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Lesson#5 - Useful abstract results

Starting from Theorems 5 and 6 of Lesson #3, we establish statements
that can be applied directly to various models of Mathematical Physics.
They are needed in the following situation :

The domain is bounded, but we lack a control of the normal trace
S ~N .

There is a time variable and one is interested in Cauchy problems in
(0, τ)×Rd . Here n = 1 + d and the generic variable x equals (t , y),
where y is the space variable.

In continuum mechanics, we wish to estimate the velocity.

Each of these involves a different version of Compensated Integrability.

This lesson remains at the level of Mathematical Analysis ; the
applications will come in the subsequent lessons.
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Estimate without normal trace

Let Ω ⊂ Rn be an open bounded set with smooth boundary, and let S be
a DPT over Ω. We know that S admits a normal trace S ~N , in a rather
bad subspace of D′(∂Ω) (L#3).

Here we don’t assume that this trace be a (vector-valued) measure.
Therefore Theorem 6 of L#3 does not apply. We overcome this obstacle,
by truncating S .

Choose a smooth function φ ∈ D+(Ω) and apply Theorem 6 to the

Div-controlled tensor φS (thanks to (φS )~N ≡ 0). We use∑
j

∂j (φsij ) = φ
∑
j

∂j sij +
∑
j

sij∂jφ,

Div (φS ) = φDiv S + S∇φ = S∇φ.
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On the one hand, we learn that (detφS )
1
n ∈ L

n
n−1 (Ω). Since φ is

arbitrary, this means that (detS )
1
n ∈ L

n
n−1

loc (Ω). On the other hand, we
get the estimate ∫

Ω

det(φS )
1

n−1 dx ≤ cn‖S∇φ‖
n

n−1

M .

If in addition φ is 1-Lipschitz, then the right-hand side is bounded by

cn‖S‖
n

n−1

M .

Approaching uniformly the function dist(·, ∂Ω) by such functions φ, and
passing to the limit, we obtain
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Theorem 1

If S is a DPT over a bounded open domain Ω of Rn , then

(detS )
1
n ∈ L

n
n−1

loc and∫
Ω

dist(x , ∂Ω)
n

n−1 (detS )
1

n−1 dx ≤ cn‖S‖
n

n−1

M . (1)

The above result is more in the spirit of Theorem 3 (periodic DPTs), as
the right-hand side involves S instead of the normal trace.

Notice that ‖S‖M actually stands for the total mass of the finite
measure |S |op, where | · |op is the operator norm 1 over Mn(R).

1. For symmetric matrices, this norm coincides with the spectral radius.
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Evolution problems

We shall apply Compensated Integrability to PDE systems for which the
independent variables split into x = (t , y) where t ∈ (0, τ) is a time
variable.

The space variable y evolves in a physical domain ω ⊂ Rd . The overall
domain is thus Ω = (0, τ)× ω and we have n = 1 + d .

We shall often label the coordinates xj from j = 0 to d . Thus

x0 = t , xj = yj otherwise.
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Say that physical rules provide a positive semi-definite tensor (often a
DPT) S . Its entries sij are labelled with 0 ≤ i , j ≤ d .

We write blockwise

S =

(
ρ mT

m A

)
.

where s00 = ρ ≥ 0 is a scalar measure, which can be interpreted as a
mass density. The vector-valued measure m plays the role of a flux ; think
to ∂tρ+ divym = 0.

Because of positivity, m is absolutely continuous with respect to ρ.
We also have formally

A ≥ m ⊗m

ρ
.
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By Radon-Nikodym, there exists a density v ∈ (L1 ∩ L2)(ρ) such that
m = ρv and A = ρv ⊗ v + Σ where the tensor Σ is positive semi-definite.
The vector field v plays the role of a velocity field.

We recall the formula

(detS )
1
n = (ρdet Σ)

1
n .

Let us consider a Cauchy problem : the domain ω is the whole space
Rd . The boundary of Ωτ = (0, τ)× Rd consists of a bottom (t = 0) and
a top (t = τ) parts.
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The unit normal is ±~et , the first element of the canonical basis. The
normal trace of S is ±S•0, the first column of the tensor,

S•0 =

(
ρ

m

)
.

Therefore ρ and m have traces at t = 0, τ .

Suppose that S is a Div-controlled tensor in Ωτ , and that its normal
traces on top and bottom are finite measures. In other words, the traces
ρ(0, ·), m(0, ·) and the like at time τ are finite measures. Then the
extension of S by 0n to the complement of Ωτ yields a Div-controlled
tensor S̃ in R1+d .
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Applying Theorem 5 (Lesson #3) to S̃ , we obtain the following version of
Theorem 6.

Theorem 2

Let S be a Div-controlled tensor in (0, τ)×Rd . Assume that the traces of
ρ and m are finite measures. Then (detS )1/n ∈ Ln/d(Ωτ ) and we have∫ τ

0

dt

∫
Rd

(detS )
1
d dy ≤ cn (‖S•0(0)‖M + ‖S•0(τ)‖M + ‖Div S‖M)

1+ 1
d .

(2)

Notice that ‖S•0(0)‖M is the total mass of the finite measure√
ρ(0)2 + |m(0)|2 . (3)
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Homogeneity

Recall that if the equations Div S = · · · have a physical meaning, then
detS is a meaningful quantity from a physical point of view, in that it
has a well-defined physical dimension. We might therefore expect that
our estimate (2) be homogeneous, physically speaking.

Amazingly, this is not at all the case, for if ρ has a dimension D
(density), the first equation ∂tρ+ divm = · · · tells us that m has
dimension DLT−1. Therefore even the normal trace S•0 is not
homogeneous and the formula (3) does not make sense for a physicist.

This paradox can be overcome by applying a scaling argument.
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For the sake of simplicity, we assume that S is divergence-free. This
implies in particular that the total mass is conserved :∫

Rd

ρ(t , y) dy ≡
∫
Rd

ρ(0, y) dy =: M0.

If µ > 0 is a parameter, we build from S another DPT S ′ by rescaling
both the dependent and independent variables :

τ ′ = µτ, t ′ = µt , y ′ = y , ρ′ = µ2ρ, m ′ = µm, A′ = A.

Applying (2) to S ′ over the slab Ωτ ′ , we have∫ τ ′

0

dt ′
∫
Rd

(detS ′)
1
d dy ′ ≤ cn (‖S ′•0(0)‖M + ‖S ′•0(τ ′)‖M)

1+ 1
d

≤ cn (2M ′0 + ‖m ′(0)‖M + ‖m ′(τ ′)‖M)
1+ 1

d .
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Using detS ′ = µ2 detS , dt ′ = µdt , dy ′ = dy , and M ′0 = µ2M0, we
deduce∫ τ

0

dt

∫
Rd

(detS )
1
d dy ≤ cnµ

− 1
d (2µM0 + ‖m(0)‖M + ‖m(τ)‖M)

1+ 1
d .

(4)

Inequality (4) speaks of our original tensor, and its right-hand side is
parametrized by µ > 0. We choose the parameter which minimizes the rhs

µ =
‖m(0)‖M + ‖m(τ)‖M

2dM0

and obtain the following result, in which the Functional Inequality is now
homogeneous from the physical point of view

−→
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Theorem 3

Let S be a DPT over (0, τ)× Rd . If its normal traces at t = 0, τ are
finite measures, then we have∫ τ

0

dt

∫
Rd

(detS )
1
d dy ≤ kdM

1
d

0 (‖m(0)‖M + ‖m(τ)‖M) , (5)

where

kd :=
1

d

(
2n

|Sd |

) 1
d

,M0 ≡
∫
Rd

ρ(t , y) dy .

Both sides have the same physical dimension M 1+1/dV , where M is a
mass and V a velocity.
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Evolution problems in bounded domains

When the domain ω is bounded and we lack a control of the normal trace
over the lateral boundary (0, τ)× ∂ω, we must combine the arguments
used above in the bounded case and for the Cauchy problem.

To begin with, we carry out the scaling procedure when the tensor S is
Div-controlled (instead of divergence-free) over Ωτ = (0, τ)× Rd .

We start from the estimate (we use |S•0| ≤ ρ+ |m|)∫ τ

0

dt

∫
Rd

(detS )
1
d dy ≤ cn (‖ρ(0)‖M + ‖ρ(τ)‖M + ‖m(0)‖M + ‖m(τ)‖M

+ ‖∂tρ+ divm‖M + ‖∂tm + DivA‖M)
1+ 1

d ,

where the masses are taken either on Rd (first line) or Ωτ (second one).
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We now apply the same scaling as before to create another Div-controlled
tensor S ′ defined in (0, τ ′)× Rd with τ ′ = µτ . We apply the above
estimate to S ′ and rewrite it in terms of S . This gives us a parametrized
estimate ∫ τ

0

dt

∫
Rd

(detS )
1
d dy ≤ cnµ

− 1
d (aµ+ b)1+ 1

d

with

a := ‖ρ(0)‖M + ‖ρ(τ)‖M + ‖∂tρ+ divm‖M,
b := ‖m(0)‖M + ‖m(τ)‖M + ‖∂tm + DivA‖M.

Remarks :

either a or b is homogeneous,

the total mass of ρ(t , ·) is not any more constant ; this is why we
don’t have a quantity such as M0.
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We next choose the value µ = b/da of the parameter that minimizes the
right-hand side, to obtain the estimate∫ τ

0

dt

∫
Rd

(detS )
1
d dy ≤ 1

d
cnn

1+ 1
d a

1
d b.

In other words :

Proposition 1

Let S be Div-controlled in (0, τ)× Rd . We have∫ τ

0

dt

∫
Rd

(detS )
1
d dy

≤ Kd (‖ρ(0)‖M + ‖ρ(τ)‖M + ‖∂tρ+ divm‖M)
1
d

· (‖m(0)‖M + ‖m(τ)‖M + ‖∂tm + DivA‖M)

where

Kd :=
1

d
cnn

1+ 1
d .
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When a DPT S is defined in the bounded domain (0, τ)× ω instead, we
apply Proposition 1 to the extension by 0d of the Div-controlled tensor
φ(y)S where φ ∈ D+(ω) approaches uniformly the function dist(·, ∂ω).
In particular |∇φ| ≤ 1.

We use the fact that

|∂t(φρ) + div(φm)| = |m · ∇φ| ≤ |m|

and likewise

|∂t(φm) + div(φA)| = |A · ∇φ| ≤ |A|op.
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Denoting R = sup dist(·, ∂ω) the radius of ω, we infer

Theorem 4

Let ω ⊂ Rd be a bounded domain. If S is a DPT over a domain
(0, τ)× ω, we have ∫ τ

0
dt
∫
ω

dist(y , ∂ω)1+ 1
d (detS )

1
d dy

≤ Kd (R(‖ρ(0)‖M + ‖ρ(τ)‖M) + ‖m‖M)
1
d

· (R(‖m(0)‖M + ‖m(τ)‖M) + ‖A‖M) .
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Homework

Let S be Div-controlled over Rn .

Ex. #1. Prove that

∫
Rn

(detS )
1

n−1 dx ≤ Kn

(
n∏

j=1

‖(Div S )j‖M

) 1
n−1

.

Ex. #2. If (Div S )1 ≡ 0, prove that

S~e1 ≡ 0.
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Integrating in time first

Let S be a DPT in (0, τ)×Rd , whose normal traces at t = 0, τ are finite
measures. Theorem 2 allows us to estimate the integral of

(ρ det Σ)
1
d , Σ := A− ρv ⊗ v .

The Cauchy stress tensor Σ is the part of A which is invariant under
Galilean changes of variables ; it does not depend upon the velocity field
v . This means that a direct application of (2), or even (5), will provide an
estimate of ρ1/dΣ, but will provide no information about v .

To resolve this flaw, we define the marginal of the tensor A :

A(y) :=

∫ τ

0

Adt : Rd → Sym+
d ,

whose entries are finite measures over Rd .
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Thanks to the conservation law ∂tm + DivA = 0, we have

DivA = m(0, ·)−m(τ, ·),

which shows that A is Div-controlled.

Applying Theorem 5 of L#3, we have on the one hand

(detA)
1
d ∈ L

d
d−1 (Rd) and on the other hand

‖(detA)
1
d ‖ d

d−1
≤ cd (‖m(0, ·)‖M + ‖m(τ, ·)‖M) . (6)

Using the concavity of det
1
d over Sym+

d , and its homogeneity of degree
one, we see that

(∆(y) :=)

∫ τ

0

(detA)
1
d dt ≤ (detA)

1
d .

This, together with (6), imply

‖∆‖ d
d−1
≤ kd (‖m(0, ·)‖M + ‖m(τ, ·)‖M) . (7)
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Conclusion

The results of this lesson will allow us to get estimates of ρdet Σ and of
detA (or detA) in evolution problems.

We shall apply them in Lesson 6 to various models of gas dynamics. We
shall be able to estimate the pressure (as announced at the beginning of
the course), and also the velocity field.

Because these estimates involve a time integral, they are reminiscent to
Strichartz estimates that are ubiquitous in the theory of dispersive
equations.
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