
X[k]=X(kAw) (6.249)
then Eqs. (6.244) and (6.247) reduce to the DFT pair, that is,
N-1
X[(k]= X x[n]wi" k=0,1,...,N-1
n=0
N
n=0,1,...,N-1

dn)= g T XKW

1

N,

(@) Using the DFT, estimate the Fourier spectrum X(w) of the continuous-time
signal

x(t) =e ‘u(t)

Assume that the total recording time of x(¢) is 7, =10 s and the highest
frequency of x(¢) is w,, = 100 rad/s.

(b) Let X[k]be the DFT of the sampled sequence of x(t). Compare the values of
X[0], X[1], and X[10] with the values of X(0), X(Aw), and X(10 Aw).
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(a) From Eq. (6.241)

wyT,  100(10)
>—— = =3

m

18.3

Thus, choosing N = 320, we obtain
Aw =30 =2=0.625rad
At =% =5=0031s
and Wy=Wy=e -J(2m /230)

Then from Egs. (6.244), (6.249), and (1.92), we have

N-1
X[k]= Y Atx(nAt)e i@m/Nmk

n=0

1 319 1 1 _6320(0.031)
- Z o ~M(0.031) o~y /320mk — ___
— _-0.031 ,—j2m /3200k
32,2, 32 1-e 0%,
0.031

- 6.250
[1-0.969 cos( k/160)] +0.969 sin( kr/ 160) (6.250)

which is the estimate of X(k Aw).
(b) Setting k=0, k=1, and k =10 in Eq. (6.250), we have

oy 0031
01~ 1-0969
0.031
- (.855¢05
X1 = 50312+ 0019 ¢
X[10 0.031 0.159¢ /131
[10] = 50496 —jo.189 ~ *1%%€

From Table 5-2

x(t)=e'u(t) > X(w) =

Jo+1
and X(0)=1
X(Aw) = X(0.625) = ———— = (.848¢ /055
(Aw) =X(0.625) T+ /00605 0-B48e
X(10Aw) = X(6.25) = ———— = 0.158¢ /1412
(10Aw) = X(6.25) 177625 0.158¢

Even though x(r) is not band-limited, we see that X[k} offers a quite good approxima-
tion to X(w) for the frequency range we specified.
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Supplementary Problems

6.62. Find the discrete Fourier series for each of the following periodic sequences:

(a) x[n]=cos(0,17rn)
(b) x[n]=sin(0.17rn)
(¢) x[n]=2cos(1.6m7n) + sin(2.4mn)

Ans. (@) x[n]= Je/Pn + Le/19%n O =017
1 1
(B) dln)= e~ e, Q= 0.1
(c) x[nl=(1—j0.5) /%" + (1 +j0.5)e*", Q= 0.47

6.63. Find the discrete Fourier series for the sequence x[n] shown in Fig. 6-40.

8 _ 27
Ans. x[n]l= Y c e/ Q= —
k=0 9
21 (27 (4 (67
= —]—9— sm(T)k+25m(—9—)k+3sm(T)k

x[n]

Fig. 6-40

6.64. Find the trigonometric form of the discrete Fourier series for the periodic sequence x[n]
shown in Fig. 6-7 in Prob. 6.3.
™ 1

3 T
Ans. x[n]= 3 ~cosin - sinEn - Ecos mn

6.65. Find the Fourier transform of each of the following sequences:

(a) x[n]=da"lal<1
(b) x[n]=sin(Qyn), 1Ql <
(¢) xlnl=ul-n-1]

1-a?
Ans. (a) X(Q)= T 2acos O+ a2

(b) X(Q)= —jm[8(Q ~ Q) —8(Q - QY] 10}l <7

1
) X(V)=7o(Q)—- —1_—e_Tn,|Q|57r
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6.66. Find the Fourier transform of the sequence x[n] shown in Fig. 6-41.

Ans.  X(Q) =j2(sin Q& + 2sin2Q + 3sin3Q)

Ot (s
L oy BN
[ X
l'O
b

Fig. 6-41

6.67. Find the inverse Fourier transform of each of the following Fourier transforms:
(@) X(Q)=cos(2)

) X(Q)=jQ
Ans. (@) x[n]=36[n—2]+ $6[n+2]
) x[”]={(—l)"/n n#0
0 n=20

6.68. Consider the sequence y[n] given by

y["]={

Express y(€2) in terms of X().
Ans.  Y(Q) = 1X(Q) + 1X(Q — )

x[n] neven
0 n odd

6.69. Let
_ 1 Inl<2
x[n]= {0 In > 2

(a) Find y[n]=x[n]* x[n].
(b) Find the Fourier transform Y({Q) of y[n].

_[5(1=1Inl/5) Inl<5
Ans. (a) y[n]——{o nl> 5
®) =[S0 )
_(sin(O,SQ)

6.70. Verify Parseval’s theorem [Eq. (6.66)] for the discrete-time Fourier transform, that is,

)E lx[n]? = El;r-fhw(a)ﬁdn

n=—o

Hint:  Proceed in a manner similar to that for solving Prob. 5.38.
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6.71.

6.72.

6.73.

6.74.
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A causal discrete-time LTI system is described by
yln) = iyln =11+ dyln - 2] =x[n]
where x[n] and y[n] are the input and output of the system, respectively.
(a) Determine the frequency response H({}) of the system.
(b) Find the impulse response h[n] of the system.
(¢) Find y[n]if x[n]=()"uln].
1

Ans. (a) H(Q)= W

(b) Aln]=[2(H)" — ()" luln]

(c) yln]=[D"+nE)y~"Juln}

Consider a causal discrete-time LTI system with frequency response
H(Q)=Re{H(Q)} +/Im{H(Q)} =A(Q) +/B(Q)

(a) Show that the impulse response A[n] of the system can be obtained in terms of A({)) or
B(Q) alone.

(b) Find H(Q) and h[n] if
Re{H(Q)} =A(Q) =1+cosQ

(a) Hint: Process in a manner similar to that for Prob. 5.49.
(b) Ans. H(Q)=1+e 7 hln]=6[n]+68ln—1]

Find the impulse response h[n] of the ideal discrete-time HPF with cutoff frequency 2,
(0 < Q. <) shown in Fig. 6-42.

sin Q. n

Ans.  h[n]=8[n]—-

H(Q)

Fig. 6-42

Show that if H pe(z) is the system function of a discrete-time low-pass filter, then the
discrete-time system whose system function H(z) is given by H(z) = H pe( —2) is a high-pass
filter.

Hint: Use Eq. (6.156) in Prob. 6.37.
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6.75.

6.76.

6.77.

6.78.

Consider a continuous-time LTI system with the system function

H(s)= (s_+1—)3

Determine the frequency response H,(Q) of the discrete-time system designed from this
system based on the impulse invariance method.
Ans.  H(Q)=T,e"T

5, where T is the sampling interval of h(t).
(1-e” Tie

—j(l)

Consider a continuous-time LTI system with the system function

1
Bl =557

Determine the frequency response H,(Q) of the discrete-time system designed from this
system based on the step response invariance, that is,

saln]=s.(nT,)
where s.(¢+) and s,[n] are the step response of the continuous-time and the discrete-time
systems, respectively.
Hint: h[nl=s,n]l—s[n-1].
(1—eT)e st

Ans. H, Q)= Mo Te

Let Hp(z) be the system function of a discrete-time prototype low-pass filter. Consider a new
discrete-time low-pass filter whose system function H(z) is obtained by replacing z in H,(z)
with (z —a)/(1 — az), where a is real.

(a) Show that
Hp(z)|z=l+)(,=H(Z)|z=l+j(,
Hp(Z)|z=—l+)'U=H(Z)|z=—l+jU

(b) Let 2, and Q, be the specified frequencies (<) of the prototype low-pass filter and
the new low-pass filter, respectively. Then show that

sin[(Q,, - Q,)/2]
sin (9, +9,)/2]

: e — g
Hint:  Set e/ = ——5 and solve for a.
1—ae
Consider a discrete-time prototype low-pass filter with system function
H(z)=05(1+z"")

(a) Find the 3-dB bandwidth of the prototype filter.

(b) Design a discrete-time low-pass filter from this prototype filter so that the 3-dB bandwidth
of the new filter is 27 /3.
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6.79.

6.80.

6.81.

6.82.
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Hint:  Use the result from Prob. 6.77.

o
Ans.  (a) Q_N,,=E

+2z7!

Determine the DFT of the sequence
x[n]=a"
1—a"

Ans. ATk]:WN—)k k=0.1,...,N~1

Evaluate the circular convolution
y[n]=x[n]®h[n]
where x[n]l=u[n]—u[n-4]
h[n]=u[n]—u[n-3]

(a) Assuming N =4.
(b) Assuming N = 8.
Ans. {(a) y[n)=1{3,3,3,3}
b) y[n]=1{1,2,3,3,2,1,0,0}

Consider the sequences x[n] and A[n] in Prob. 6.80.

(@) Find the 4-point DFT of x[n], h[n], and y[n).
(b) Find y[n] by taking the IDFT of Y[k].
Ans. (@) [X[0], X[1], X[2], X[3]] = [4,0,0,0]
[HI[0), H[1], H[2], H3B]1=[3,-/,1, /]
[Y[o], Y[1],Y[2]), Y[3]] =[12,0,0,0]
(b) y[n]=1{3,3,3,3}

Consider a continuous-time signal x(¢) that has been prefiltered by a low-pass filter with a
cutoff frequency of 10 kHz. The spectrum of x(t) is estimated by use of the N-point DFT. The
desired frequency resolution is 0.1 Hz. Determine the required value of N (assuming a power
of 2) and the necessary data length 7.

Ans. N=2%and T, =13.1072 s

Chapter 7

State Space Analysis

7.1 INTRODUCTION

So far we have studied linear time-invariant systems based on their input-output
relationships, which are known as the external descriptions of the systems. In this chapter
we discuss the method of state space representations of systems, which are known as the
internal descriptions of the systems. The representation of systems in this form has many
advantages:

1. It provides an insight into the behavior of the system.
2. It allows us to handle systems with multiple inputs and outputs in a unified way.
3. It can be extended to nonlinear and time-varying systems.

Since the state space representation is given in terms of matrix equations, the reader
should have some familiarity with matrix or linear algebra. A brief review is given in App.
A.

7.2 THE CONCEPT OF STATE
A. Definition:

The state of a system at time ¢4 (or n,) is defined as the minimal information that is
sufficient to determine the state and the output of the system for all times t >1¢, (or
n > ny) when the input to the system is also known for all times ¢ > ¢, (or n >n,). The
variables that contain this information are called the state variables. Note that this
definition of the state of the system applies only to causal systems.

Consider a single-input single-output LTI electric network whose structure is known.
Then the complete knowledge of the input x(¢) over the time interval — to ¢ is sufficient
to determine the output y(t) over the same time interval. However, if the input x(¢) is
known over only the time interval ¢, to ¢, then the current through the inductors and the
voltage across the capacitors at some time ¢, must be known in order to determine the
output y(¢z) over the time interval ¢, to f. These currents and voltages constitute
the “state” of the network at time ¢,. In this sense, the state of the network is related to
the memory of the network.

B. Selection of State Variables:

Since the state variables of a system can be interpreted as the “memory elements” of
the system, for discrete-time systems which are formed by unit-delay elements, amplifiers,
and adders, we choose the outputs of the unit-delay elements as the state variables of the
system (Prob. 7.1). For continuous-time systems which are formed by integrators, ampli-
fiers, and adders, we choose the outputs of the integrators as the state variables of the
system (Prob. 7.3). For a continuous-time system containing physical energy-storing ele-
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ments, the outputs of these memory elements can be chosen to be the state variables of the
system (Probs. 7.4 and 7.5). If the system is described by the difference or differential
equation, the state variables can be chosen as shown in the following sections.

Note that the choice of state variables of a system is not unique. There are infinitely
many choices for any given system.

7.3 STATE SPACE REPRESENTATION OF DISCRETE-TIME LTI SYSTEMS
A. Systems Described by Difference Equations:

Suppose that a single-input single-output discrete-time LTI system is described by an
Nth-order difference equation

y[n] +a,y[n=1]+ - +ayy[n —N]=x[n] (7.1)

We know from previous discussion that if x[n] is given for n >0, Eq. (7.1) requires N

initial conditions y[—1], y[—2],..., y[—N] to uniquely determine the complete solution

for n > 0. That is, N values are required to specify the state of the system at any time.
Let us define N state variables q,[n], q,[n},..., gy[n] as

a\[n] =y[n-N]
a[n] =yln—(N=-1)] =y[n -N+1]

an(n] =y[n-1] (7.2)
Then from Egs. (7.2) and (7.1) we have
ai[n+1] =g;[n)

az[n + 1] = q;[n]

an[n +1] = —ayaq,[n] —ay_,a,[n] — -+ —ayqy[n] +x[n] (7.3a)

and y[n] = —aya,[n] —ay_a2[n] - -+ —a,qn[n] +x[n] (7.3b)
In matrix form Egs. (7.3a) and (7.3) can be expressed as
g,[n +1] 0 1 0 o0 alnl 0
A S el E R M
awln +1] oy ey —ay, o -a anln] i
a[n]
yin] =[-an —an-, -] qz[;n] +[1]x[n] (7.4b)
anln]

Now we define an N X 1 matrix (or N-dimensional vector) q[n] which we call the state
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vector:
a,[n]
q9,[n]
q[n] = : (7.5)
an[n]
Then Eqs. (7.4a) and (7.4b) can be rewritten compactly as
q[n + 1] = Aq[n] + bx[n] (7.6a)
y[n] = cq[n] +dx[n] (7.6b)
where
0 1 0 0 0
0 0 1 0 0
A= . b=
—ay Ay —ay, T Ta 1
C=[_aN —ay- _01] d=1

Equations (7.6a) and (7.6b) are called an N-dimensional state space representation (or
state equations) of the system, and the N X N matrix A is termed the system matrix. The
solution of Eqgs. (7.6a) and (7.6b) for a given initial state is discussed in Sec. 7.5.

B. Similarity Transformation:

As mentioned before, the choice of state variables is not unique and there are infinitely
many choices of the state variables for any given system. Let T be any N X N nonsingular
matrix (App. A) and define a new state vector

v[n] = Tq[n] (7.7)

where g[n] is the old state vector which satisfies Egs. (7.6a) and (7.6b). Since T is
nonsingular, that is, T~ ! exists, and we have

q[n] =T 'v[n] (7.8)
Now
v[n + 1] =Tq[n + 1] = T(Aq[n] + bx[n])
= TAq[n] + Tbx[n] = TAT 'v[n] + Tbx[n] (7.9a)
y[n] =ca[n] +dx[n] =T~ 'v[n] +dx[n] (7.9b)
Thus, if we let
A = TAT™! (7.10a)
b=Tb é=cT! d=d (7.10b)
then Egs. (7.9a) and (7.9b) become
v[n +1] =1A&v[n]+i)x[n] (7.11a)

y[n] = &[n] +dx[n] (7.11b)
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Equations (7.11a) and (7.11b) yield the same output y[n] for a given input x[n] with
different state equations. In matrix algebra Eq. (7.10a) is known as the similarity transfor-
mation and matrices A and A are called similar matrices (App. A).

C. Multiple-Input Multiple-Output Systems:

If a discrete-time LTI system has m inputs and p outputs and N state variables, then a
state space representation of the system can be expressed as

q[n + 1] = Aq[n] + Bx[n] (7.12a)
y[n] = Cq[n] + Dx[n] (7.12b)
where
q,[n] x,[n] | yi[n]
;[ n] x,3[n] ya[n]
q[n] =] . x[n] =1 . y[n}=| .
qN[n] xm[n]_ yp[n]
and
Han a; aN —bn by, bim
a; 4ap arn by by bom
A= . B=| : )
haNl an? ann NXN Lle bu2 bym N
_Cu 12 CIN d, dy dyy
€ Cx» Con dy dy dym
Cc= ' D=} . :
chl apZ CpN PXN dpl de dpm pxm

7.4 STATE SPACE REPRESENTATION OF CONTINUOUS-TIME LTI SYSTEMS

A. Systems Described by Differential Equations:

Suppose that a single-input single-output continuous-time LTI system is described by
an Nth-order differential equation

dV(t) d"ly()
a® T T g

One possible set of initial conditions is y(0), y*(0),..., y™¥~'%0), where y*X¢)=
d*y(t)/dt*. Thus, let us define N state variables q,(), g,(1),...,qn(t) as

Q1(t) =y(t)
q,(t) =y(1)

+ o tany(t) =x(1) (7.13)

(7.14)

an(t) =y"70(1)
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Then from Egs. (7.14) and (7.13) we have
4,(¢) =a,(¢)

4 (1) =a5(¢)

an(t)= —ayay(t) —ay_,a(t) — - —aqn(t) +x(1) (7.15a)
and y(£) =ay(t) (7.15b)

where ¢,(t) =dq,(t)/dt.
In matrix form Egs. (7.15a) and (7.15b) can be expressed as

4,(t) 0 1 0 e 0] ay(e) 0
e T T | Sl 8 L M Taon
)] [-oy o o e lao] |
9,(1)
y(t)y=[1 0 - 0] a:{t) (7.16b)
qut)

Now we define an N X 1 matrix (or N-dimensional vector) q(t) which we call the state
vector:

a,(t)

q(r) = qur) (7.17)

QN'(I)

The derivative of a matrix is obtained by taking the derivative of each element of the
matrix. Thus

a(t)
d‘:j(tt) =q(t) = qu’) (7.18)
an(t)

Then Egs. (7.16a) and (7.16b) can be rewritten compactly as
q(r) = Aq(t) +bx(1) (7.19a)
y(1) = cq(r) (7.19b)
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where
0 1 0 0 0
0 0 1 0 0

A=| . : : " : b=|. e=[t 0 - 0]
—ay TAay-y a4y T T4 1

As in the discrete-time case, Eqgs. (7.19a) and (7.19b) are called an N-dimensional state
space representation (or state equations) of the system, and the N X N matrix A is termed
the system matrix. In general, state equations of a single-input single-output continuous-
time LTI system are given by

q(?) = Aq(t) +bx(¢t) (7.20a)
y(t) =cq(t) +dx(t) (7.20b)
As in the discrete-time case, there are infinitely many choices of state variables for any

given system. The solution of Egs. (7.20a) and (7.20b) for a given initial state are discussed
in Sec. 7.6.

B. Multiple-Input Multiple-Output Systems:

If a continuous-time LTI system has m inputs, p outputs, and N state variables, then a
state space representation of the system can be expressed as

a(r) = Aq(1) + Bx(¢) (7.21a)
y(¢t) = Cq(t) + Dx(¢t) (7.21b)
q,(t) x(t ya(t
where a=| ML = ="
ax(1) x(1) (1)
and
[a,, a,, an b, by, b |
A a, ap an B b.21 by, b,,,
| Onvt OGNz T ANN | byi byy bNm_NXm
(¢, ¢ Cin d,, d d,, |
co c.21 Cy cle D d.Z, d,, dz'm
(o1 Ap N | en d, d,, - dl;mdp)(m
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7.5 SOLUTIONS OF STATE EQUATIONS FOR DISCRETE-TIME LTI SYSTEMS
A. Solution in the Time Domain:
Consider an N-dimensional state representation
q[n + 1] = Aq|n] + bx[n] (7.22a)
y[n] = cq[n] + dx[n] (7.22b)
where A, b, ¢, and d are NXN, NX1, 1 XN, and 1 X 1 matrices, respectively. One
method of finding q[#], given the initial state g[0], is to solve Eq. (7.22a) iteratively. Thus,
al1] = Aq[0] + bx[0]
q[2] = Aq[1] + bx[1] = A{Aq[0] + bx[0]} + bx[1]
= A’q[0] + Abx[0] + bx[1]
By continuing this process, we obtain
q[n] =A"q[0] + A" 'bx[0] + ‘- +bx[n —1]
n—1

=A"q[0] + Y A" !'"*bx[k] n>0 (7.23)
k=0
If the initial state is g[n,] and x[n] is defined for n > n,, then, proceeding in a similar
manner, we obtain
n—1
q[n] =A"""q[ny] + Y A" Rbx[ng + k] n>n, (7.24)
k=0

The matrix A" is the n-fold product

and is known as the state-transition matrix of the discrete-time system. Substituting
Eq. (7.23) into Eq. (7.22b), we obtain
n—1

y[n] = cA"q[0] + X A" "' “*bx[k] +dx[n] n>0 (7.25)

The first term cA”g[0] is the zero-input response, and the second and third terms together
form the zero-state response.

B. Determination of A":
Method 1: Let A be an N X N matrix. The characteristic equation of A is defined to be (App. A)
c(A)=1AI-A]=0 (7.26)
where |Al — A] means the determinant of Al — A and 1 is the identity matrix (or unit
matrix) of Nth order. The roots of c(A)=0,A, (k=1,2,...,N), are known as the
eigenvalues of A. By the Cayley-Hamilton theorem A" can be expressed as [App. A, Eq.
(A.57)]
A'=bl+b,A+ -+ +by_AV7! (7.27)

When the eigenvalues A, are all distinct, the coefficients by, b,,...,by_, can be found
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from the conditions
bo+b A+ o +by AN l=At k=1,2,... N (7.28)
For the case of repeated eigenvalues, see Prob. 7.25.

Method 2: The second method of finding A" is based on the diagonalization of a matrix A. If
eigenvalues A, of A are all distinct, then A" can be expressed as [App. A, Eq. (A4.53)]

XMoo e 0
0 A - 0

ar=pl . . P (7.29)
0 0 -

where matrix P is known as the diagonalization matrix and is given by [App. A, Eq.
(A.36)]

P=[xi x = xy (7.30)
and x, (k=1,2,..., N) are the eigenvectors of A defined by
Ax, = A, X, k=1,2,...,N (7.31)

Method 3: The third method of finding A" is based on the spectral decomposition of a matrix A.
When all eigenvalues of A are distinct, then A can be expressed as

N
A=MNE +,E, + - +AyEy= Y AE, (7.32)
k=1

where A, (k=1,2,..., N) are the distinct eigenvalues of A and E, (k=1,2,...,N) are
called constituent matrices which can be evaluated as [App. A, Eq. (A4.67))]

N
(A-2,0)
m=1
E.= 22 (7.33)
H ()‘k —Am)
ek
Then we have
A"=XNE, +ME, + -+ +AyEy (7.34)

Method 4: The fourth method of finding A” is based on the z-transform.

A" =37 {(z1-4)7"2} (7.35)
which is derived in the following section [Eq. (7.41)].

C. The z-Transform Solution:

Taking the unilateral z-transform of Egs. (7.22a) and (7.22b) and using Eq. (4.5]), we
get

2Q(z) —zq(0) = AQ(z) + bX(z) (7.36a)
Y(z) = ¢Q(z) + dX(z) (7.36b)
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where X(z) =3 ,{x[n]}, Y(2) =3 ,{yln]}, and

0(2)
0,(z
o) =sidall)=| ZF | where 0,(2) =8/ faln])
On(2)
Rearranging Eq. (7.36a), we have
(zI-A)Q(z) =2q(0) + bX(z2) (7.37)
Premultiplying both sides of Eq. (7.37) by (zI — A)~! yields
Q(z)=(zl—A)_lzq(0)+(zl——A)_[bX(z) (7.38)
Hence, taking the inverse unilateral z-transform of Eq. (7.38), we get
a[n] = 37'{(z1-A)"'z}q(0) + 3; {(z1 - A) 'bX(2)} (7.39)

Substituting Eq. (7.39) into Eq. (7.22b), we get
y[n] =e87'{(21-A)"'z}q(0) + c87{(z1 — A) "'bX(2)} + dx[n] (7.40)
A comparison of Eq. (7.39) with Eq. (7.23) shows that
A" =37(z1-A)"'z) (7.41)

D. System Function H(z):

In Sec. 4.6 the system function H(z) of a discrete-time LTI system is defined by
H(z) = Y(z)/X(z) with zero initial conditions. Thus, setting q[0] = 0 in Eq. (7.38), we have

Q(z) = (z1-A) 'bX(2) (7.42)
The substitution of Eq. (7.42) into Eq. (7.36b) yields
Y(z) = [e(z1 - A)"'b +d]| X(2) (7.43)
Thus,
H(z)=[e(z1-A)"'b+d] (7.44)

E. Stability:

From Egs. (7.25) and (7.29) or (7.34) we see that if the magnitudes of all eigenvalues
A, of the system matrix A are less than unity, that is,

Al <1 all k (7.45)

then the system is said to be asymptotically stable; that is, if, undriven, its state tends to
zero from any finite initial state q,. It can be shown that if all eigenvalues of A are distinct
and satisfy the condition (7.45), then the system is also BIBO stable.
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7.6 SOLUTIONS OF STATE EQUATIONS FOR CONTINUOUS-TIME LTI SYSTEMS
A. Laplace Transform Method:
Consider an N-dimensional state space representation
q(r) =Aq(t) +bx(r) (7.46a)
y(t) =cq(t) +dx(t) (7.46b)

where A, b, ¢, and d are NXN, N X1, 1 XN, and 1 X 1 matrices, respectively. In the
following we solve Egs. (7.46a) and (7.46b) with some initial state q(0) by using the
unilateral Laplace transform. Taking the unilateral Laplace transform of Eqs. (7.46a) and
(7.46b) and using Eq. (3.44), we get

sQ(s) — q(0) = AQ(s) + bX(s) (7.47a)
Y(s)=cQ(s) +dX(s) (7.47b)
where X(s) =.Z{x(0)}, Y(s) = £ {y(¢)}, and
Qi(s)
0s(5)
Qs) = Ala(n)) = | where 0,(s) = £;{a,(1))
Onls)

Rearranging Eq. (7.47a), we have
(sI— A)Q(s) = q(0) + bX(s) (7.48)
Premultiplying both sides of Eq. (7.48) by (sI — A) ! yields
Q(s) = (s1 - A) "'a(0) + (T~ A)”'bX(s) (7.49)
Substituting Eq. (7.49) into Eq. (7.47b), we get
Y(s) = e(s1—A) 'q(0) + [e(sT — A) " 'b+d| X(5) (7.50)

Taking the inverse Laplace transform of Eq. (7.50), we obtain the output y(z). Note that
c(sI — A)~'q(0) corresponds to the zero-input response and that the second term corre-
sponds to the zero-state response.

B. System Function H(s):

As in the discrete-time case, the system function H(s) of a continuous-time LTI system
is defined by H(s)=Y(s)/X(s) with zero initial conditions. Thus, setting q(0) =0 in
Eq. (7.50), we have

Y(s) = [e(sT- A) 'b +d] X(s) (7.51)
Thus,

H(s)=c(sI-A)'b+d (7.52)
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C. Solution in the Time Domain:

Following
a? a*
r 42 ¢k
e"—1+at+2!t+ +k!t +
we define
A? A
At _ 42 ¢tk
e -—I+At+2!t + ottt (7.53)
where k!=k(k—1)---2-1. If t =0, then Eq. (7.53) reduces to
e' =1 (7.54)

where 0 is an N X N zero matrix whose entries are all zeros. As in e®/~" =¢%e %" =
e “"e* we can show that

eA(I—r)=eAle—A-r=e—A-reAl (755)
Setting 7=t in Eq. (7.55), we have

At,—A

ere Al =g~ A

erM=e=1 (7.56)
Thus,
e~A = (eA)”! (7.57)

which indicates that e~ is the inverse of e?’.
The differentiation of Eq. (7.53) with respect to ¢ yields

d A? A
NSO A 2 e kT
A?
=A l+At+—2—!—t2+
A2
= 1+Az+5!—r2+ A
which implies
d At At At
Ee =Ae =e*A (7.58)
Now using the relationship [App. A, Eq. (A4.70)]
d dA dB
Z ) IB+AI

and Eq. (7.58), we have
d ~At d —At —Atg
;[e a(r)] = Z¢ e +e ()

= —eAAq(t) + e Aq(1) (7.59)
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Al we obtain

Now premultiplying both sides of Eq. (7.46a) by e~
e Ma(r) =e MAq(t) + e A'bx(t)
or e (1) —e MAq(t) =e *'bx(r) (7.60)
From Eq. (7.59) Eq. (7.60) can be rewritten as
d
E[e““’q(t)] =e Abux(t) (7.61)

Integrating both sides of Eq. (7.61) from 0 to ¢, we get

e"Ma(0)fy = ['eA"bx(r) dr
0
~ At f AT
or e q(t)—q(0)=fe bx(7)dr
0
Hence e Mq(t)=q(0) + fle""bx(f) dr (7.62)
0
Premultiplying both sides of Eq. (7.62) by e*' and using Egs. (7.55) and (7.56), we obtain
q(t) =e*'q(0) + fre"('"”bx('r) dr (7.63)
0
If the initial state is q(¢,) and we have x(r) for ¢ > ¢, then

a(1) =X g(1,) + [(e*4Vbx(r) dr (7.64)

Iy

which is obtained easily by integrating both sides of Eq. (7.61) from ¢, to ¢. The matrix
function e*’ is known as the state-transition matrix of the continuous-time system.
Substituting Eq. (7.63) into Eq. (7.46b), we obtain

y(1) = ce*q(0) + ['ce™’ Vbx(r) d7 + dx(t) (7.65)
0

D. Evaluation of e*':
Method I: As in the evaluation of A", by the Cayley-Hamilton theorem we have

eM=byl+bA+ - +by AV (7.66)

When the eigenvalues A, of A are all distinct, the coefficients b, b,,..., by _, can be
found from the conditions

bo+bAg+ o +by ANl =er k=1,2,...,N (7.67)

For the case of repeated eigenvalues see Prob. 7.45.
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Method 2: Again, as in the evaluation of A" we can also evaluate e’ based on the diagonalization of
A. If all eigenvalues A, of A are distinct, we have

e 0 0
0 At 0

er=pl . 0T U (e (7.68)
6 0 . e*.N'

where P is given by Eq. (7.30).

Method 3: We could also evaluate e’ using the spectral decomposition of A, that is, find constituent
matrices E, (k = 1,2,..., N) for which

A=ME, +ME, + - +AyE, (7.69)

where A, (k=1,2,..., N) are the distinct eigenvalues of A. Then, when eigenvalues A, of
A are all distinct, we have

er =eME| +e*E,+ - +e*'E, (7.70)
Method 4:  Using the Laplace transform, we can calculate e®’. Comparing Eqs. (7.63) and (7.49), we
see that

er =27 (s1-A)7") (7.71)

E. Stability:

From Egs. (7.63) and (7.68) or (7.70), we see that if all eigenvalues A, of the system
matrix A have negative real parts, that is,

Re{A,} <0 all k (7.72)

then the system is said to be asymptotically stable. As in the discrete-time case, if all
eigenvalues of A are distinct and satisfy the condition (7.72), then the system is also BIBO
stable.

Solved Problems

STATE SPACE REPRESENTATION

7.1. Consider the discrete-time LTI system shown in Fig. 7-1. Find the state space
representation of the system by choosing the outputs of unit-delay elements 1 and 2 as
state variables ¢,[n] and g,[n], respectively.

From Fig. 7-1 we have
a,[n+1]=4q,[n]
ay[n +1]=2q,[n] + 3q,[n] + x[n]
y[n]=2q,[n] + 3g,[n] +x[n]
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7.2.
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LN e ol
@ ln) qlln+ll 2 1n) : an+1]
Fig. 7-1
In matrix form
‘11["+1] ql[" 0
[az[n+1] -[2 3][%[':] [t
y[n]=12 3][4‘[ "] +x[n] (7.73a)
or g[n +1]) = Ag[n] + bx[n]
y[n] = cq[n] +dx[n] (7.73b)
where
an-loga) A3 el e e

Redo Prob. 7.1 by choosing the outputs of unit-delay elements 2 and 1 as state
variables v,[n] and v,[n], respectively, and verify the relationships in Eqs. (7.10a) and
(7.10b).

We redraw Fig. 7-1 with the new state variables as shown in Fig. 7-2. From Fig. 7-2 we have
vy[n+1]=3v,[n] +20,[n] +x[n]
vy[n+ 1) =v[n]

y[n]=3v,[n] +20,[n] +x[n]

A (D) R
+
% Ar 2
- P
vy ln) T winh L1 e
Fig. 7-2
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In matrix form
nln+1]| _ 3 2] vlnl] T <[]
vz[n+l] v,[n] 0
y[n]=[3 z][ viln] +x[n] (7.74a)
or v[n +1]=Av[n] + bx[n]
y[n]=ev[n]+dx[n] (7.74b)

where

-l Bl

Note that v,[n] = g,[n] and v,{n]=g,[n]. Thus, we have

dn= 9 §latn) - aln)

Now using the results from Prob. 7.1, we have
_fo 1]fo 1][o 177" _[o 1]fo 1]fo 1]_[3 2]_a
TAT _[1 0”2 3][1 0] [1 0”2 3“1 0] [1 0] A
_[o 1][o]_[1]_s

“"[1 0][1]“[0]

(1)]=[3 2] =¢

which are the relationships in Eqgs. (7.10a) and (7.10b).

T =2 3]1‘1)

Consider the continuous-time LTI system shown in Fig. 7-3. Find a state space
representation of the system.

. 430 . a0 ¥
Gyt) ()

Fig. 7-3
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We choose the outputs of integrators as the state variables q,(¢), g,(¢), and g,(t) as shown
in Fig. 7-3. Then from Fig. 7-3 we obtain

a\(t) =2q,(t) — 3q,(t) +a5(t) +x(¢)
4a(1) =qy(1)

dy(t) = q,(1)

y(t) = —q,(1) +2q5(¢)

2 -3 1 1
an=lt 70 sl folao

0 10 0
y(y=[-1 0 2]a(r)

In matrix form

(7.75)

Consider the mechanical system shown in Fig. 7-4. It consists of a block with mass m
connected to a wall by a spring. Let k, be the spring constant and k, be the viscous
friction coefficient. Let the output y(¢) be the displacement of the block and the input
x(¢) be the applied force. Find a state space representation of the system.

By Newton’s law we have
mj(t) = —kyy(t) —k,y(t) +x(1)
or my(t) +k,y(t) +ky(t) =x(1)

The potential energy and kinetic energy of a mass are stored in its position and velocity. Thus,
we select the state variables ¢(t) and g,(¢) as

q,(1)=y(t)
a (1) =y(1)
Then we have

g,(1) =q,(1)
k, k, 1
a)(t)y=-— 7’1“11(’) - ;‘h(’) + ;x(!)

y(r) =q\(1)

k,y I'—I x(1)
L1110 { ~ I:
< &
pLU]

Fig. 7-4 Mechanical system.
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In matrix form
0 1 0
a(y=|_k _kfge)+| 1 |x(1)
m " (7.76)

y(t)=[1 O0Ja(r)

Consider the RLC circuit shown in Fig. 7-5. Let the output y() be the loop current.
Find a state space representation of the circuit.

We choose the state variables g(1) =i,(¢) and g,(¢) = v .(¢). Then by Kirchhoff’s law we
get

Lgy(t) +Rqy(1) +ay(t) =x(1)
Cay(t) =q,(1)
y(t) =aq,(t)
Rearranging and writing in matrix form, we get

S 1

an=| a(t)+| T [x(0)
C 0 0

y)=[1 ola(®)

(7.77)

R L
AW /BEEE—

i(n

+

e :

Fig. 7-5 RLC circuit.

— v.(1)

.

Find a state space representation of the circuit shown in Fig. 7-6, assuming that the
outputs are the currents flowing in R, and R,.

We choose the state variables g,(t) =i,(t) and g,(¢) = ¢.(r). There are two voltage sources
and let x,(¢+) =v(t) and x,(¢t) = v,(¢). Let y,(¢+) =i(¢) and y,(r) =i,(r). Applying Kirchhoff’s
law to each loop, we obtain

Lg,(1) + Rig\(1) +q(1) =x,(t)
ax(1) = [ai(t) = Cay(1)] Ry =x,(1)
yi(t) =q,(1)

1
ya(t) = R_z[qz(’) - x,(1)]
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R, L R,
—ANVWA /B — AW
in i i)
+ . +
vi(1) C> Cc _l_ v () C) v ()
Fig. 7-6

Rearranging and writing in matrix form, we get
[ 1

q(t) = 1 la(e)+ 1 [x()

o~ =

|

=
9
=
9}

L

(7.78)

1 0 0 0
(=l L+l -1 Ko

R2 RZ
ol o-[] -]

ax(t) x2(1)

where q(t) = [

STATE EQUATIONS OF DISCRETE-TIME LTI SYSTEMS DESCRIBED
BY DIFFERENCE EQUATIONS

7.7. Find state equations of a discrete-time system described by

y[n]=3y[n—1]+ iy[n - 2] =x[n] (7.79)
Choose the state variables g,[n] and gq,[n] as
ai[n]=y[n-2]
a[n]=y[n-1]
Then from Egs.(7.79) and (7.80) we have
a\[n+1]=q,[n]
a;[n + 1] = —3q,[n] + 1a,[n] + x[n]
yln] = —za,[n] + 3a;[n] +x[n]

(7.80)

In matrix form

gq[n+1]= [ _(1] ;]q[n] + [?]x[n]

8

(7.81)
sin)=[-4 #]aln] +[n]
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7.8. Find state equations of a discrete-time system described by
y[n] —3v[n—1] + §y[n — 2] =x[n] + 3x[n — 1] (7.82)

Because of the existence of the term ix[n — 1] on the right-hand side of Egq. (7.82), the
selection of y[n — 2] and y[n — 1] as state variables will not yield the desired state equations of
the system. Thus, in order to find suitable state variables we construct a simulation diagram of
Eq. (7.82) using unit-delay elements, amplifiers, and adders. Taking the z-transforms of both
sides of Eq. (7.82) and rearranging, we obtain

Y(z)=3z7'Y(2) - 27°Y(z) + X(2) + 327 'X(2)

from which (noting that z~* corresponds to & unit time delays) the simulation diagram in

Fig. 7-7 can be drawn. Choosing the outputs of unit-delay elements as state variables as shown
in Fig. 7-7, we get

y[n]=a\[n] +x[n]
g,[n+1]=g,[n) + 3y[n] + 3x[n]
= 3a,[n) +q,[n] + ix[n]

ay[n+1])= —gy[n] = —3a,[n) - 3x[n]

q[n+11=[_ ;]q[nh[_‘]x[n]

yin]=[1 olaln]+x[n] (7.83)

In matrix form

ol— alw
@ &l

x[n)

+

7.9. Find state equations of a discrete-time LTI system with system function

H(z)= — = (7.84)
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From the definition of the system function [Eq. (4.41)]

Y(z) by+bz7'+b,z72
X(z) 1+a,z '+a,z?

H(z) =

we have
(1 +az7" +a,272)Y(z) = (bg+b 27" +b,272) X(2)
Rearranging the above equation, we get
Y(z)=—a,z7'Y(z) —a,z27%Y(2) + by X(z) +b,z27'X(2) +bz72X(2)

from which the simulation diagram in Fig. 7-8 can be drawn. Choosing the outputs of unit-delay
elements as state variables as shown in Fig. 7-8, we get

y[n]=q,[n] +byx[n]

q\[n+1] = —a,y[n] +q,[n] +b,x[n]
= —aq,[n] +q,[n] + (b, —a,by)x[n]

q,[n+1}= —a,y[n] +b,x[n]

—a,q,[n] + (b, —ayby) x[n]
In matrix form
by —ab,

x[n
b, —ayb, (]

y[n]=[1 0]aln] +byx[n]

—-a, 1
aln 1= [ ~a O]q[n]+ (7.85)

Note that in the simulation diagram in Fig. 7-8 the number of unit-delay elements is 2 (the
order of the system) and is the minimum number required. Thus, Fig. 7-8 is known as the
canonical simulation of the first form and Eq. (7.85) is known as the canonical state representa-
tion of the first form.

xin]

Fig. 7-8 Canonical simulation of the first form.
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7.10. Redo Prob. 7.9 by expressing H(z) as

H(z) =H\(z)Hy(z)

where Hy(z) = ez v Hyz)=by+b,z7 ' +b,z7?
Let
H(z)= S 2 1 = (7.86)
X(z) l14+az7'+a,z
Hy(z) = (z) =by+b iz ' +byz7? (7.87)
w(z)
Then we have
W(z)+a,z2"'W(z) +ayz 2 W(z) = X(2) (7.88)
Y(z) =bW(z) + bz 'W(z) +byz"*W(z) (7.89)
Rearranging Eq. (7.88), we get
W(z) = —a,2-'W(z) —a,z7*W(z) +X(z2) (7.90)

From Egs. (7.89) and (7.90) the simulation diagram in Fig. 7-9 can be drawn. Choosing the
outputs of unit-delay elements as state variables as shown in Fig. 7-9, we have

vifn+ 1] =¢,[n]
vy[n+ 1] = —a,v,[n] —aw,[n] +x[n]
y[n] =byu,[n]+bw,[n] +beu,[n+1]

= (b, —boay)v,[n] + (b, —bya,) v [n] + byx[n]

—_— (5 )= — >
R
.
A i 2
*

b i

win-1]

o ol o |
valn+ 1) vy (n) winel) L1 vy

 J

v
a, 07
\/2‘

Fig. 7-9 Canonical simulation of the second form.
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7.11.

7.12.
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In matrix form

v[n+1]=[_0a2 _1al]v[n]+[(1)]x[n]

y[n]= [bz_’boaz b _bo¢11]V[n] + byx[n]

(7.91)

The simulation in Fig. 7-9 is known as the canonical simulation of the second form, and
Eq. (7.91) is known as the canonical state representation of the second form.

Consider a discrete-time LTI system with system function

z
H(z)= ———— 7.92
(z) 2z2-3z+1 (7.92)
Find a state representation of the system.
Rewriting H(z) as
H = = 7.
(z) 222(1—%2“+%z'2) 1-3z7"+ 5272 (7:93)
Comparing Eq. (7.93) with Eq. (7.84) in Prob. 7.9, we see that
‘11:_% “2=% by=0 b|=§1 b,=0
Substituting these values into Eq. (7.85) in Prob. 7.9, we get
f :
aln+11=| ] g falnl+ | |xln]
y[n]=[1 olaln] (7.94)
Consider a discrete-time LTI system with system function
z z
H(z)= 2 (7.95)

22-3z+41  2(z-1)(z-1)
Find a state representation of the system such that its system matrix A is diagonal.

First we expand H(z) in partial fractions as

V4 z z
H(z)= 2(z-1)(z—13) Tzo1 23
1 1
T1—z -1z =H(z) + Hy(z)
-1
where H(z)= 5 Hy(z)= —1-‘?
a Y (z
Let H(z) = l—p:z" = /\f((z)) (7.96)
Then (1~pez™ Y (2) =, X(2)
or Y(2) =ppz 'Y (2) + o, X(2)

from which the simulation diagram in Fig. 7-10 can be drawn. Thus, H(z) = H(z) + Hy(z) can
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x[n] yidnl

x[n)

CEJ yln]

i I

/] <
P ad k4 -
NJ @l | l aln+1]

Fig. 7-11

be simulated by the diagram in Fig. 7-11 obtained by parallel connection of two systems.
Choosing the outputs of unit-delay elements as state variables as shown in Fig. 7-11, we have

q\[n+1]=g,[n] +x[n]
az[n + 11 = 3a,[n] - x[n]
ylnl=aln + 1]+ g,[n + 1] =q,[n] + 3a,[ 7]

In matrix form
atne1)=|g {Jatal+ [} Jstn)

yinl=[1 $]aln) (7.97)
Note that the system matrix A is a diagonal matrix whose diagonal elements consist of the poles
of H(z).
7.13. Sketch a block diagram of a discrete-time system with the state representation
0
? |+t

y[n] =[3 =2]q|[n] (7.98)

1
12 |a[n] +
2 3

q[n+1]=l0
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We rewrite Eq. (7.98) as
q,[n+1])=q,[n]
a;[n+1] =3q,[n] + 3q,[n] +x[n]
y[n]=3q,[n] - 24,[n] (7.99)

from which we can draw the block diagram in Fig. 7-12.

2 Iz\
V
x[n} _ /2\ _ o _>E q; Inf

g ln+1)

- L 'V[n] a
&)

N/

*

.

Fig. 7-12

STATE EQUATIONS OF CONTINUOUS-TIME LTI SYSTEMS DESCRIBED
BY DIFFERENTIAL EQUATIONS

7.14. Find state equations of a continuous-time LTI system described by
V() +3y(t) +2y(t) =x(2) (7.100)

Choose the state variables as

ai(1) =y(1)
ax(1) =y(1) (7.101)
Then from Eqs. (7.100) and (7.101) we have
G,(1) =aqx(1)
4(1) = —2q,(1) = 3q,(1) +x(1)
y(1) =q(1)

In matrix form
an=[_5 S|+ [}«
y(r)=[1 oO]a(t) (7.102)
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7.15. Find state equations of a continuous-time LTI system described by
F(t) +3y(t) + 2y(t) = 4x(t) +x(t) (7.103)
Because of the existence of the term 4x(¢) on the right-hand side of Eq. (7.103), the
selection of y(¢) and y(t) as state variables will not yield the desired state equations of the
system. Thus, in order to find suitable state variables we construct a simulation diagram of
Eq. (7.103) using integrators, amplifiers, and adders. Taking the Laplace transforms of both

sides of Eq. (7.103), we obtain
s2Y(s) +3sY(s) +2Y(s) = 4sX(s) + X(5)
Dividing both sides of the above expression by s and rearranging, we get
Y(s) = —3s7'Y(s) ~2572Y(s) + 4s7'X(s5) +572X(s)

from which (noting that s~* corresponds to integration of k times) the simulation diagram in
Fig. 7-13 can be drawn. Choosing the outputs of integrators as state variables as shown in
Fig. 7-13, we get

G\(1) = =3q,(1) +qy(1) +4x(r)
4y(1) = —2q,(t) +x(1)

y(1) =a\1)
In matrix form
an-[23 o]+[i]x
y(1)=[1 o0la(r) (7.104)

(1)
—

Fig. 7-13

7.16. Find state equations of a continuous-time LTI system with system function

Hs) = bos® +b,s* +b,s +b,

(7.105)

3 2
s”+a st +a,s +a,
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From the definition of the system function [Eq. (3.37)]
Y(s) bos®+b,;s?+b,s+b,

7.17. Redo Prob. 7.16 by expressing H(s) as

H(s) = = -
() X(s) s’+a;s?+a,s+a, H(s) = H\(s)Hy(s)
1
we have
where H(s)= T E—
(s*+ays +a,ys +a3)Y(s) = (bos® + bys> +bys + b3) X(5) $TTa ST TaxsTa,
Dividing both sides of the above expression by s* and rearranging, we get Hy(s) =bys> +b,s>+bys + b,
Y(s) = —a;s7'Y(s) —a,s7Y(s) —ays73Y(s) Let
+boX(s) +b;sT'X(s) +b,5s72X(s) +bys3X(s) wis) )
s
from which (noting that s~* corresponds to integration of k times) the simulation diagram in H\(s)= == 3
Fig. 7-14 can be drawn. Choosing the outputs of integrators as state variables as shown in X(s) s'+a;sttaysta, (7.107)
Fig. 7-14, we get Y(s '

) =bos® + b,s* +b,s + b,y

Hy(s) = W)

y(t) =q,(t) +byx(t)
4\(t) = —a,y(t) +a(1) +byx(t)
—a1q\(1) +ay(t) + (by —a;by) x(1)

Then we have

]

(s* +a;s? +ays +a3)W(s) = X(s)

42(1) = —ayy(t) +as(t) +byx(t)
= —a,q,(t) +q;(t) + (b, —a,by) x(¢t) Y(s) = (bos® +b,s?+bys +b,)W(s)
43(t) = —azy(t) +byx(1) Rearranging the above equations, we get
= - +(by—
a341(#) + (b3 = asbo) x(¢) S3W(s) = —a;s?W(s) —a,sW(s) —a;W(s) + X(s)
In matrix form
“a, 1 0 b, —a,b, Y(s) =bos*W(s) + bs*W(s) + b,sW(s) +b,W(s)
a(t)=|-a, 0 1]q(t)+|by—aby|x(1) from which, noting the relation shown in Fig. 7-15, the simulation diagram in Fig. 7-16 can be
-a; 0 0 by —ajb,
y(1)=[1 0 O0]a(t)+box(r) (7.106) sWis) Wis)
As in the discrete-time case, the simulation of H(s) shown in Fig. 7-14 is known as the w(r) . w(i)

canonical simulation of the first form, and Eq. (7.106) is known as the canonical state

representation of the first form. 8. 7-15

x(1)

W)

Y Y Y

O
Fig. 7-16 Canonical simulation of the second form.

Fig. 7-14 Canonical simulation of the first form.
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7.18.

7.19.

STATE SPACE ANALYSIS

[CHAP. 7

drawn. Choosing the outputs of integrators as state variables as shown in Fig. 7-16, we have

0y(1) =vy(t)
(1) = uvs(1)
04(t) = —azv (1) —aw,(t) —aw;(t) +x(t)
y(t) =byv (1) +byvy (1) +bws(1) + bois(t)
=(by—asby)v (1) + (b, —a,by)v,(t)
+(b, —aby)vs(t) +byx(t)

In matrix form

0 1 0 0
v(t) = 0 0 1 v(t)+[0]x(t)

a3 —a4; —a 1

y(t) = [b3—a3b0 b, —ayb, b, —albo]v(t) +byx(t)

(7.108)

(7.109)

As in the discrete-time case, the simulation of H(s) shown in Fig. 7-16 is known as the
canonical simulation of the second form, and Eq. (7.709) is known as the canonical state

representation of the second form.

Consider a continuous-time LTI system with system function

3s+7
(s+1)(s+2)(s+5)

H(s)=

Find a state representation of the system.
Rewrite H(s) as
35s+7 3s+7

) = G759 7 +87+ 15410

Comparing Eq. (7.111) with Eq. (7.105) in Prob. 7.16, we see that
a,=8 a,=17 a;=10 by=b,=0 b,=3
Substituting these values into Eq. (7.106) in Prob. 7.16, we get
-8 1 0 0
g(t)={—-17 0 1iq(t)+|3
-10 0 0 7
y(t)=[1 0 0]at)

x(t)

Consider a continuous-time LTI system with system function

3 3s+7
H(s) = (s+1)(s+2)(s+5)

(7.110)

(7.111)

(7.112)

(7.113)

Find a state representation of the system such that its system matrix A is diagonal.

CHAP. 7] STATE SPACE ANALYSIS

First we expand H(s) in partial fractions as

" 3s+7 1 1 z
)= DG D(G+5 551 5+2 545
=H\(s) + Hy(s) + Hy(s)
1 1 2
3 3
where H,(s)=—s+—1 HZ(S)=—S+2 H3(5)=_s+5
Ay Y (s)
Let H = =
() s~ P X(s)
Then (s =pu)Yi(s) =a, X(s)
or Y, (s) =pps Y,(5) + apsT'X(s)

393

(7.114)

from which the simulation diagram in Fig. 7-17 can be drawn. Thus, H(s) = H/(s) + H,(s) +
H,(s) can be simulated by the diagram in Fig. 7-18 obtained by parallel connection of three
systems. Choosing the outputs of integrators as state variables as shown in Fig. 7-18, we get

4y(t) = —q(t) +x(1)
dy(t) = —2g,(1) = 3x(1)
d3(1) = =5aq5(1) ~ $x(1)
y(1) =ay(1) +q,(1) +q5(1)

In matrix form

x(1)

-1 0 0
('1(t)=[ 0 -2 0}q(r)+ -
0 0 -5

W | e

y(y=[1 1 1]a(s)

(7.115)

Note that the system matrix A is a diagonal matrix whose diagonal elements consist of the poles

of H(s).

Y1y

Fig. 7-17
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@ Qi

x()

Fig. 7-18

SOLUTIONS OF STATE EQUATIONS FOR DISCRETE-TIME LTI SYSTEMS

[

by the Cayley-Hamilton theorem method.

7.20. Find A” for

xj—-

Bl
—_—

First, we find the characteristic polynomial c(A) of A.

-1

C(A):ll\l—.‘\l='?_|3 )\_%

RSB i= (- h- )

[CHAP. 7

Thus, the eigenvalues of A are A, = § and A, = §. Hence, by Egs. (7.27) and (7.28) we have

by b,

Al=byl+b A=
0 ! _%bl b()+%bl

and b, and b, are the solutions of
n
by + bl(%) = (%)

by+by(3)=(3)"
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from which we get
bo==(2)"+2()"  bi=4(3)" ~4(5)
Hence,
Al NOREOH 4(%)"—4(%)”}
SHHE 2D - )

-7 2

7.21. Repeat Prob. 7.20 using the diagonalization method.

Let x be an eigenvector of A associated with A. Then

[AI-A]x=0

i B

The solutions of this system are given by x, = 2x,. Thus, the eigenvectors associated with A,
are those vectors of the form

For A =, = 1 we have

®f— M=

x,=a[2] a#0

% -1 [ xl] _ [0]

g —1|l*x 0
The solutions of this system are given by x, = 4x,. Thus, the eigenvectors associated with A,
are those vectors of the form

For A =\, = ; we have

4
x2=B[l] B*O

Let @ =B =1 in the above expressions and let
p-[x x]=[7 ]

1 _ _
Then P“=——[_~1 4}=[ )

[STERNTES
[\
[SE——)
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and by Eq. (7.29) we obtain

0 (%) 0 (%)
z{waﬁoer «w>«ﬂ1
S0 0" 26) -6

7.22. Repeat Prob. 7.20 using the spectral decomposition method.

Since all eigenvalues of A are distinct, by Eq. (7.33) we have

Then, by Eq. (7.34) we obtain

SERNEESEIEE
9 4ef—«nq
M 2D ()

7.23. Repeat Prob. 7.20 using the z-transform method.
First, we must find (z1 - A)~".

_ : -1 1 z-3 1
(zI-A)"'= ;] :———_[ | }

x| —
N
|

I

N
|
|-
N
|
ol—
™~
|
Al

[CHAP. 7
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Then by Eq. (7.35) we obtain

A =37 (z1-A)""z)

1\ -1 4+ 1)”2 -4
“\2) |- 2" \4) | -1
From the above results we note that when the eigenvalues of A are all distinct, the spectral
decomposition method is computationally the most efficient method of evaluating A".

[

The characteristic polynomial c(A) of A is

7.24. Find A" for

wi— O

WA -
—_—

-1

c(A)=MI-Al=|1 ,_

wi— >

wla

—R-het=(A-D(A-Y)

Thus, the eigenvalues of A are A; =1 and A, = %, and by Eq. (7.33) we have

E A—Al ! a-imy=> SEREEN I It
T L R
1 3[-1 1 3 -3

E,= A-AD=-—(A-T)= -~ -
! ’\2*/‘1( D %"1( ) 2[_% %] [% -1

Thus, by Eq. (7.34) we obtain
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7.25.

7.26.
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Find A" for
12 1
A'[o q

The characteristic polynomial ¢(A) of A is

A=2 1

c(AM)=1-Al=|* 4 T

‘ =(A-2)?

Thus, the eigenvalues of A are A, = A, =2. We use the Cayley-Hamilton theorem to evaluate
A". By Eq. (7.27) we have

by +2b, b,

A =bol+bA=|" by + 2b,

where b, and b, are determined by setting A =2 in the following equations [App. A,
Eqgs. (A.59) and (A.60)}:

by +bA=A"
by=na!
Thus,
by+2b, =2"
b, =n2""!
from which we get
by=(1-nj)2" b, =n2""!
n n-1
and A"=[20 n22n ]

Consider the matrix A in Prob. 7.25. Let A be decomposed as
(2 1{_(2 O 0 1
A‘[o 2]_[0 2]+[0 0

_12 0 _{0 1
where D_[O 2] and N—[O 0]

=D+N

(@) Show that N?=0.
(b) Show that D and N commute, that is, DN = ND.
(¢) Using the results from parts (a) and (b), find A",

(a) By simple multiplication we see that
2_[0 1][o 1]_[0 o]_
N [0 0]l0 0 0 0 0
(b) Since the diagonal matrix D can be expressed as 21, we have

DN = 2IN = 2N = 2NI = N(2I) = ND

that is, D and N commute.
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(¢) Using the binomial expansion and the result from part (b), we can write

n(n—-1)
2!

(D+N)"=D"+nD""'N + D" N%+ --- +N"

Since N2 =0, then N¥ =0 for k > 2, and we have
A"=(D+N)"=D"+nD""'N
Thus [see App. A, Eq. (4.43)},

. f2 01", [2 o]"'fo 1
A’[o 2 +"[0 2] o 0]

_12" 0 n 2n-! 0 0 1
0 2" 0 2n=1110 0
2’1 0 0 2n-l 2n nzn—l
= + =
[0 2"] "[o o] [o 2" ]
which is the same result obtained in Prob..7.25.

Note that a square matrix N is called nilpotent of index r if N"~' # 0 and N" = 0.

7.27. The minimal polynomial m(A) of A is the polynomial of lowest order having 1 as its
leading coefficient such that m(A) = 0. Consider the matrix

2 0 0
A=|0 -2 1
0 4 1

(a) Find the minimal polynomial m(A) of A.
(b) Using the result from part (a), find A"
(a) The characteristic polynomial c(A) of A is

A=2 0 0
0 A+2  —1
0 -4 aA-1

Thus, the eigenvalues of A are A; = —3 and A, =A; = 2. Consider
m(A)=(A+3)(A-2)=A%+Ar-6

2 0 0] [2 o000 1 0 0
m(A)=A’+A-61={0 -2 1| +f0 -2 1|-6/0 1 0
4 1 0 0 1
0
0
0

c(A)=AI-Al= =(A+3)(A-2)°

Now

0 0 4 1

4 0 0 2 0 0 6 0 0 0 0
=10 8§ -1|+|0 -2 1(—|0 6 0|=]|0 O
0 -4 5 0 4 1 0 0 6 0 0

Thus, the minimal polynomial of A is
m(A)=(A+3)(A-2)=A+Ar-6

(b) From the result from part (a) we see that A" can be expressed as a linear combination of
I and A only, even though the order of A is 3. Thus, similar to the result from the
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Cayley-Hamilton th s h
ayley-Hamilton theorem, we have Thus, by Eq. (7.34) we get
N—baiba=| ¢ A= (-3)"E, +(2)"E
0 ! —gby byt 3b, ] :
0 0 0 1 0 O
where b, and b, are determined by setting A = —3 and A = 2 in the equation =(-3)" 0 -1y (2)" 0 11
by+b A=A 0o -% 1 0 ¢ 4
Thus, (2)" 0 0
by—3b,=(~3)" =1 0 H(="+)" =3 +3:(2)
_ —4‘ _ n i n l- _ n i n
by + 26, = 2° 0 —H-3)"+D" H-3"+iD)
from which we get which is the same result obtained in Prob. 7.27(b).
=2(=-3)"+ 3(" =_—L=3)"4 L(y" . . . . C e
bo=3(-3)"+5(2) by 5(=3) +3(2) 7.29. Consider the discrete-time system in Prob. 7.7. Assume that the system is initially
)" 0 0 relaxed.
and A=| 0o & _3)" + %(2)" —4=3)"+ %(2)" (a) Using the state space representation, find the unit step response of the system.
0 4= D) =3 +i)" (b) Find the system function H(z).
(a) From the result from Prob. 7.7 we have
0 0 0 1 0 O
=(=3"0  §F -sl+@"0 3 3 a[n + 1] = Aq[n] + bx[n]
0 - ! 0 ¢ ¢ yln] = cqln] +dx[n]

0 1
where A= T b= 0] c=[—% }] d=1
~% i 1

7.28. Using the spectral decomposition method, evaluate A" for matrix A in Prob. 7.27.
Setting q[0] = 0 and x[n]=u[n] in Eq. (7.25), the unit step response s[n] is given by

Since the minimal polynomial of A is
n—1

m(A) =(A+3)(A=2) =(A=X)(A—4y) s[n]= ¥ cA" ' bulk] + du[n] (7.116)
k=0
which contains only simple factors, we can apply the spectral decomposition method to

evaluate A”. Thus, by Eq. (7.33) we have Now, from Prob. 7.20 we have

A"—(l)" -1 4+(1)"z -4
E1=AI_A2(A-MI)=_3_2(A—21) 2] -1 2 4/ |4 -1
O O 0 L , 1 n—1-k _1 4 1 n—1-k 2 _4 0
0 0 0 n=l-kp [ 1 3 _ =
=_§[o i 1]- 0o % - L S I N ] B i 1}
0 4 -1 0 -4 1
3 5 nerke =1 4]e
-(a) =
E,= A-AI) = A+31
2 Az—M( D 2_(_3)( 31 i
1\" 2 -4
SHIE
1[500]1?? 4 ot -th
==lo 1 1|={0 5 53
5 n—1-k n—-1-k n—k n—k
L (O RN
2 4\4 2 a4
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Thus,

If

(3 25

k=0

|
- )

i

1l

|

N
——
N
~——

+

[\S]

+
W |
——
|

|
w|

+

1

| oo

i

N
o

!

1\ 1/1y\" 0

+ -~ >
2] T34 "=
which is the same result obtained in Prob. 4.32(c).

(b) By Eq. (7.44) the system function H(z) is given by
H(z)=c(z1-A)"'b+d

A el

H(:) = gy %J[r% i][?l“

®l— N

Now (zl—A)“=[

Thus,

_1.3 2
s+ iz

T T T EOED

which is the same result obtained in Prob. 4.32(a).

7.30. Consider the discrete-time LTI system described by
q[n + 1] = Aq[n] + bx[n]
y[n] =cq[n] +dx[n]

(a) Show that the unit impuise response A[n] of the system is given by

d n=20
h(n] ={cA" b n>0 (7.117)
0 n<0

(b) Using Eq. (7.117), find the unit impulse response A[n] of the system in Prob.
7.29.
(a) By setting q[0] =0, x[k]=06[k], and x[n]=8[n] in Eq. (7.25), we obtain
n—1
h[n]= ¥ cA""'~*bs[k] +db[n] (7.118)
k=0
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Note that the sum in Eq. (7.718) has no terms for n = 0 and that the first term is cA"~'b
for n > 0. The second term on the right-hand side of Eq. (7.118) is equal to d for n =0
and zero otherwise. Thus, we conclude that

d =0
h[n]={cA" b n>0
0 n<0

(b) From the result from Prob. 7.29 we have
A=[_ ] b=[(1)] e=[-1 2] d=1

and cA"‘lb=(%)"_l—41(})" n>1

ol- &

Bl s

which is the same result obtained in Prob. 4.32(5).

7.31. Use the state space method to solve the difference equation [Prob. 4.38(b)]
3y[n] —4y[n—1] +y[n —2] =x[n] (7.119)
with x[n]=(3)"uln] and y[—1]=1, y[-2]=2.
Rewriting Eq. (7.119), we have
yln]=3yln— 1]+ 3y[n - 2] = 3x[n]
Let g, [n]l=y[n — 2] and g,[n]=y[n - 1]. Then
a,[n+1]=g,[n]
qoln +1] = —3q,[n] + 3q,[n] + 5x[n]
ylnl= —3aq,[n] + 34,[n] + 5x[n]
In matrix form
g[n+ 1] =Aq[n] + bx[n]
y[n] = cq[n] +dx[n]

0 1
where A= 1 b=
3 3

[alol]_[yI-21] 2
and "["]‘[qz[od‘[y[—ll]*[l]
Then, by Eq. (7.25)

y[n]=cA"q[0]+"ich""_"bx[k]+dx[n] n>0
k=0
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Now from the result from Prob. 7.24 we have

and cA"q[0] = [ -4 g]{—'i §+(%)[

Thus,

which is the same result obtained in Prob. 4.38(b).

7.32. Consider the discrete-time LTI system shown in Fig. 7-19.

(a) Is the system asymptotically stable?
(b) Find the system function H(z).
(¢) Is the system BIBO stable?

(a) From Fig. 7-19 and choosing the state variables g,[n] and g,[n] as shown, we obtain
a\[n + 1] = 2a,[n] +x[n]
ax[n+1)= - 3q,[n] +2q,[n]
yInl =aln] - ailn]
In matrix form
q[n + 1] = Aq[n] + bx[n]

y[n] = cq[n]
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7.33.

+ 1
>f2\ - !
g in+1) l l q, [n)

-1 Y

Z e
ol L= I gmey

where

>
It
—
|
N
N Nlw
—
=
I
—
(=T
—
(]
I
—
—
!
—
—

Now c(A) =|Al—-Al =

1 oaA=2

Thus, the eigenvalues of A are A, =3 and A,=3. Since |A,| > 1, the system is not
asymptotically stable.

(b) By Eq. (7.44) the system function H(z) is given by

H(z)=c(z1-A)'b=[1 —1][i —5] [(1)]

‘et
- 1
TEDGE-D e

(¢) Note that there is pole-zero cancellation in H(z) at z = 3. Thus, the only pole of H(z) is
1 which lies inside the unit circle of the z-plane. Hence, the system is BIBO stable.
Note that even though the system is BIBO stable, it is essentially unstable if it is not
initially relaxed.

Consider an Nth-order discrete-time LTI system with the state equation
a[n +1] = Aq[n] + bx[n]

The system is said to be controllable if it is possible to find a sequence of N input
samples x[n,], x[n,+ 1],..., x[n,+ N — 1] such that it will drive the system from
aln,]=q, to gln, + N]1=q, and q, and q, are any finite states. Show that the system
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is controllable if the controllability matrix defined by

M. =[b Ab AV~ 1p] (7.120)
has rank N.
We assume that n, =0 and q[0] = 0. Then, by Eq. (7.23) we have
N-1
a[N]= Y AV-'"kbx[k] (7.121)
k=0
which can be rewritten as
x[N -1}
x[N-2]
q[N]=[b Ab AV~ 1p) . (7.122)
x[0]

Thus, if g{N] is to be an arbitrary N-dimensional vector and also to have a nonzero input
sequence, as required for controllability, the coefficient matrix in Eq. (7.122) must be nonsingu-

lar, that is, the matrix
M.=[b Ab AN=1p]

must have rank N.

Consider an Nth-order discrete-time LTI system with state space representation
q[n + 1] =Aq[n] +bx[n]
y[n] = cq[n]

The system is said to be observable if, starting at an arbitrary time index n,, it is
possible to determine the state q{n,]=q, from the output sequence y[ng), yln, +
1),...,ylny+ N —1). Show that the system is observable if the observability matrix
defined by

M, = : (7.123)
CA[;I—I
has rank N.

We assume that ny=0 and x[n}=0. Then, by Eq. (7.25) the output y[n] for n=
0,1,...,N— 1, with x[n] =0, is given by

y[n] = cAq[0] n=0,1,...,N—-1 (7.124)
or y[0] = cq[0]
y[1] = cAq[0] (7.125)

YN —1]=cA""q[0]

CHAP. 7)
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Rewriting Eq. (7.125) as a matrix equation, we get

y[0] ¢

SO I B

y[N_I] cAN—I

407

(7.126)

Thus, to find a unique solution for q[0], the coefficient matrix of Eq. (7.126) must be
nonsingular; that is, the matrix

must have rank N.

7.35. Consider the system in Prob. 7.7.

(a)
(b)
(¢)

(a)

(b)

Is the system controllable?
Is the system observable?
Find the system function H(z).

From the result from Prob. 7.7 we have

=[] e [f]

w-[ 0 4]0 []

and by Eq. (7.120) the controllability matrix is

13

RO

and IM_| = —1 # 0. Thus, its rank is 2 and hence the system is controllable.

Similarly,

Bl

aa-(-4 2[_3

[-1-2 &

|

and by Eq. (7.123) the observability matrix is

AR

SN st

32

and [M,| = — & # 0. Thus, its rank is 2 and hence the system is observable.
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(¢) By Eg. (7.44) the system function H(z) is given by

-1
H(z)=c(zl—A)'lb+d=[—$ }][i —_13] 0 +1
g 27% 1
Z—; 1 0
- 1 3
_(z—;)(z_al)[ 8 4][ _% Z][1]+1
- 22
= 1 v tl= 1 I
(z=3)z-3) (z=3)(z-3)
1
T—2 42
Consider the system in Prob. 7.7. Assume that
|0
a0} =]
Find x[0] and x[1] such that g[2] = 0.
From Eq. (7.23) we have
x[1]
q[2] = A%q[0] + Abx[0] + bx[1] = A’q[0] + [b Ab] +[0]
Thus,
[0 [ o 120]+ 0 1][x[1]
0]_ =% il 3] x0)
REREEC
RE: x[1] + ;x[0]
from which we obtain x[0]= — 2 and x[1]=}.

Consider the system in Prob. 7.7. We observe y[0] = 1 and y[1} = 0 with x[0] =x[1]=0.

Find the initial state q[0].
Using Eq. (7.125), we have

o)=L

Thus,
HE I

Solving for ¢,[0] and ¢,[0], we obtain

an-[280 [0 1) (2]
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7.38. Consider the system in Prob. 7.32.

(a) Is the system controllable?
(b) Is the system observable?

(@) From the result from Prob. 7.32 we have

A=[—O i] b=[(1)] c=[1 -1]

N b 0 3 [1] 0
ow = =
-1+ 2flo] |-
and by Eq. (7.120) the controllability matrix is
1 0
w-w w-]) ]
2

and [M_| = — 1+ 0. Thus, its rank is 2 and hence the system is controllable.
(b) Similarly,

o

—
It
—_—
ol
|
1
—

N
BN W

cA=[1 —1][_

and by Eq. (7.123) the observability matrix is

1 -1
c —_—
URIME [ —%]
and IM,| = 0. Thus, its rank is less than 2 and hence the system is not observable.
Note from the result from Prob. 7.32(b) that the system function H(z) has pole-zero

cancellation. If H(z) has pole-zero cancellation, then the system cannot be both control-
lable and observable.

SOLUTIONS OF STATE EQUATIONS FOR CONTINUOUS-TIME LTI SYSTEMS

7.39. Find e*’ for

S ]

using the Cayley-Hamilton theorem method.
First, we find the characteristic polynomial c(A) of A.

A -1
6 A+5

=A+504+6=(A+2)(A+3)
Thus, the eigenvalues of A are A, = —2 and A, = —3. Hence, by Egs. (7.66) and (7.67) we have

c(A) = AL - Al ='

b
Ar _ — 0 1
e bol+bA —6b, bU—Sb,]
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and b, and b, are the solutions of
bo—2b =¥
by—3b,=¢"*
from which we get
bo=3e -2 by=eM-¢
Hence,

Al _ 3e—ZI_2e—~3I e*ZI__e—3I
e = -2 -3t ~2t -3t
—6e ' + 6e ~2e” "+ 3e

—e~ 2 3 1 -3 -2 -1
¢ [—6 —2]” [6 3]

Repeat Prob. 7.39 using the diagonalization method.

Let x be an eigenvector of A associated with A. Then
[AI-Alx=0

=2 =1{[%_10
6 3yl x, 0
The solutions of this system are given by x, = —2x,. Thus, the eigenvectors associated with A,
are those vectors of the form
X, = 1
! -2

-3 1[5 _]0
6 2§ x, 0
The solutions of this system are given by x, = —3x,. Thus, the eigenvectors associated with A,
are those vectors of the form
1
~=8 )

Let @ =B =1 in the above expressions and let
1 1
P=[xl X2]=[_2 _3]

S I S

For A =A, = —2 we have

with a # 0

For A =1, = -3 we have

with 8 # 0

2 1 -2 -1
and by Eq. (7.68) we obtain

a1 Ifem™ 0| 3 1]= 3e 2 —2e¥ e —e ¥
-2 -3 0 e>|[-2 -1 —6e M+ 6e7 —2e 2 +3e7¥
1

— =2t 3 -3 -2 -
¢ [—6 —2]” [6 3]
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7.41. Repeat Prob. 7.39 using the spectral decomposition method.

Since all eigenvalues of A are distinct, by Eq. (7.33) we have

YA =A,

(A—A21)=A+3l=[_g _;]

E,

(A—MI)=—(A+21)=[_2 —1]

EUVEDY 6 3
Then by Eq. (7.70) we obtain

At _ ,—2t -3t = p—2t 3 1 -3t -2 -
e e “E +e 'E,=¢ [—6 _2]+e [ 6 3]

_ 38_2'—28_3' e¥21_e—31
—6e X +6e™F —2e Y43

7.42. Repeat Prob. 7.39 using the Laplace transform method.
First, we must find (sI — A)~ L

-1_J{s -1 _ s+5 1
(s1-4)"=1¢ s+5] (s+2)(s+3)[—6 s]
[ s+5 1
(s+2)(s+3) (s+2)(s+3)

- 6 s
(s+2)(s+3) (s+2)(s+3)

[ 3 2 1 1

| s+2 s+3  s+2 s+3

h 6 6 2 3

- + - +

L s+2 s+3 s+2 s+3

Then, by Eq. (7.71) we obtain
- JemH —2e7 ¥ e e
et = (s1-A)"Y) =
{(s ) } [—-6e’2‘+6e’3’ —2e ¥ 43¢

Again we note that when the eigenvalues of A are all distinct, the spectral decomposition
method is computationally the most efficient method of evaluating e’

7.43. Find e*! for

-2 1
A=
7
The characteristic polynomial c(A) of A is
_ Al A+2 -1
c(A) = AL - Al ' i ,\+2}

=A+4r+3=(A+1)(A+3)

Thus, the eigenvalues of A are A; = —1and A, = —3. Since all eigenvalues of A are distinct, by
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Eq. (7.33) we have
1 1ry
EI_E(A+3I)—E[ ]—{

e twens-2

Then, by Eq. (7.70) we obtain

Nf— N
[T
—_
+
o
i
w
e
|
[N NIT
I
N Nl
—

|

Ni— ol
|
@

=3t L,—t _ 1 ,-3¢
e 3€ €
e te 4 Lo

7.44. Given matrix

0 -2 1
A=10 0 3
0 0 0
(a) Show that A is nilpotent of index 3.
(b) Using the result from part (a) find e*".
(a) By direct multiplication we have
0 -2 1{fo -2 1 0 0
A2=AA=|0 0 31fo 0 3(=10 0
0 0 0]10 0 0 0 0
0 0 —-6{/0 -2 1 0 0
A’=AA={0 0 0{({0 0 3{=(0 0
0 0 0110 0 0 0 0

Thus, A is nilpotent of index 3.
(b) By definition (7.53) and the result from part (a)

1? 3 1?
eA=T+tA+ —A2+ —A+ - =1+1A+ —A’
2! 3! 2
1 0 0 0 -2 1 210 0 -6 1
=[{0 1 0f+¢tj0 0 3|+=(0 O 0l=10
0 0 1 0 0 0 0 0 0 0

[CHAP. 7

Nl =
—

-2t t-3¢
1 3t

7.45. Find e*' for matrix A in Prob. 7.44 using the Cayley-Hamilton theorem method.

First, we find the characteristic polynomial ¢(A) of A.

A2 -1
c(A)=A1-Al=|0 A -3|=A°
0 0 A

CHAP. 7]
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Thus, A = 0 is the eigenvalues of A with multiplicity 3. By Eq. (7.66) we have
eA=byI+bA+b,A?

413

where by, b,, and b, are determined by setting A = 0 in the following equations [App. A, Eqgs.

(A.59) and ( A.60)):

by +b A +byA=eM

by +2b,A = e
2b, =%
Thus,
2
by=1 b =t b,= >
Hence,

t2
e“=l+1A+—2—A2

which is the same result obtained in Prob. 7.44(b).
Show that
eA+B _ oAB
provided A and B commute, that is, AB = BA.
By Eq. (7.53)

m=0 :

“ 1 > 1
A,B __ k JR—
e E x| £ o)
k=0
1 ) 1 )
=(I+A+2—!A+"')(]+B+2—!B + -

1 1
= — A2 —R24 ...
=I+A+B+ A" +AB+ - B+

1
e‘“’=l+(A+B)+§(A+B)2+

1 1 1 1
=I+A+B+—A’+ -AB+ —BA+ —B%+ ---
2! 2 2 2!
and eheB —eA*B=J(AB—BA) + - -~
Thus, if AB = BA, then
eATB — pA,B
7.47. Consider the matrix
2 1 0
A=10 2 1



414 STATE SPACE ANALYSIS
Now we decompose A as
A=A+N
2 0 0 0 1 0
where A=10 2 0 and N=10 0 1
0 0 2 0 0 0
(a) Show that the matrix N is nilpotent of index 3.
(b) Show that A and N commute, that is, AN = NA.
(¢) Using the results from parts (@) and (b), find e*’
(a) By direct multiplication we have
1 0]]0 1 0 0 0 1
N“=NN-= 0 1(/0 0 1 0 0 0
0 0J{0 0 O 0 0 0
0 0 10 1 0 0 0 0
N*=N2N={0 0 ollo o 1|=]0 0 o
0 0 040 0 0 0 00
Thus, N is nilpotent of index 3.
(b) Since the diagonal matrix A can be expressed as 2I, we have
AN =2IN = 2N = 2NI = N(2I) = NA
that is, A and N commute.
(¢) Since A and N commute, then, by the result from Prob. 7.46

Al _ p(A+NN _ AL, N1

Now [see App. A, Eq. (A4.49)]

[ )

e 0 0 1 0
L,Al = 0 ez, 0 = e21 0 0 =

0 0 g* 0 1
and using similar justification as in Prob. 7.44(b), we have

2

t
Nt _ 2
—I+tN+2!N

-
~

~
~

1 0 0 0 ¢t O 00 — 1 ¢+ =
=0 1 o|+fo o0 |+ 2 |= 2
0 0 1 0 0 0 00 O 0 1
0 0 0 0 0 1
Thus,
(2
1+ —=
Al = gAIpNt _ G20y NI _ 20Nt _ o2t 2
0 1
0 0 1

[CHAP. 7
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Using the state variables method, solve the second-order linear differential equation
y'(t)+5y' (1) +6y(t)=x(t) (7.127)
2, y'(0) =1, and x(¢) =e'u(¢t) (Prob. 3.38).
Let the state variables q,(¢) and g,(1) be
a,(1) =y(1) a(1) =y'(1)
Then the state space representation of Eq. (7.127) is given by [Eq. (7.19)]
a(1) = Aq(1) +bx(1)
y(t) =cq(?)

with the initial conditions y(0) =

LIS WHEH

y(1) = cer'q(0) + ['ceA~"bx(7) dr
0

with A=[_0 1]

6 -5

Thus, by Eq. (7.65)

with d = 0. Now, from the result from Prob. 7.39

- 3 1 _ul =2 —1
eAl=¢ Zr[ ]+e 31[ ]
-6 -2

wievan -0 ofe 3 G )

e

ceMt Db = [1 0]{e"2‘"”[ ) _;] + e"""”[ 2

=~ At=1) _ p=30-1)

Thus,

y(t) =Te ¥ —5¢~% + f'(e‘z‘"” —e"‘"”)e"d-r
0

1 t
e"dr —e‘3’f e’"dr

=Te % — 5~ +e"2’f
0

0
=ze ' +6e"H -2 >0

which is the same result obtained in Prob. 3.38.

Consider the network shown in Fig. 7-20. The initial voltages across the capacitors C,
and C, are 3 V and 1 V, respectively. Using the state variable method, find the
voltages across these capacitors for ¢>0. Assume that R,=R,=R;=1 {} and
C,=C,=1F.

Let the state variables g,(¢) and g,(t) be

a,(t) =vc(t) q,(1) =vcft)
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+ +
v(-y(l) :[: C, R, R3§ G, - Vcl(l)

Fig. 7-20

Applying Kirchhoff’s current law at nodes 1 and 2, we get

Cudr(t) + qllg') + ‘h(’);qz(') -0
Cdy(t) + qzlgt) N ‘12(’)1;‘(11(’) -0

Substituting the values of R,, R,, R;, C|, and C, and rearranging, we obtain
4i(1) = —2q,(t) +q5(t)
42(1) = q,(t) — 2q,(¢)

In matrix form

a(1) = Aq(1)
with A=[_f _;] and q(0)=[f]

Then, by Eq. (7.63) with x(¢) =0 and using the result from Prob. 7.43, we get

Il

D= -

=

=N

~

~

il

o

>

=

=

[=}

N

f
e

a

|
e
Nl— N]—
[N
[R—

+

o

g
———

|

[SIER ST

Thus,

ve(t) = Je i — e ¥ and

be(t) = e + e
Consider the continuous-time LTI system shown in Fig. 7-21.

(a) Is the system asymptotically stable?
(b) Find the system function H(s).
(c) Is the system BIBO stable?

(a) From Fig. 7-21 and choosing the state variables g,(¢) and g,(r) as shown, we obtain
4,(1) =q,(¢t) +x(1)
4,(t) =2qy(t) +q,(t) —x(t)
y(1) =a,(1) —qy(1)

[CHAP. 7
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x(1)

(b)

()

w0

In matrix form

q(t) =Aq(t) +bx(t)

y(1) = cq(1)
_10 1 |1 _ _
where A-[Z 1] b—[_l] c=[1 1]
- | A -1]_ -
Now c(Ay=I-Al= 22 a-1 =A=-A=-2=(A+1)(A-2)
Thus, the eigenvalues of A are A, = —1 and A, = 2. Since Re(A,} > 0, the system is not

asymptotically stable.
By Eq. (7.52) the system function H(s) is given by

-1

-areat et L
2s-2) 2

T(s+1)(s=2) s+1

H(s) =<(s1-A) =1 -1]] ¢, s_-ll]_l[ |

Note that there is pole-zero cancellation in H(s) at s = 2. Thus, the only pole of H(s)
is — 1 which is located in the left-hand side of the s-plane. Hence, the system is BIBO
stable.

Again it is noted that the system is essentially unstable if the system is not initially
relaxed.

7.51. Consider an Nth-order continuous-time LTI system with state equation

q(t) =Aq(r) + bx(t)

The system is said to be controllable if it is possible to find an input x(¢) which will
drive the system from q(¢,) = q, to q(¢,) = q, in a specified finite time and q, and q,
are any finite state vectors. Show that the system is controllable if the controllability
matrix defined by

M.=[b Ab - AN“Tp] (7.128)

has rank M.
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We assume that ¢, =0 and g[0] = 0. Then, by Eq. (7.63) we have

ql=q(t,)=e""f"e""bx(-r) dr (7.129)
0
Now, by the Cayley-Hamilton theorem we can express e ~*" as
N-1
e A=Y a(r)A* (7.130)
k=0

Substituting Eq. (7.130) into Eq. (7.129) and rearranging, we get

N-1
q, =e~1[ T A"b["ak(f)x(f)df (7.131)
k=0 0
t
Let f'ak(r)x('r) dr =B,
0
Then Eq. (7.131) can be rewritten as
N-1
e Aq, = Z AbB,
k=0
Bo
— At N-1 B
or ehig=[b Ab - AV'B]| . (7.132)
Brn-i

For any given state q, we can determine from Eq. (7.132) unique B8,’s (k=0,1,..., N — 1), and
hence x(¢), if the coefficients matrix of Eq. (7.132) is nonsingular, that is, the matrix

M. =[b Ab --- AV 'p|
has rank N.

Consider an Nth-order continuous-time LTI system with state space representation
q(1) = Aq(¢) + bx(r)
y(t) = cq(t)

The system is said to be observable if any initial state g(¢,) can be determined by

examining the system output y(¢) over some finite period of time from ¢, to ¢,. Show
that the system is observable if the observability matrix defined by

c

cA
M = : (7.133)

cA’;’ -t
has rank N.

We prove this by contradiction. Suppose that the rank of M, is less than N. Then there
exists an-initial state g[0] = q, # 0 such that

M,q,=0
or cqy=cAgy= ‘- =cA¥"'q,= 0 (7.134)
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Now from Eq. (7.65), for x(1)=0and t,=0,
y(1) = ce*'q, (7.135)

However, by the Cayley-Hamilton theorem e’ can be expressed as

N-1
er = 3 ap (DA (7.136)
k=0
Substituting Eq. (7.136) into Eq. (7.135), we get
N-1
y(1) = 2 ax(t)cA'qy=0 (7.137)
k=0

in view of Eq. (7.134). Thus, g, is indistinguishable from the zero state and hence the system is
not observable. Therefore, if the system is to be observable, then M, must have rank N.

7.53. Consider the system in Prob. 7.50.

(a) Is the system controllable?
(b) Is the system observable?

(a) From the result from Prob. 7.50 we have

_10 1 _ 1 _ _
A—[z 1] b—[_l] c=[1 -1]
o 1)f 1] (-1
Now =2 ][] (1]
and by Eq. (7.128) the controllability matrix is

M, =[b Ab]=[_} 'i]

and [M,| = 0. Thus, it has a rank less than 2 and hence the system is not controllable.
(b) Similarly,

A=[1 —1][‘2) }]=[—2 0]

and by Eq. (7.133) the observability matrix is

_| ¢l 1 -1
M= [cA] [—2 o)
and [M,| = —2 # 0. Thus, its rank is 2 and hence the system is observable.
Note from the result from Prob. 7.50() that the system function H(s) has pole-zero

cancellation. As in the discrete-time case, if H(s) has pole-zero cancellation, then the
system cannot be both controllable and observable.

7.54. Consider the system shown in Fig. 7-22.
(a) Is the system controllable?
(b) Is the system observable?
(¢) Find the system function H(s).
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. /L* Supplementary Problems
. o L _
> T Iil 2,
+ + 7.55. Consider the discrete-time LTI system shown in Fig. 7-23. Find the state space representation
(1) /] Y1) of the system with the state variables gq,[n] and g,[n] as shown.
2 |
Ans.
+ ] 0 1 0
o171 1= + [ ]
: g U aln+1)=| 1 s laln)+ | |xln]
1 A yln)=[-1 2laln]
L 1

Fig. 7-22
> [2\

(a) From Fig. 7-22 and choosing the state variables g,(¢) and g,(¢) as shown, we have l/
.
ylnl

Gi(t) = q,(1) +2q,(4) +x(1)
dy(1) =3q,(t) +x(1)
y(1) =q\(t) —ay(¢)

In matrix form

4,(1) = Aq(?) +bx(1)

y(1) = cq(t)
where A=[(l] g] b=“] c=[1 -1]
[
_fro2qf] (3 S
Now Ab—[o 3][1 _[3]
- . Fig. 7-23
and by Eq. (7.128) the controllability matrix is
_ {1 3
M.=[b Ab]=|
and |[M_| = 0. Thus, its rank is less than 2 and hence the system is not controllable. 7.56. Consider the discrete-time LTI system shown in Fig. 7-24. Find the state space representation
(b) Similarly, of the system with the state variables g,[n} and g,[n] as shown.
- _nlt o2y _
cA=[i 1][0 2l-n -1
. o - »lal
and by Eq. (7.133) the observability matrix is 3 s ma Kl g >
_lel_|1 -1 _
o lal-[ T
and M| = 0. Thus, its rank is less than 2 and hence the system is not observable. xin) !
(¢) By Eq. (7.52) the system function H(s) is given by
H(s)=¢(s1-A)"'b
gy ."zl"];
g S g

-0 -nfot A
1

ooyt e L]

Note that the system is both uncontrollable and unobservable.
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O]q[m [1]tn

-1
2

[T

q[n+1]=[

vinl={g Oatnd

7.57. Consider the discrete-time LTI system shown in Fig. 7-25.

(a)

(b)
(c)

Ans. () q[n+1]=[i _O%]q[n]+[

Find the state space representation of the system with the state variables g,[n] and g,[n)
as shown.

Find the system function H(z).
Find the difference equation relating x[n] and y[n].

1

0 x[n]

yin]=1; Zlaln] - gxin]
H(z)= 12z2-4z-1
(b) Z——g————zz_z+%

(©) ylnl=yln— 11+ yln—21= — gxln) + 3xln — 1] + ix[n - 2]

N |
v +
e Mn)

Aol + ()} - {> = —
' .
(]
qyln]

q,ln]

Fig. 7-25
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7.58. A discrete-time LTI system is specified by the difference equation

7.59.

7.60.

7.61.

y[n]l+y[n—=1]-6y[n-2]=2x[n-1] +x[n-2]
Write the two canonical forms of state representation for the system.

Ans. (1) q[n+1=[_é é]q[nn[f]x[n]

yln]=[1 0lqln]
@ s+ 1=[8 ][t [§a

y[n]=[1 2Mn]

Find A" for
[ 0
A=|
6

(a) Using the Cayley-Hamilton theorem method.
(b) Using the diagonalization method.

—2(3)" +3(3)" 6(%)"-6(;)"]
—(3) () ) 2y

A
—_—

Ans. A" =

Find A" for

(a) Using the spectral decomposition method.
(b) Using the z-transform method.

n

3 0 0
Ans. A'=| 0 3(2"+3(-3)" (D" -3(-3)"
0 32 "-%(-3)" 32"-4-3)"

Given a matrix
-1 2 2
A= 2 -1 2

(a) Find the minimal polynomial m(A) of A.

(b) Using the result from part (a), find A",

Ans. (@) m(A)=(A-=3XA+3)=A2-9

3" +2(=-3)" 3"—(=-3)" 3"—(-3)"
3n—(=3)" 3"+2(~-3)" 3"-(-3)"
- (=3)" 3 —(=-3)" 3"+2(-3)"

(b) A"= 3
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7.62. Consider the discrete-time LTI system with the following state space representation:

0 1 0 1
q[n+1]=[0 0 1]q[n]+[0}x[n]
0 -1 2 1

y[r]=[0 1 0]q[n]

(a) Find the system function H(z).
(b) s the system controllable?
(¢) Is the system observable?

1
Ans. (a) H(z)= ——
(z-1)
(b) The system is controllable.
(¢) The system is not observable.

7.63. Consider the discrete-time LTI system in Prob. 7.55.
(a) Is the system asymptotically stable?
(b) Is the system BIBO stable?
(¢) Is the system controllable?
(d) Is the system observable?

Ans. (a) The system is asymptotically stable.
(b) The system is BIBO stable.
(¢) The system is controllable.
(d) The system is not observable.

7.64. The controllability and observability of an LTI system may be investigated by diagonalizing the
system matrix A. A system with a state space representation

v[n + 1] = Av[n] + bx[n]
y[n]=ev[n]
(where A is a diagonal matrix) is controllable if the vector b has no zero elements, and it is

observable if the vector ¢ has no zero elements. Consider the discrete-time LTI system in Prob.
7.55.

(a) Let vin] = Tqln]. Find the matrix T such that the new state space representation will have
a diagonal system matrix.

(b) Write the new state space representation of the system.

(¢) Using the result from part (b), investigate the controllability and observability of the

system.
[ 1 =2
Ans. (@) T—[_l 3]
30 -2
) vin+1]= 0 %v[n]+[ 3]x[n]

ylnl=[-1 Obn]

(¢) The system is controllable but not observable.
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7.65. Consider the network shown in Fig. 7-26. Find a state space representation for the network
with the state variables q,(1) =i,(t), q,(1)=uv(t) and outputs y,(t) =i,(t), y,(t) =v(1),
assuming R, =R,=1§, L=1H,and C=1F.

1 1 0
_l]q(t)+ 1

Ans. q(t)= [ :1

x(t)

y(1) = [g ~}]q(t)+[(1)]x(t)

L0 in

+ +

x() C) C == v

Fig. 7-26

7.66. Consider the continuous-time LTI system shown in Fig. 7-27.

(a) Find the state space representation of the system with the state variables q,(¢) and q,(¢)
as shown.

(b) For what values of «a will the system be asymptotically stable?
Ans. (a) (1) = [ -3 1]q(z)+ 0
—a 1 1

y(£)=[1 O0lq(r)
b) a4

o

=
<]

Fig. 7-27
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7.67. A continuous-time LTI system is described by
352-1
s34+ 3s2—-5-2

H(s)=

Write the two canonical forms of state representation for the system.

(-3 1 0 3
Ans. (1) ¢0)=| 1 0 1la@+| 0(x(®)
2 0 0] | -1

y(£)=[1 0 O]q(s)

L

1 0] [0

0 1{v(e)+]0|x()
2 1 -3] |1

y()=[-1 0 3v1)

2) W)=

N OO

7.68. Consider the continuous-time LTI system shown in Fig. 7-28.
(a) Find the state space representation of the system with the state variables g,(¢) and q,(¢)
as shown.
(b) Is the system asymptotically stable?
(¢) Find the system function H(s).
(d) s the system BIBO stable?

Ans. (a) q(:)=[*(2) ‘ﬂq(m[‘l’]xm

y(£)=[1 1]g(t)
(b) The system is not asymptotically stable.

1
(¢) H(s)= 3

(d) The system is BIBO stable.

y(1)

Fig. 7-28

7.69. Find e*’ for
-1 1
A‘[—l —1]

(a) Using the Cayley-Hamilton theorem method.

CHAP. 7] STATE SPACE ANALYSIS 427

7.70.

7.7%.

7.72.

7.73.

7.74.

(b) Using the spectral decomposition method.

cost sint]

Ans. er=e™! .
—sint cost

Consider the matrix A in Prob. 7.69. Find e 3’ and show that e A" =[eA’]" L.

Ans. e~Al=et cgst —sint
sint  cost

Find e*’ for

(a) Using the diagonalization method.
(b) Using the Laplace transform method.

Ans eAl_ ze—r_e—Zl e—r_e-Zl
—2e7' 427 —e "4 2e Y

Consider the network in Prob. 7.65 (Fig. 7.26). Find v(¢) if x(¢) =u(t) under an initially
relaxed condition.

Ans. v(t)=32(1+e 'sint—e 'cost), t>0

Using the state space method, solve the linear differential equation
y'(6) +3y"(1) +2y(1) =0

with the initial conditions y(0) =0, y’(0)=1.

Ans. y(t)=e " —e ¥ t>0

As in the discrete-time case, controllability and observability of a continuous-time LTI system
may be investigated by diagonalizing the system matrix A. A system with state space representa-
tion

V(1) =Av(1) +bx(y)

y(1) =&(t)
where A is a diagonal matrix, is controllable if the vector b has no zero elements and is
observable if the vector ¢ has no zero elements. Consider the continuous-time system in Prob.
7.50.
(a) Find a new state space representation of the system by diagonalizing the system matrix A.
(b) Is the system controllable?
(c) Is the system observable?

o [-1 0 1
Ans. (a) v(t)—[ ! 2]v(t)+[0]x(t)
WO=12 —1M1)

(b) The system is not controllable.
(¢) The system is observable.



Appendix A

Review of Matrix Theory

A.1 MATRIX NOTATION AND OPERATIONS
A. Definitions:

1. An m Xn matrix A is a rectangular array of elements having m rows and n columns
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5. The identity (or unit) matrix I is a diagonal matrix with all of its diagonal elements

and is denoted as

ay a4y,
a a e a
21 22 2n
A= - z[aij]mxn (A])
A A2 U amn

When m = n, A is called a square matrix of order n.
A 1 X n matrix is called an n-dimensional row vector:

lay, a, - ap] (A4.2)

An m X 1 matrix is called an m-dimensional column vector:

A zero matrix 0 is a matrix having all its elements zero.
A diagonal matrix D is a square matrix in which all elements not on the main diagonal
are zero:

d, 0 0
0 d, - 0

p=|. * . : (A.4)
0 0 d

Sometimes the diagonal matrix D in Eq. ( 4.4) is expressed as

D = diag(d, d, d,) (A.5)

428

equal to 1.
1 0 0
0 1 0
I=(. . . (A.6)
0 0 1
B. Operations:
Let A = [aij]m)(n’ B = [bij]mxrx’ and C =[Cij]m><n‘
a. Equality of Two Matrices:
A=B=>a;=b,; (A7)
b. Addition:
C=A+B==>c;;=a,+b; (A.8)
¢. Multiplication by a Scalar:
B=acA=>b,;=aq; (A.9)
If a = —1, then B= —A is called the negative of A.
EXAMPLE A.1 Let
_ 1 2 3 _12 0 -1
A'[—l 0 4] B’[4 1 -2
_ 1+2 2+0 3-1}_13 2 2
Then A’LB"[—1+4 0+1 4—2]‘{3 1 2]
CRe(_ _1-2 0 1
B=(-1)B [—4 -1 2]
—Rm- 1-2 2-0 3+1}_1}~1 2 4
A-B [—1—4 0-1 4+2] [—5 -1 6]
Notes:
1. A=BandB=C=A=C
2. A+B=B+A
3. A+B)+C=A+(B+0C)
4. A+0=0+A=A (A.10)
5. A-A=A+(-A)=0
6. (a+BA=aA+aB
7. a(A+B)=aA+aB
8. a(BA) =(ap)A =p(aA)
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d. Multiplication:
Let A=[a;], ., B=1[b;l,x,, and C=Ic;],x,.

C=AB=¢,= Zaikbkj (A.11)
k=1

The matrix product AB is defined only when the number of columns of A is equal to the number of
rows of B. In this case A and B are said to be conformable.

EXAMPLE A.2 Let

At “é} o-[1 2]

2 -3
Then
0 -1 [0 + (=13 0@ +(-)(-D] [-3
AB=[1 2J[; _f]= () +2(3) 1) +2(-1) =[ 7 0]
2 -3 [ 2(D) +(=3)3 2 +(=-3)(-1) =7 7

but BA is not defined.

Furthermore, even if both AB and BA are defined, in general
AB # BA (A.12)

EXAMPLE A.3 Let

10 -1 B!
A‘[l 2] B=1s -
Then AB=[

0 -1fl1 2
I 2J13 -1

[r 2o -1]_ 3
BA‘[3 —1][1 2|7 | - —5]*“
An example of the case where AB = BA follows.
EXAMPLE A4 Let
|1 0 _12 0
A= s d B‘[o 4]
_ 12 0
Then AB—BA—[O 12]
Notes:
1. A0O=0A=0
2. AlI=IA=A
3. (A+B)C=AC+BC (A.13)
4. AB+C)=AB+AC
5. (AB)C = A(BC) = ABC
6. a(AB)=(aA)B = A(aB)
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It is important to note that AB = 0 does not necessarily imply A=0 or B=0.

=[] el
|

2l a]-[o o]

EXAMPLE A.5 Let

Then AB =

A.2 TRANSPOSE AND INVERSE
A. Transpose:

Let A be an n X m matrix. The transpose of A, denoted by A7, is an m X n matrix
formed by interchanging the rows and columns of A.

B=A"=b,=a, (A.14)

EXAMPLE A.6

If AT = A, then A is said to be symmetric, and if A” = — A, then A is said to be skew-symmetric.

1 2 3 0 1 -2
A=12 4 -1 B=) -1 0 3
3 -1 5 2 -3 0

Then A is a symmetric matrix and B is a skew-symmetric matrix.

EXAMPLE A.7 Let

Note that if a matrix is skew-symmetric, then its diagonal elements are all zero.

Notes:

A=A

(A+B)"=AT+ B (A.15)
(aA)T = aAT

(AB)T — BTAT

el o o

B. Inverses:
A matrix A is said to be invertible if there exists a matrix B such that
BA=AB=1 (A.16a)
The matrix B is called the inverse of A and is denoted by A~ . Thus,
AT'A=AA""'=1 (A.16b)
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EXAMPLE A.8
[2 1“1 —1]= 1 -1]f2 1]_[1 0
1 1) -1 2 -1 2]t 1) 10 1
Thus,
2 1]“= 1 -1
11 -1 2
Notes:

A™H'=A
(AHT =AD" (A.17)

1
2
1
3. (@A) '=—A""
a
4. (AB)"'=B"A"!
Note that if A is invertible, then AB = 0 implies that B = 0 since

A"'AB=IB=B=A"'0=0

A3 LINEAR INDEPENDENCE AND RANK

A. Linear independence:

Let A=[a, a, a,], where a; denotes the ith column vector of A. A set of
column vectors a; (i = 1,2,...,n) is said to be linearly dependent if there exist numbers «;
(i=1,2,...,n) not all zero such that

a,a, +a,a,+ - +a,a,=0 (A.18)

If Eq. (A.18) holds only for all «, =0, then the set is said to be linearly independent.

A L)

Since 2a, + (-3)a, +a, =0, a, a,, and a, are linearly dependent. Let

Al

ay 0
Then ad, +a,d, +tazd;=|a, [=]0
0

EXAMPLE A9 Let

a3

implies that a, = @, = a; = 0. Thus, d,, d,, and d; are linearly independent.
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B. Rank of a Matrix:

The number of linearly independent column vectors in a matrix A is called the column
rank of A, and the number of linearly independent row vectors in a matrix A is called the
row rank of A. It can be shown that

Rank of A = column rank of A = row rank of A (A.19)

Note:
If the rank of an N X N matrix A is N, then A is invertible and A~' exists.

A.4 DETERMINANTS
A. Definitions:

Let A= [a,.j] be a square matrix of order N. We associate with A a certain number
called its determinant, denoted by detA or |A]. Let M, be the square matrix of order
(N — 1) obtained from A by deleting the ith row and jth column. The number A,; defined
by

A;=(-1)"m,| (A.20)
is called the cofactor of a;;. Then detA is obtained by
N
detA=Al= Y a, A, i=12,...,N (A.21a)
k=1
N
or detA=IAl= Y a4, j=12,...,N (A.21b)
k=1

Equation (A4.21a) is known as the Laplace expansion of |A| along the ith row, and Eq.
(A.21b) the Laplace expansion of |A| along the jth column.

EXAMPLE A.10 For a 1 X | matrix,

A=[a ] —IAl=ay (4.22)
For a 2 X 2 matrix,
A= G o — |Al = G e = A4y —a,ay (4.23)
a an Gy axp
For a 3 X 3 matrix,
Ay ap 4y
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Using Eqs. (A.21a) and (A.23), we obtain

ay 4, ap

a a a a a a
_ 2 43 21 2 21 2
Al =|a,  axn|=ay —a +a;
asz; Qas; as 33 as  aj
a3 a3 ax
=a,)03a33 1 a1,a303) + 3138583 ~ 08303, ~ A1,05033 — 41380y, (A.24)

B. Determinant Rank of a Matrix:

The determinant rank of a matrix A is defined as the order of the largest square
submatrix M of A such that det M # 0. It can be shown that the rank of A is equal to the
determinant rank of A.

EXAMPLE A.11 Let

0 -1 -3

1 2 4
-1 1 5
Note that |A] = 0. One of the largest submatrices whose determinant is not equal to zero is
1 2
-1 1
Hence the rank of the matrix A is 2. (See Example A.9.)

C. Inverse of a Matrix:

Using determinants, the inverse of an N X N matrix A can be computed as

AT = adiA (4.25)
Ay Ay o Aw

and adiA=[4,]"= A:” Afz A (A.26)
A;N A'ZN A/‘wv

where A;; is the cofactor of a,; defined in Eq. (A.20) and “adj” stands for the adjugate (or
adjoint ). Formula ( 4.25) is used mainly for N=2 and N =3.

EXAMPLE A.12 Let
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_ 2 0] ,[1 2 A =
Then |A|—1)_] _2‘ 3’3 _li 4-3(-7) =17
2 o _| o -3 0 —3’
-1 =2 -1 =2 2 0 ) 6
-4
: 10 1 -3 1 =30 B
adjA=| —|3 —2‘ ’3 —2‘ '1 0‘ [_3 ! ﬂ
1 2 |t o 1 0,
3 -1 3 -1 1 2
Thus,
1] -4 3 6
Al=—| 2 7 -3
Tl-7 1 2
For a 2 X 2 matrix,
-1
a, 4ap _ 1 a; —ap (A.27)
ay apn a8y —apdy | 4y ap

From Eq. (4.25) we see that if detA = 0, then A~ ! does not exist. The matrix A is called
singular if detA =0, and nonsingular if det A # 0. Thus, if a matrix is nonsingular, then it is
invertible and A~! exists.

A.5 EIGENVALUES AND EIGENVECTORS
A. Definitions:
Let A be an N X N matrix. If
Ax = Ax (A4.28)
for some scalar A and nonzero column vector x, then A is called an eigenvalue (or
characteristic value) of A and x is called an eigenvector associated with A.
B. Characteristic Equation:
Equation (.4.28) can be rewritten as
(AI—A)x=0 (A.29)

where I is the identity matrix of Nth order. Equation (A4.29) will have a nonzero
eigenvector x only if AI — A is singular, that is,

AI-Al=0 (A.30)

which is called the characteristic equation of A. The polynomial c(A) defined by
c(A)=AI=Al=A+cy_ AN"1+ -1 4ed +¢ (A.31)
is called the characteristic polynomial of A. Now if A, A,,..., A, are distinct eigenvalues of

A, then we have
my

c(A)=(A=2)"(A=2,)" - (A =A™ (A.32)
where m; + m,+ --- +m; =N and m, is called the algebraic multiplicity of A,.
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THEOREM A.1:
Let A, (k=1,2,...,i) be the distinct eigenvalues of A and let x, be the eigenvectors
associated with the eigenvalues A,. Then the set of eigenvectors x,,x,,...,x, are linearly
independent.
Proof. The proof is by contradiction. Suppose that x,x,,...,x; are linearly dependent.
Then there exists a,, «,, ..., a; not all zero such that
i
X, FayX,+ o tax,= Y a,x, =0 (A.33)
K=1

Assuming «, # 0, then by Eq. (A4.33) we have
i
(AZI—A)(A3[—A)---(/\iI—A)[ Zakxk]=0 (A.34)
k=1

Now by Eq. (A.28)
(A=A =(A,—A)x,  j+k

and (A J-A)x, =0
Then Eq. (A.34) can be written as

(A=A )(A;—A) (A=A x =0 (A.35)
Since A, (k =1,2,...,) are distinct, Eq. (A4.35) implies that «, = 0, which is a contradic-
tion. Thus, the set of eigenvectors x,,x,,...,X; are linearly independent.

A.6 DIAGONALIZATION AND SIMILARITY TRANSFORMATION

A. Diagonalization:

Suppose that all eigenvalues of an N X N matrix A are distinct. Let x,x,,...,xy be
eigenvectors associated with the eigenvalues A, A,,...,Ay. Let
P=[x; x;, -~ xu] (A.36)
Then AP=A[x; x, - xu]
=[Ax; Ax, - Axy]
=[Ax; Axy o Anxy]
0 A, - 0
=[x, x; - xy]| . . . |=PA (A.37)
0 0 Ay
A0 0
0 2, - 0
where A= . . . (A.38)
0 0 Ay
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By Theorem A.1, P has N linearly independent column vectors. Thus, P is nonsingular
and P! exists, and hence

A, O 0
0 A, - 0

PAP=A=| . . . . (A4.39)
0 0 An

We call P the diagonalization matrix or eigenvector matrix, and A the eigenvalue matrix.

Notes:

1. A sufficient (but not necessary) condition that an N X N matrix A be diagonalizable is
that A has N distinct eigenvalues.

If A does not have N independent eigenvectors, then A is not diagonalizable.

3. The diagonalization matrix P is not unique. Reordering the columns of P or multiply-
ing them by nonzero scalars will produce a new diagonalization matrix.

B. Similarity Transformation:

Let A and B be two square matrices of the same order. If there exists a nonsingular
matrix Q such that

B=Q 'AQ (A.40)

then we say that B is similar to A and Eq. (A4.40) is called the similarity transformation.

Notes:

1. If B is similar to A, then A is similar to B.

2. If A is similar to B and B is similar to C, then A is similar to C.
3. If A and B are similar, then A and B have the same eigenvalues.
4

An N X N matrix A is similar to a diagonal matrix D if and only if there exist N
linearly independent eigenvectors of A.

A.7 FUNCTIONS OF A MATRIX
A. Powers of a Matrix:

We define powers of an N X N matrix A as

A=1 (A.41)
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It can be easily verified by direct multiplication that if
d 0 0 ]
0 d,
D= . (A.42)
0 0 dy
d; 0 0]
0 di 0
then D" = : : (A.43)
0o 0 and
Notes:
1. If the eigenvalues of A are A, A,,..., A;, then the eigenvalues of A" are A}, A%,..., A%
2. [Each eigenvector of A is still an eigenvector of A",
3. If P diagonalizes A, that is,
A, 0 0
0 A, - 0
P 'AP=A= . . . (A.44)
0 0 Ay
then it also diagonalizes A", that is,
A0 L 0
0 Ay - 0
PAP=A"=|. . . . (A.45)
0 0 - Xy
since (P7'AP)(P!'AP) =P 'A’P = A?
(P7'A’P)(PT'AP) =P IA’P = A® (A.46)
B. Function of a Matrix:
Consider a function of A defined by
f(A)y=ay+aA +a N4 e = Y a A (A.47)
k=0
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With any such function we can associate a function of an N X N matrix A:

f(A)=ad+a,A+a,A>+ -+ =) aA (A.48)
k=0
If A is a diagonal matrix D in Eq. (A4.42), then using Eq. ( 4.43), we have
f(D)=a,l+a,D+a,D?+ -+ = Y a,DF
k=0
Y a.df 0 0
k=0 « f(4,) 0 0
0 Y oads e 0 0 f(d) - 0
= k=0 = . . . .
: : e 0 0 o f(dy)
0 0 e Y oadl
L k=0 J
(A.49)
If P diagonalizes A, that is [Eq. (A4.44)],
P AP=A
then we have
A=PAP! (A.50)
and A= (PAP~")(PAP~!) = PA’P"!
A’ = (PA’P')(PAP!) = PA’P"! (A.51)
Thus, we obtain
f(A)=Pf(A)P"! (A4.52)
Replacing D by A in Eq. ( 4.49), we get
f(A) 0 0
0 /\ e 0
I A N (A.53)
0 0 o f(ag)

where A, are the eigenvalues of A.

C. The Cayley-Hamilton Theorem;
Let the characteristic polynomial ¢(A) of an N X N matrix A be given by [Eq. (A.37)]
c(A)=NI-Al=A+cy AW+ o ded+¢,
The Cayley-Hamilton theorem states that the matrix A satisfies its own characteristic
equation; that is,
c(A)=A+cy AN+ -+ A4l =0 (A.54)
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EXAMPLE A.13 Let

12 1
S
Then, its characteristic polynomial is
c(A) =IAT-Al=|"~2 “"=(A-2)(A—3)=A2—5A+6
0 A-=3
2
_ A2 _ {2 11 _<2 1 1 0
and c(A) = A* - 5A + 61 {0 3] 5[0 3]-4—6[0 1]
_|4 s|_J10 5 + 6 0
0 9 0 15 0 6
=[0 0] _
0 0
Rewriting Eq. (A4.54), we have
AV= —cJl—c, A~ - —cy_ ANT! (A.55)

Multiplying through by A and then substituting the expression (A.55) for A on the right and
rearranging, we get

AV =g l+a,A+ - +ay_AV! (A.56)

By continuing this process, we can express any positive integral power of A as a linear combination of
LA,...,AY ! Thus, f(A) defined by Eq. (A4.48) can be represented by

N-1
f(A)=byl+bA+ --- +bN_,AN"‘= Z b, A" (A.57)
m=0
In a similar manner, if A is an eigenvalue of A, then f(A) can also be expressed as
N-1
f(A)=by+b A+ - +by_ AN 1=Y b am (A.58)
m=0
Thus, if all eigenvalues of A are distinct, the coefficients b, (m =0,1,..., N ~ 1) can be determined
by the following N equations:
F(A) =by+b A+ -+ +by_ A} k=1,2,...,N (A.59)

If all eigenvalues of A are not distinct, then Eq. (A4.59) will not yield N equations. Assume that an
eigenvalue A, has multiplicity  and all other eigenvalues are distinct. In this case differentiating both
sides of Eq. (A.58) r times with respect to A and setting A = A,, we obtain r equations corresponding
to A;:

n—1

Wf(/\) n=1,2,...,r (A60)

d:«*l N—-1
- | Z o]
m=0

a=a, dAT!

A=A,

Combining Eqgs. (A4.59) and (A.60), we can determine all coefficients b,, in Eq. (A4.57).

D. Minimal Polynomial of A:

The minimal (or minimum) polynomial m(A) of an N X N matrix A is the polynomial
of lowest degree having 1 as its leading coefficient such that m(A) = 0. Since A satisfies its
characteristic equation, the degree of m(A) is not greater than N.
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EXAMPLE A.14 Let

_Ja O
a-[5 o]
The characteristic polynomial is
- _ _ )\—a 0 - _ 2= 2 _ 2
c(A) =[AI-A) ’ 0 )\—a' (A—a) =A-2ar +a
and the minimal polynomial is
m(A)=A—-a
. cAa_p—]a O0]_ (1 07_|0 Of_
since m(A)y=A-al [0 a] a[o 1] [0 O] 0

Notes:

1. Every eigenvalue of A is a zero of m(A).
If all the eigenvalues of A are distinct, then c(A) = m(A).
c(A) is divisible by m(A).

m(A) may be used in the same way as c(A) for the expression of higher powers of A in
terms of a limited number of powers of A.

Eall o

It can be shown that m(A) can be determined by
c(A)
d(A)

m(A) = (A4.61)

where d(A) is the greatest common divisor (gcd) of all elements of adj(Al — A).

EXAMPLE A.15 Let

A=
3 -6 -4

5 -6 -6
-1 4 2

A=5 6 6
Then c(A)=Al-Al= 1 A—4 -2
-3 6 A+4

=N =524 81 —4=(A—1)(A-2)

’Ag4 /\124' _‘2 A-6+4~ ,\54 —3.
adj[Al - A] = _]—; /\—+24‘ ‘A——z‘s ,\34' ‘A;S —gl

I S e R

(A+2)(A-2)  —6(A-2) ~6(A —2)

=| —(2-2)  (A+1)(A-2) 2(A-2)
3(A-2) -6(A=2) (A-2)(A-7)
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Thus, d(A)=A — 2 and

m(A)=ﬂ=(/\—1)(,\—2)=)\2—3/\+2
)]
4 -6 -6 3 -6 -6 0 0 0
and m(A)=(A—l)(A—2])=[—1 3 2][—1 2 2]=[0 0 0}
3 -6 -5 3 -6 -6 0 00

E. Spectral Decomposition:

It can be shown that if the minimal polynomial m(A) of an N X N matrix A has the
form

m(A)=(A=A)A=2;) - (A=2A) (A.62)

then A can be represented by

A=ME +ME, + -+ +AE,; (A.63)

where E; (j=1,2,...,i) are called constituent matrices and have the following properties:
I=E, +E,+ - +E;

E.E, =0, m#k (A.64)

1
2

3. E!=E,
4. AE,=E,A=\E,

Any matrix B for which B2 = B is called idempotent. Thus, the constituent matrices E,; are
idempotent matrices. The set of eigenvalues of A is called the spectrum of A, and Eq. ( 4.63)
is called the spectral decomposition of A. Using the properties of Eq. ( A.64), we have

A?=2E, + A3E, + -+ +A%E,

A" =NE, +AME,+ -+ +XE, (A.05)
and f(A) =f(A)E; + f(A)E; + - +f(A,)E, (A.66)
The constituent matrices E; can be evaluated as follows. The partial-fraction expansion of

1 3 1
m(A)  (A=A)A=Ay) - (A=A;)

k, k, k;
= + + oo+
A=A, A—A, A=A,

i
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leads to
1
ki=—F
I_I (/\J - Am)
m=1
m#j

1 kyg(A) +hagy(A) + - +ki8(A)

Then mA) . (A=A)(A-Ag) (A-A)
where g;(A) = I’j (A=A,)

Let e(A) =k jgj()«). Then the constituent matrices E; can be evaluated as

i

I1(A-A.0
m=1

E,=¢(A)= T (A.67)
”]'-:[1 ("1’ - )‘m)

EXAMPLE A.16 Consider the matrix A in Example A.15:

5 -6 -6
-1 4 2

3 -6 -4

From Example A.15 we have

m(A) = (A=1)(A-2)

1 1 11
Then m(d)  (A-1(A-2) A-1 r-2
and e(A)=—(A=2)  ey(A)=A~—1
[—3 6 6}
Then E =e(A)=-(A-2)=| 1 -2 -2
-3 6 6

4 -6 -6
E,=e,(A)=A-I=|-1 3 2
3 -6 -5

A=ME, +A,E,=E, +2E,

-3 6 6 4 -6 -6 5 -6 -6
= 1 -2 =2]|+2|-1 3 21=]-1 4 2
-3 6 6 3 -6 =5 3 -6 -4
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A8 DIFFERENTIATION AND INTEGRATION OF MATRICES

A. Definitions:

The derivative of an m X n matrix A(z) is defined to be the m X n matrix, each element
of which is the derivative of the corresponding element of A; that is,

d A d
—A(t)=|—a;t
dt ( ) LdtaU( ) mxn
[ d d d i
Eau(t) Ealz(t) Ealn(t)
d d d
—_— t — t PR R
_ dta“( ) dtazz( ) dtaZn(’) (A.68)
d d d
— — t .« . —
| dt aml(t) dtamz( ) dl amn(t)J
Similarly, the integral of an m X n matrix A(r) is defined to be
fA(t)dt = fa,.,(t)dt]
L mxn
i 1
Jau(tyde  fan(yde - Jaulr)di
_| Jauyar [an(t)at Jas(t)di (4.69)
Lfaml(t)dt farnZ(t)dt famn(l)dt—
EXAMPLE A.17 Let
t ot
A=
i
d d R
d PR (1 2t
Then -(EA— il _d_,3 = L0 3t2}
| dt dt
1 ftdt fltzdt Lo
and fAdt= 0 Ol =[i ?]
0 1d 3d B
qu t fot t
B. Differentiation of the Product of Two Matrices:
If the matrices A(f) and B(¢) can be differentiated with respect to ¢, then
d dA(1) dB(t)
E[A(l)B(t)] = TB(t) +A(t) (A.70)

Appendix B

Properties of Linear Time-Invariant Systems
and Various Transforms

B.1 CONTINUOUS-TIME LTI SYSTEMS
Unit impulse response: A(¢)
Convolution: y(¢) =x(¢)* h(t) = fm x(T)h(t — 1) dr
Causality: A(t)=0,1<0
Stability: [ 1h(1)|dr < oo

B.2 THE LAPLACE TRANSFORM
The Bilateral (or Two-Sided) Laplace Transform

Definition:
x(t) <5 X(s)
X(s)= [ x()e~ds

— a0

1 ctHjx
t)y=— X(s)e* d
x(t) ) /;ﬂjm (s)e*' ds
Properties of the Bilateral Laplace Transform:

Linearity: a,x,(¢) +a,x,(1) —a, X (s)+a,X,(s), R DR, NR,

Time shifting: x(¢t —¢,) «> e *X(s), R’ =R

Shifting in s: e®'x(¢) «> X(s —s,), R" =R + Re(s,)

1
Time scaling: x(at) «> mX(s), R =aR

Time reversal: x(—t) <> X(—s), R"= —R

t

) «—s5X(s), R DR
dX(s)

Differentiation in s: —tx(t) <> 5 R =R
s

Differentiation in ¢:

1
Integration: f' x(r)dr ;X(s), R' DR N {Re(s) > 0}

—x

Convolution: x (1) x,(1) > X () X(s), R DR, NR,

445
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Some Laplace Transforms Pairs:
S(t)e—> 1,all s

1
u(t) e T Re(s) >0
1
—u(—t) e o Re(s) <0

1
tu(t) <> —, Re(s) >0
s

k!

t"u(t)«—»vk—il, Re(s)> 0

1
e “"u(t) > ——, Re(s) > —Re(a)
s+a

—e "u(~t) e ——, Re(s) < —Re(a)
s+a

1
te u(t) — *—)5, Re(s) > —Re(a)

s+a

1
—teu(—1) — 5, Re(s) < —Re(a)
(s +a)

)
cos wytu(t) «— P Re(s) >0
sT+ w)

. Wy
sin wotu(t) < Tror Re(s) >0
s+ o}

e " cos wytu(t) =5 Re(s) > —Re(a)

(s+a)2+¢o0

W

e~ sin wytu(t) < > Re(s) > —Re(a)

(s +a) +w?
The Unilateral (or One-Sided) Laplace Transform
Definition:

Z
x(t) — X,(s)

X(s)= [ x(t)e"di 0= lim (0 —¢)
0" £

Some Special Properties:

Differentiation in the Time Domain:

dx(1) _
o T sXi(s) - x(07)
d2
;;(zt) —s2X(s) —sx(07) —x'(07)
d:;E,I) HS"X,(S)—S"_lx(O_)—s"—zx'(O_)'— _x(ﬂ—l)(()—)

[APP. B
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Integration in the Time Domain:

L’fx(f)df«—» ;X,(s)

t 1 1 0~
/ x(r)d7 o> =X (s) + ;f_mx(f)df

Initial value theorem: x(0*) = lim sX,(s)

s
Final value theorem: lim x(¢) = lim sX,(s)
t—o s—0

B.3 THE FOURIER TRANSFORM
Definition:
F
x(t) S X(w)

X(0)= [ x(t)e " di

1 = )
x(t) = 2—77— . X(w)e'* do

Properties of the Fourier Transform:
Linearity: a,x,(f) + a,x,(1) > a, X (w) + a,X,(w)
Time shifting: x(f — ;) <> e 7" X(w)

Frequency shifting: e/“'x(1) — X(w — 0,)

1 w
Time scaling: x(at) < ——X( —)
lal \a

Time reversal: x(—t) < X(—w)
Duality: X(¢) < 2mx(—w)

Time differentiation: ) —joX(w)
dX(w)

dow

Frequency differentiation: (—jt)x(t) «—

1
Integration: [ " x(7) dr > 7 X(0) 8(w) + X ()
© w

Convolution: x (1) * x,(1) = X (0) X,(w)

1
Multiplication: x (¢)x,(t) < 2—X,(w)* Xy(w)
o
Real signal: x(1) =x,(¢) +x (1) & X(0) = A(w) + jB(w)
X(—w) =X*(w)
Even component: x(t) < Re{X(w)} = A(w)
Odd component: x(t) < j Im{ X(w)} =jB(w)

447
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Parseval’s Relations:

fm X (A)Xy(A) dA = f:)(l(A)xz(/\)dA

—

e

| x(0)xy(e)di = i [ X)Xy ~0) do

f:|x(t)|2 di = —21;[:|X(w)|2dw

Common Fourier Transforms Pairs:
(1)1
8(t —ty) e e™in
1 > 278(w)
et — 278w — wy)
cos wyt — 78w — w,) + 8w + wy)]
sin wyt > — (8w — wy) — 8w + w,)]

1
u(t) > mé(w) + —
Jw

u(—t) - rdlw)— —

Jjow
1
e u(t) e - ,a>0
Jw +a
1
te “u(t) — —_3.,a> 0
(jw +a)
e M s p 5 a>0
__1 - ajwl
e d\w
PENPER
N o N
e—al'H _ efm“/4a’ a >0
V a
1 it <a sin wa
l)=
Palt) {o 1> a wa
sin at 1 lw| <a
—p(w)=
¢ {0 lw] > a
2
sgnt «— —
jw
Y it —kT)—w, Y, 8lw-kwy), wg=—
k=—x k= —x T

[APP. B
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B.4 DISCRETE-TIME LTI SYSTEMS

Unit sample response: h[n]

o

Convolution: y[n]=x[n]*hln]= Y x[k]Jhln - k]

k=—-o

Causality: A[n]=0, n <0

o

Stability: Y. [A[n]ldt <o

n=—cw

B.5 THE z-TRANSFORM
The Bilateral (or Two-Sided) 2-Transform:
Definition:
x[n] Sx (z)

X(z)= Y x[n)z™"

n=—wx

x[n] = %wéX(z)z""' dz

Properties of the z-Transform:
Linearity: a,x,[n]+a,x,[nlea, X(z) +a,X,(z), R DR, NR,
Time shifting: x[n —nyle>z7"X(z), R DRN{0 < |z| < =)
z
Multiplication by z{: zfx[n] HX(—], R =1z4R
z

0
Multiplication by e’/%V; ¢/ X[n] s X(e™z), R =R

1 1
Time reversal: x[—n]«——»X(;), R =—

R
. dx(z)
Multiplication by n: nx[n] > —z pamt R =R
4
n 1
Accumulation: Y. x[n]es l—jX(z), RoORN{lzl > 1}
-z

k= —o
Convolution: x,[n]* x,[n] > X(2) X,(z), R DR, NR,
Some Common z-Transforms Pairs:

d[nle1, all z

uln]e— — = ,lzl>1
-z z—1

zZ

<1
=7 =1 @

—ul—-n—-1]e

449



450 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS TRANSFORMS

6ln —mlesz™m, all

auln] —
1—-az

—a"u[-n—- 1] ]
az™!

—az z—a’

zexcept Oif m>0,oroif m<0

V4
= ——, lz| > lal
zZ—a

= |z} <lal

na"uln] «—

az
= 7 Iz > lal

(1-az”')’ (z2-a

az™!

az
= 5, |zl <lal

~na"ul-n—-1]e—

(1 —az“)2 (z—a)
1

(n+ 1a"uln] —

=[zja]2, izl > lal

(1 —az*’)2
22— (cos Q) z
22— (2cos Qy)z + 1
(sin Q) z
22— (2cos Qg)z+ 1’

22— (rcos Qy)z

,lzl > 1

(cos Qonu[n] —

(sin Qon)u(n] — lz| > 1

(r" cos Qonluln] — T Greos )z 77 Iz} >r
o (rsin Qy)z
(" sin Qomuln] 22— (2rcos Qy)z +r?’ lel > r
N_—-N
a” 0 <n SN_ 1 1—-a™z
{0 otherwise T l21 >0

The Unilateral (or One-Sided) z-Transform:

x[n] & x,(2)

X,(z)= Y x[n]z™"

n=0
Some Special Properties:
Time-Shifting Property:
x[n—m] 27X () + 27" X[ 1] + 27" [ =2] + - +x[—m]

x[n+m]—>z"X,(z) —z"x[0] =z 'x[1] = -+ —zx[m — 1]

Initial value theorem: x[0] = lim X(z)

zZo®

Final value theorem: lim x[N]= lim(1 —z"")X(z)
N— o z—-1

[APP. B
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B.6 THE DISCRETE-TIME FOURIER TRANSFORM
Definition:

x[n] S x(Q)

X(@)= L x[ne

1 .
x[n] = EL,X(Q)"M“'Q

Properties of the Discrete-Time Fourier Transform:
Periodicity: x[n] > X(Q) =X(Q + 27)
Linearity: a,x,[n] + a,x,[n] e a, X (Q) + a, X,(Q)
Time shifting: x[n — nyl <> e 7 X(Q)
Frequency shifting: e/®"x[n] « X(Q — Q,)
Conjugation: x*[n]«— X*(-Q)
Time Reversal: x[ —n]« X(-Q)

Time Scaling: x,,,[n]= x[n/m] Tf n = km —X(mQ)
0 if n#km
. dx(Q)
Frequency differentiation: nx[n] <> j 10

First difference: x[n] —x[n — 1]« (1 —e M) X(Q)

1
Accumulation: Y, x[k]<> 7X(0)8(Q) + ]—WX(Q)

k= —c

Convolution: x [n]* x,[n] <> X (Q)X,(Q)
1

Multiplication: x [n]x,[n] TX'(Q) ® X,()
v

Real sequence: x[n]=x [n]+x [n] — X(Q) = A4A(Q) + jB(Q)
X(-Q)=X*(Q)
Even component: x,[n] < Re{X(Q)} =A4(Q)
Odd component: x [n] —jIm{X(Q)} =jB(Q)
Parseval’s Relations:

kY

1
L xlnlxln] = 5= [ X(0)Xy(-0)d0

n=—«

=

2 1 2
L [slnlf= 52 [ |X(@)f a0

n=-w
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Some Common Fourier Transform Pairs:
d[n]le1
dn—nyl—e
x[n]=1278(Q),1Q0| <7
e’ s 277 8(Q — Q), 10, 1Q,] <7
cos Qyn — w[8(Q — Qy) +8(Q + Q)] Q1 1Q <7
sin Qon — —jr[8(Q - Q,) - 8(Q + QY] QL 1Q, <7

—jQn,

ulnlemm D)+ T———g, [0 <
—u[—n—l]«—»—-rrB(Q)+ ]Q,IQl<7T
1
a"u[n]H m, |a| <1
—a”u[—n - 1]4—> m, IaI >1
(n+ Da"uln] > ——, lal < 1
——ae"’”)2
il 1-a* lal < 1
n —_— <
T I 2ac0s 0 +a?
1 Inl <N,  sin[Q(N,+3)]
x[n]= - —
0 Inl > N, sin(Q /2)
sin Wn 1 0<|Ql<W
W _ <0l <
n O<W<m —XQ) 0 W<iQl <
Y 8ln—kN)Je>Q, Y 8(Q-kQ,), Q":Tv_
k= -2 = - 0
B.7 DISCRETE FOURIER TRANSFORM
Definition:
x{n] =0 outside the range0<n <N -1
x[n] &5 X[k]
N-1
X[k] = 2 x[n]Win k=0,1,...,N—1 Wy =e 1@m/N)
=0
N.__
x[n]=7v— 2 X[k)Wytn n=0,1,...,N-1

Properties of the DFT:
Linearity: a,x,[n] + a,x,[n] <« a X \[k]+a, X, [k]
Time shifting: x[n — n,)_4n <> W™ X[k]
Frequency shifting: Wy *™x[n] < X[k — kg, oq n

APP. B] PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS TRANSFORMS

Conjugation: x*[n] > X*[—k] 4 n

Time reversal: x[—n] 4y X[k oan
Duality: X[n]— Nx[—k] qn

Circular convolution: x,[n] ® x,[n]«— X [k]X,[k]

1
Multiplication: x,[n]x,[n]— NXl[k] ® X,[k]
Real sequence: x[n]=x[n]+x [n] e X[k]=A[k]+ jB[k]
X[—k]modN=X*[k]
Even component: x [n] < Re{X[k]} = A[k]
Odd component: x [n] <> jIm{ X[k]} =jBlk]

Parseval’s Relation:
N-1 ) 1 N-1 )
L x[nlf = T Ix[]]
n=0 n=0

Note
N-1

x,[n] ®xy[n] = ;) x[i]xy[n =i ea v

B.8 FOURIER SERIES
x(t+T,)=x(t)
Complex Exponential Fourier Series:

©
x(t)y= Y cpelte wy=
k=—o

1 ,71,/2 )
c = —f YT x(t)e ket dt
TO -Ty/2

Trigonometric Fourier Series:

a, ® .
x(t) = 5 + Y (a,cos kwyt + b, sin kw,t)

k=1
a, = f x(t cos kwytdt
Ty -1,/2

2 12
b, = x(t)sin kwytdt
‘ Tof_w (¢)sin ko,

Harmonic Form Fourier Series:

x(t)=Cy+ Z Cycos(kwyt —0,)  wo=—

=1
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454 PROPERTIES OF LINEAR TIME-INVARIANT SYSTEMS TRANSFORMS

Relations among Various Fourier Coefficients:
ay .
7"“‘0 4 =Cptc by =j(ck—c_i)
¢ = 3(a, ~ jby) c_y=z(a, +jby)
a b
C0=70 C,=yai+b} 6, =tan' =

a

Parseval’s Theorem for Fourier Series:

©

1 2 )
;;fr|x(f)| dt=3 lol

k= -

B.9 DISCRETE FOURIER SERIES
x[n+Ny| =x[n]

No-1 20
x[n] = ) cettm Qo= —
k=0 NO
1 No—1
CpL = — E x[n]e_/’(n1)"
, N() n=0

Parseval’s Theorem for Discrete Fourier Series:
No—1 No—1

¥ L lx(nlf= % e

1
NO n=0

[APP. B

Appendix C

Review of Complex Numbers

C.1 REPRESENTATION OF COMPLEX NUMBERS
The complex number z can be expressed in several ways.
Cartesian or rectangular form:
z=a+jb (C.1)

where j =V —1 and a and b are real numbers referred to the real part and the imaginary
part of z. a and b are often expressed as

a = Re{z} b=1Im{z} (C.2)
where “Re” denotes the “real part of” and “Im” denotes the “imaginary part of.”
Polar form:
z=rel? (C.3)

where r > 0 is the magnitude of z and @ is the angle or phase of z. These quantities are
often written as

r=|z| 0=,z (C.4)

Figure C-1 is the graphical representation of z. Using Euler’s formula,
e’ =cos 0 +jsin 0 (C.5)
or from Fig. C-1 the relationships between the cartesian and polar representations of z are
a=rcosb b=rsing (C.6a)

b
r=vVa*+b? 6 =tan "' — (C.6b)
a

#  Re{:}

o kb= - - - -

Fig. C-1
455



456 REVIEW OF COMPLEX NUMBERS

C.2 ADDITION, MULTIPLICATION, AND DIVISION
If z, =a, +jb, and z,=a, +jb,, then
z,+2,=(a,+a,) +j(b, + b;)
2,2, =(a,a, — b\b;) +j(a,b, + ba;)
o4 +jb,  (a,+jb\)(a, - jby)
z, ayt+jb, (ay+jby)(a;—jb,)

_ (aja, +b,by) + j(—a,b, + b,a,)

al+b?
If z,=re’ and z,=r,e’%, then

2,2, =(rr,)e’ %

4 r
L (_‘_)e;’w,—oz)

Z T2

C.3 THE COMPLEX CONJUGATE

The complex conjugate of z is denoted by z* and is given by
¥=a—jb=re’?

Useful relationships:

zz*¥ =r?

j20
JR— =e.l
z*

z+2z%¥=2Refz}
z—2z*=j2Im{z}
(z,+z,)"=zF +23
(2,2, = 2723

AN

C.4 POWERS AND ROOTS OF COMPLEX NUMBERS

The nth power of the complex number z = re’ is
2" =r"e/"® = r"(cos nf + jsin nf)
from which we have DeMoivre’s relation

(cos 8 +jsin 8)" = cos n + j sin né

[APP. C

(C.7)
(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)
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The nth root of a complex z is the number w such that

wh =z =rel® (C.15)
Thus, to find the nth root of a complex number z we must solve
w'—re? =0 (C.16)
which is an equation of degree n and hence has n roots. These roots are given by
w, = rl/ngllo+Uk=Dml/n k=1,2,...,n (C.17)



Appendix D

Useful Mathematical Formulas

D.1 SUMMATION FORMULAS

N-1 1—a® |
n #
Ya"={1-¢ *
n=0 N a=1
* 1
Za"= lal < 1
n=0 | —a
» ak
Y a'= Jal <1
n=k I -a
i a
Yona'=——  lal<1
n=_0 (l—a)
x a’+a
n‘ag" = — la < 1

D.2 EULER’S FORMULAS

e*? =cosf +jsinf
cos B =z(e’ +e7)

1 ) )
sin 6 = 27,(6"’ —e™ )

D.3 TRIGONOMETRIC IDENTITIES

sin?g +cos’8 =1

sin?8 = 1(1 — cos 26)

cos’ 8 = 1(1 + cos 26)

sin26 = 2sin 8 cos 0

€0s260 = cos* 0 —sin 6 =1—2cos’ 0
sin(a + B) = sin a cos B + cos a sin B

458
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cos(a + B) = cosacos B F cos a cos B

sin a sin B = §[cos(a — B) — cos(a + B)]
cos e cos B = 3 [cos(a — B) + cos(a + B)]
sin a cos B8 = §[sin(a — B) +sin(a + B)]

a+p a—pf
cos 2

a+pB a—B
cos
2

b
acosa +bsina=vVa®+b? cos(a—tan"~}
a

sin a + sin B = 2sin

cos a + cos 3 = 2 cos

D.4 POWER SERIES EXPANSIONS

> ak 1 1
a = 2 3
e—gk! Ita+al+ ma'+
n(n—1
(1+a)"=1+na+(T)a2+ +(Z)ak+ +a”
1 1 -1 k+1
ln(1+a)=a—5a2+§a3—---+(~—£———a"+-'- lal < 1

D.5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

e%f =e*F

In(aB)=Ina+1Ing
1 a—l 1
nﬁ =lna—-Ing

Inef=BIna

log, N
log, b

a

log, N=1log, N log,a =
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D.6 SOME DEFINITE INTEGRALS

fx"e"”dx= n;l a>0
0 a
o 5 1 [
fe"“‘dx=—1/~ a>0
0 2V a
x , 1
fxe‘“dx=—— a>0
0 2a

[APP. D

Index

A
Absolute bandwidth, 230
Accumulation, 172
Additivity, 18
Adjoint (or adjugate) matrix, 434
Advance, unit, 171
Aliasing, 280
All-pass filter, 332
Amplitude distortion, 225
Analog signals, 2
Analytic signal, 286
Anticausal sequence, 64
Anticausal signals, 59
Aperiodic sequences (see Nonperiodic sequences)
Aperiodic signals (see Nonperiodic signals)
Asymptotically stable systems, 373, 377
Auxiliary conditions
difference equations, 65
differential equations, 60
Average power, 5
normalized, 5

B
Band-limited signal, 231, 278
Bandpass signal, 231
Bandwidth
absolute, 230
energy containment, 277
equivalent, 275
filter (or system), 230
signal, 231
Bilateral (or two-sided) Laplace transform, 110
Bilateral (or two-sided) z-transform, 165
Bilinear transformation, 340
Bode plots, 265

Bounded-input / bounded-output (BIBO) stability, 19, 59, 64, 79, 99, 122, 145, 199

C
Canonical simulation
the first form, 384
the second form, 386
Canonical State representation
the first form, 384, 390
the second form, 386, 392
Causal signal, 59, 64
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Causality, 50, 58, 61, 64, 98, 122, 176
Cayley-Hamilton theorem, 371, 376, 439
Characteristic equation, 371
Characteristic function (see Eigenfunction)
Characteristic polynomial, 435
Characteristic values (see Eigenvalues)
Circular convolution, 307
Circular shift, 306
Cofactor, 433
Complex frequency, 218
Complex numbers, 455
Complex signals, 2
Compressor, 48
Connection between
the Fourier transform (continuous-time) and the Laplace transform, 217
the Fourier transform (discrete-time) and the z-transform, 293
Constituent matrix, 372, 377, 442
Continuous-time LTI systems, 56
causality, 122
described by differential equations, 60, 226
eigenfunctions, 59
frequency response, 223
impulse response, 56
properties, 58
response, 56
stability, 59
state space representation, 368
system (or transfer) function, 121
Continuous-time signals, 1
Continuous-time systems, 17
Controllability matrix, 406, 417
Controllable systems, 405, 417
Convolution
circular, 307
continuous-time, 57
discrete-time, 62
in frequency, 221
integral, 57
periodic, 75, 96
properties, 57, 62
sum, 62
Convolution property
discrete Fourier transform (DFT), 307
Fourier transform (continuous-time), 220, 225
Fourier transform (discrete-time), 297, 322
Laplace transform, 119
z-transform, 172, 187
Convolution theorem
frequency, 221, 257
time, 221, 255

D
Decimation-in-frequency, 355
Decimation-in-time, 352

Index

Index

Delay, unit, 46
Determinants, 433
Laplace expansion, 433
Deterministic signals, 3
DFS (see Discrete Fourier series)
DFT (see Discrete Fourier transform)
DFT matrix, 349
Diagonal matrix, 428
Diagonalization matrix, 436
Difference equations, 65
recursive, 60
Differential equations, 60
homogeneous solution, 60
particular solution, 60
Digital signals, 2
Digital simulation of analog signals, 304
Dirac delta function (d-function) (see Unit impulse function)
Dirichlet conditions
for Fourier series, 213
for Fourier transforms, 217
Discrete Fourier series (DFS), 288
properties, 289
Discrete Fourier transform (DFT)
definition, 305
inverse, 305
N-point, 305
properties, 306
Discrete-time LTI systems
causality, 64
described by difference equations, 65
eigenfunctions, 64
finite impulse response (FIR), 66
impulse response, 61
infinite impulse response (IIR), 66
response, 61
stability, 64
state space representation, 366
system function, 175
Discrete-time signals, 1
Discrete-time systems, 17
Distortionless transmission, 225
Duality property
discrete Fourier series, 289
discrete Fourier transform, 307
Fourier transform (continuous-time), 220, 247
Fourier transform (discrete-time), 296
Duration-limited signal, 286

E
Eigenfunctions, 51
of continuous-time LTI systems, 59
of discrete-time LTI systems, 64
Eigenvalues (characteristic values), 51, 371
Eigenvectors, 372
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Energy content, 5
normalized, 5
Energy-density spectrum, 222
Energy signal, 5
Energy theorem, 222
Equivalence property, 38
Equivalent bandwidth, 275
Even signal, 3
Exponential sequences
complex, 13
real, 16
Exponential signals
complex, 9
real, 10

F
Fast Fourier transform (FFT)
decimation-in-frequency algorithm, 355
decimation-in-time algorithm, 352
Feedback systems, 19
FFT (see Fast Fourier transform)
Filter
bandwidth, 230
ideal band pass, 228
ideal band stop, 228
ideal low-pass, 227
ideal high-pass, 227
Filtering, 227, 273
Final-value theorem
unilateral Laplace transform, 150
unilateral z-transform, 205
Finite-duration signal, 113
Finite impulse response (FIR), 66
Finite sequence, 169
FIR (see Finite impulse response)
First difference, 297
Fourier series
coefficients, 212
complex exponential, 211
continuous-time, 211
convergence, 213
discrete (DFS), 288
harmonic form, 213
trigonometric, 212
Fourier spectra, 216, 293
Fourier transform (continuous-time), 216
convergence, 217
definition, 216
inverse, 216
properties, 219
tables, 222, 223
Fourier transform (discrete-time), 293
convergence, 293
definition, 293

Index

Index

Fourier transform (continued)
properties, 295
tables, 299, 300
Frequency
angular, 211
complex, 218
fundamental, 11, 211
radian, 11
Frequency response
continuous-time LTI systems, 223, 262
discrete-time LTI systems, 300, 326
Frequency selective filter, 227

G

Gain, 225

Gaussian pulse, 261
Generalized derivatives, 8
Generalized functions, 7, 37

H

Harmonic component, 213
Hilbert transform, 271
Homogeneity. 18

|
Identity matrix, 371
IIR (see Infinite impulse response)
Impulse-invariant method, 339
Impulse response
continuous-time LTI systems, 56
discrete-time LTI systems, 61
Impulse train, periodic, 238
Infinite impulse response (IIR), 66
Initial condition, 61
Initial rest, 61
Initial state, 418
Initial-value theorem
unilateral Laplace transform, 150
unilateral z-transform, 205
Initially relaxed condition (see Initial rest)
Interconnection of systems, 80, 123
Inverse transform (see Fourier, Laplace, etc.)
Invertible system, 55

L
Laplace transform
bilateral (two-sided), 110
definition, 110
inverse, 119
properties, 114, 132
region of convergence (ROC), 111
tables, 115, 119
unilateral (one-sided), 110, 124, 151
Left-sided signal, 114
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Linear system, 18

Linear time-invariant (LTI) system, 18
continuous-time, 56
discrete-time, 61

Linearity, 60, 115

M
Magnitude response, 224, 301
Magnitude spectrum, 216, 293
Matrix (or matrices)
characteristic equation, 435
characteristic polynomial, 435
conformable, 430
constituent, 372, 377, 442
controllability, 406, 417
diagonal, 428
diagonalization, 436
differentiation, 444
eigenvalues, 435
eigenvectors, 435
function of, 437
idempotent, 442
identity (or unit), 429
integration, 444
inverse, 431, 434
minimal polynomials, 440
nilpotent, 399
nonsingular, 367, 435
observability, 406, 418
power, 437
rank, 433
similar, 368
singular, 435
skew-symmetric, 431
spectral decomposition, 372, 377, 442
spectrum, 442
state-transition, 371
symmetric, 431
system, 367
transpose, 431

N

N-dimensional state equations, 367
Nilpotent, 399

Noncausal system, 17

Nonideal frequency-selective filter, 229
Nonlinear system, 17

Nonperiodic (or aperiodic) signals, 5
Nonrecursive equation, 66
Nonsingular matrix, 367
Normalized average power, 5, 32
Normalized energy content, 5
N-point DFT, 305

Nyquist interval, 281

Index

Index

(0]

Observability matrix, 406, 418
Observable system, 406, 418
Odd signal, 3

Orthogonal sequences, 308
Orthogonal signals, 231

|
Parseval's identity (see Parseval's theorem)
Parseval's relation
discrete Fourier series (DFS), 315
discrete Fourier transform (DFT), 307
Fourier series, 244
Fourier transform (continuous-time), 221, 258
Fourier transform (discrete-time), 298
Parseval's theorem
discrete Fourier series (DFS), 290, 315
discrete Fourier transform (DFT), 307
Fourier series, 214
Fourier transform (continuous-time), 222, 258
Fourier transform (discrete-time), 361
Partial fraction expansion, 120, 174
Pass band, 227
Period, 4
fundamental, 4
Periodic convolution
continuous-time, 75
discrete-time, 96
Periodic impulse train, 238
Periodic sequences, 288
Periodic signals, 4
Phase distortion, 225
Phase response, 224, 301
Phase shifter, 269
Poles, 112
Power, 5
average, 5
Power series expansion, 174, 188
Power signals, 5

R

Random signals, 3

Real signals, 2

Recursive equation, 65

Region of convergence (ROC)
Laplace transform, 111
z-transform, 166

Relationship between
the DFT and the DFS, 305
the DFT and the Fourier transform (discrete-time), 306

Response
frequency, 223, 262, 300, 326
impulse, 56, 61
magnitude, 224, 301
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Response (continued)
step, 58, 63
system, 302
zero-input, 60
zero-state, 60

Right-sided signal, 113

Rise time, 276

S
Sampled signal, ideal, 278
Samples, 2
Sampling, 1
interval, 2, 278
Nyquist, 281
rate, 281, 303
Nyquist, 281
Sampling theorem
in the frequency domain, 286
uniform, 281
Sequence, 1
complex exponential, 13
exponential, 16
finite, 169
nonperiodic, 5
periodic, 5
sinusoidal, 16
Sift-invariant, 18
Signal bandwidth, 231
Signals
analog, 2
analytical, 286
anticausal, 59
band-limited, 231, 278, 280
bandpass, 231
causal, 59, 64
complex, 2
complex exponential, 9
continuous-time, 1
deterministic, 3
digital, 2
discrete-time, 1
duration-limited, 286
energy, 5
even, 3
finite-duration, 113
left-sided, 114
nonperiodic, 5
odd, 3
periodic, 4
power, 5
random, 3
real, 2
real exponential, 10
right-sided, 113

Index

Index

Signals (continued)
time-limited, 113
two-sided, 114
Signum function, 254
Similar matrices, 368
Similarity transformation, 367, 436
Simulation, 303, 337
by bilinear transformation, 340
canonical, 384, 386

impulse-invariance method, 339

Singular matrix, 435
Sinusoidal sequences, 16
Sinusoidal signals, 11, 27, 29
Spectral coefficients, 289

Spectral decomposition, 372, 377, 442

Spectrum (or spectra), 216
amplitude, 214
discrete frequency, 214
energy-density, 222
Fourier, 216
line, 214
magnitude, 216
phase, 214, 216
s-plane, 111

Stability
asymptotical, 373, 377

bounded-input / bounded-output (BIBO), 19, 59, 64, 79, 99, 122, 145, 176, 199

Stable systems, 19
State, 365
State equations

continuous-time, 374, 388, 409

discrete-time, 371, 382, 394
State space, 365
State space representation

continuous-time LTI systems, 368
discrete-time LTI systems, 366

canonical
the first form, 384, 390

the second form, 386, 392

State-transition matrix, 371, 376
State variables, 365
State vectors, 366, 369
Step response, 58, 63
Stop band, 227
Superposition property, 18
Systems
causal and noncausal, 17

continuous-time and discrete-time, 17

continuous-time LTI, 110

described by difference equations, 65, 100
described by differential equations, 60, 83

discrete-time LTI, 165
feedback, 19
invertible, 55
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Systems (continued)
linear time-invariant (LTI), 18, 56
memoryless, 17
stable, 19
time-invariant and time-varying, 18
with and without memory, 17, 58, 63
System function
continuous-time LTI systems, 121, 143, 374
discrete-time LTI systems, 175, 194, 373
System representation, 16
System response, 302

T
Testing function, 7
3-dB bandwidth, 230
Time convolution theorem, 221, 255
Time delay, 225
Time-invariance, 61
Time-invariant systems, 18
Time reversal, 117, 172, 220, 295, 307
Time scaling, 116, 219, 296
Time shifting, 116, 171, 219, 295, 306
Time-varying systems, 18
Transfer function, 121
Transform circuits, 125
Transforms (see Fourier, Laplace, etc.)
Two-sided signal, 114

U

Uniform sampling theorem, 281

Unilateral Laplace transform, 124, 148

Unilateral z-transform, 177, 202

Unit, advance, 171

Unit circle, 167, 176

Unit-delay, 171

Unit-delay element, 46

Unit impulse function, 6

Unit impulse sequence, 12

Unit ramp function, 45

Unit sample response, 61 (See also Impulse response)
Unit sample sequence (see Unit impulse sequence)
Unit step function, 6, 37

Unit step sequence, 12

Z
z-plane, 166
z-transform
bilateral (or two-sided), 165
definition, 165
inverse, 173
properties, 171, 184
region of convergence (ROC), 166
tables, 170, 173
unilateral (or one-sided), 177, 202

Index

Index

Zero padding, 305
Zero-state response, 60
Zeros, 112
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