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Reporting Shortest Paths/Distances on Graphs

Problem
• Reporting shortest paths/distances between pairs of vertices
of a graph is one of the most fundamental problems in graph
theory and algorithmics

• Pletora of applications
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Reporting Shortest Paths/Distances on Graphs

Classic Applications
• Communication Networks

I Fundamental to most of routing protocols, efficient use of
communication resources to forward data

• Sensor Networks
I establish connections

• Route/Journey Planning
I computing best connections in road networks and/or

schedule-based transport systems, fundamental to planning
software like e.g. Google Maps

• Data Mining
I Find stronger relationships among data by their “closeness”

• Graph Databases
I management and/or efficient querying of data
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Reporting Shortest Paths/Distances on Graphs
Emerging Applications
• Context-Aware Search

I give higher ranks to web pages more related to the currently
visiting web page

I Fundamental to search engines
• Socially-Sensitive Search

I help users to find related users/contents
I Fundamental to social networks hosts

• Social Network Analysis / Social Engineering
I distance between users is a proxy for closeness, analyze

influential people and communities
• Biological Systems Analysis

I discovery of optimal pathways between compounds in
metabolic networks

• Distributed File Systems
I reflect changes onto replicae efficiently
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Reporting Shortest Paths/Distances on Graphs

Problem
• Given a graph G = (V,E) having n = |V | vertices and m = |E|
edges, and a pair of vertices s, t ∈ V

• Report, upon query, distance d(s, t), i.e. the weight of a
shortest path between s and t in G

I in the smallest possible amount of time (efficiently)
I in a reliable way (we’ll say what this means later)

(Highly) related problems:
• Reachability: report yes if there exist a path between s and t,
no otherwise

• Path-reporting: report the whole shortest path (set of vertices
and edges)
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Reporting Shortest Paths/Distances on Graphs

Naive Approach 1: BFS (Dijkstra’s) Algorithm
• Execute upon query, no preprocessing
• Space-efficient, no additional storage
• Best algorithm w.r.t. worst-case query time if no preprocessing
is allowed

I O(m+ n) in unweighted graphs
I O(m+ n log n) in weighted graphs
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Reporting Shortest Paths/Distances on Graphs

Naive Approach 2: Distance Table
• Time-consuming preprocessing
• Compute and store all pairs distances via |V | BFS (or Dijkstra’s)
executions

• Θ(|V |2) space
• Optimal O(1) query time, retrieve the value upon query
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Reporting Shortest Paths/Distances on Graphs

Naive approaches fail at being practical in modern networks
which tend to be
• Large-Scale: billion vertices networks (e.g. Twitter, Facebook,
Road Networks, Internet)

• Complex: various topological features (non-regular,
non-bounded-treewidth, non-uniform degree distributions,
etc)
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Reporting Shortest Paths/Distances on Graphs

Naive approaches worst-case performance
• Approach 1:

I unsustainable query time (even linear per query can be too
much)

• Approach 2:
I impractical preprocessing effort and space occupancy
I Trade-offs are needed to achieve scalability
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Reporting Shortest Paths/Distances on Graphs

Trending Strategy
• Do “something in the middle” between the two extreme
naive solutions

I in terms of space, preprocessing, and query time
• “Suitably” preprocess the graph

I Computational pre-processing effort in between O(1) and
O(n(m+ n))

• Store “acceptable” amount of data
I Space complexity in between O(1) and O(n2)

• Use data to answer queries “quickly”
I Computational complexity of query algorithm in between O(1)

and O(m+ n)

• There are a lot of trade-offs, let us discuss an example
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Given a graph

u h

v1

v2

v3v4

v
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Naive 1: Dijkstra’s (or BFS)

u h

v1

v2

v3v4

v

• No preprocessing, do not store anything
• Query: possibly access the whole graph (search space through all

data)

Mattia D’Emidio Distance Queries in Modern Large-Scale Complex Networks 13 / 104



Naive 2: Distance Table

u v1 v4 h . . . v

0 1 1 1 . . . 2

u v2 v3 h . . . v

2 1 1 1 . . . 0

u h

v1

v2

v3v4

v

• Full preprocessing, store explicitly all solutions
• Query: access single data entry of interest
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Reporting Shortest Paths/Distances on Graphs

Trade-Off: questions
• How can we suitably preprocess the graph (subquadratic
time), store a practical amount of space (subquadratic) and
be able to answer to queries in reasonable time (as close to
constant time as possible)?

• Preprocessing: do less that all BFSs or Dijkstra’s
• Space: store less than all pairs
• Query: access few data entries and do few operations
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Reporting Shortest Paths/Distances on Graphs
Temptative answer: yes

u . . . h

0 . . . 1

h . . . v

1 . . . 0

h . . . v2

1 . . . 0

h . . . v3

1 . . . 0

u h

v1

v2

v3v4

v

• Exploit optimal sub-structure of shortest paths
• e.g. look at h, it is a sort of “center” of many shortest paths, it could

be used for encoding many of them
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Reporting Shortest Paths/Distances on Graphs

More detailed question
1. Can we compress the n2 solutions into a more compact data

structure that can answer distance queries quickly (in time
not so far from O(1))?

2. Can we compute such data structure by a preprocessing
algorithm that is practical in terms of time?

3. Moreover, can we distribute the data in order to build a more
reliable system?
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Reporting Shortest Paths/Distances on Graphs

Several works on the matter
• Tree-decomposition based [Akiba+ EDBT 2012]
• Multi-level / Hierarchical Based [Abraham+ ESA 2012]
• Variety of speed-up techniques for Dijkstra’s algorithm,
tailored for special classes of graphs (e.g. graphs with low
highway dimension like road networks)

• Pruned Landmark Labeling (PLL) [Akiba+ SIGMOD 2013]
• Landmark-based [Potamias+ CIKM 2009]
• Distance Sketch [Sarma+ WSDM 2010]
• Path Sketch [Gubichev+ CIKM 2010]
• Graph Spanners [Peleg+ JGT 1989, Baswana+ SODA 2008]
• “SP based“ [Elkin+ SODA 2015, Thorup+ JACM 2015]
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Pruned Landmark Labeling

State-of-the-art w.r.t.: Pruned Landmark Labeling (PLL)
• Best known trade-off for complex general networks
(undirected/directed unweighted/weighted) 1

• Worst-case
I Naive 2 time and space
I O(n) query time
I Awful

• However, in practice, it outperforms all other methods
I acceptable preprocessing effort (∼hours)
I practical space occupancy (∼gibibytes)
I small enough query time (∼milliseconds)
I for billion vertices graphs
I suitable to exploit parallel architectures
I it allows distribution of information

1Experimentally speaking
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Pruned Landmark Labeling

Two Main ingredients: 2–Hop Cover + Distance Labeling
• Based on the intuition we’ve seen before
• Rough idea is

I to compute a compact representation of the shortest paths,
namely the 2–Hop Cover

I to convert it to a distance labeling, a compact label-based
data structure that can be used to answer query quickly (and
in a distributed fashion)
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Pruned Landmark Labeling

Some Notation
• Focus on undirected unweighted graphs and distances
• Given undirected unweighted graph G = (V,E) with n = |V |
vertices and m = |E| edges

• N(v) = {u ∈ V | {u, v} ∈ E} denotes set of neighbors of v in G
• d(u, v) denotes (hop) distance between u and v (number of
edges in shortest path between u and v)

• If u and v not connected, then d(u, v) =∞

Mattia D’Emidio Distance Queries in Modern Large-Scale Complex Networks 22 / 104



2-Hop Cover [Cohen+ J. Comput. 2012]

Given a graph G

• For every u, v ∈ let
I Puv be a collection of paths between u and v in G (e.g. Puv

can be the shortest paths between u and v)
• A hop is a pair (h, u)

I where h is a path in G and u is one of the endpoints of h (for
instance, h is a shortest path)
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2-Hop Cover [Cohen+ J. Comput. 2012]

2–Hop Cover of G
• A set of hops H(G) is a 2–Hop Cover of the collection of paths
P =

⋃
u,v∈V

Puv if and only if

I for every pair u, v ∈ V such that Puv 6= ∅
I there exists at least one p ∈ Puv and two hops (h1, u) ∈ H and

(h2, v) ∈ H such that p = h1 ⊕ h2
• Each pair is said to be covered (or to satisfy the Cover
Property)
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Pruned Landmark Labeling

Distance Labeling of a Graph G

• A label L(v) is assigned to each vertex v of G
• The labeling L(G) of G is given by {L(v)}v∈V
• A query on the distance between two vertices s and t is
answered by simply looking at the labels L(s) and L(t) of the
two vertices i.e. dG(s, t) = f(L(s), L(t))

• Main benefit: distribution of information
• Several methods to build distance labelings

I Graph Embedding
I Distance Sketches/Landmark based
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Pruned Landmark Labeling

2–Hop Covers yield Distance Labelings
• A label is intended as a set of pairs (entries) (u, δuv), where u is
a vertex in V and δuv = dG(u, v)

• Compute a 2–Hop Cover H(G) of the collection P of the
shortest paths of G

• For each hop (h, u) ∈ H add entry v, w(h) to L(u)

• Where v is the other endpoint of h and w(h) is its weight
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Pruned Landmark Labeling

2–Hop Covers yield Distance Labelings
• Labels can the be used to answer to a query on the distance
between two vertices s and t as follows:

Query(s, t, L) =

{
min{δvs + δvt | v ∈ L(s) ∧ v ∈ L(t)} If L(s) ∩ L(t) 6= ∅
∞ Otherwise

• arg min{δvs + δvt | v ∈ L(s) ∧ v ∈ L(t)} is called hub vertex that
covers the pair

• Clearly |L| ≈ |H|
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Pruned Landmark Labeling
Example:

u . . . h

0 . . . 1

h . . . v

1 . . . 0

h . . . v2

1 . . . 0

h . . . v3

1 . . . 0

u h

v1

v2

v3v4

v

Mattia D’Emidio Distance Queries in Modern Large-Scale Complex Networks 28 / 104



Pruned Landmark Labeling

Trivial Computation of 2–Hop Cover Labelings
1. L(u) = ∅ for all u ∈ V
2. BFS rooted at v, for all v ∈ V
3. When u is settled, add pair (v, δvu) to L(u)
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Pruned Landmark Labeling

Trivial Preprocessing: resulting performance
• Preprocessing in O(n(m+ n)) worst case time – impractical as
Naive Approach 2

• Θ(n2) resulting labeling space occupancy – impractical as
Naive Approach 2

• For pair (s, t), query takes O(|L(s)|+ |L(t)|) – depends on
labels’ size

• Avg label size per vertex O(n), hence query time ∈ O(n) also
impractical
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Pruned Landmark Labeling

Improved Preprocessing: Ordering and Pruning
1. Order vertices according to some ”importance“ criterion
v1, v2, ...vn

2. Perform BFS rooted at vi, for all vi ∈ V , according to the
computed ordering

3. Let Lk−1 be the status of the labeling before the BFS rooted at
a certain vk

4. Initially L0(u) = ∅ for all u ∈ V
5. During visit rooted at vk, when vertex u is settled at distance d

5.1 If Query(vk, u, Lk−1) ≤ d⇒ Break! i.e. Prune
5.2 Else add pair (vk, d) to Lk(u) and continue
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Pruned Landmark Labeling
Improved Preprocessing
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Pruned Landmark Labeling
Improved Preprocessing
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Improved Preprocessing

Performance and Theoretical Foundations

• Same worst-case bounds in terms of time and space of the
trivial

• Correctness is ordering-independent
• Quality instead depends on ordering
• Different orderings yield different labelings (of different size,
preprocessing and query time)

• Intuitively, the more shortest paths we find (sooner), the better
• Vertices should be ordered by some function of their
importance w.r.t. shortest paths
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Improved Preprocessing

Performance and Theoretical Foundations

• Computing an ordering that induce a labeling of minimum
size (i.e. finding a 2–Hop Cover of minimum cardinality) is
known to be NP-Hard (cast to greedy set cover)

• There exists a polytime O(log n) approx algo
• Requires several computations of densest subgraph, takes
O(mn log(n

2

m )), impractical
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Improved Preprocessing

There is a way out

• All these methods yield minimal labelings
• Minimal labelings have been experimentally shown to exhibit
good-performance

I Practical Preprocessing
I Compact Labeling (Size)
I Small Query Time

• A minimal labeling is s.t. the removal of any single entry
breaks the cover property

• Good minimal labelings can be computed via centrality
measures (e.g. degree, betweenness centrality)
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Pruned Landmark Labeling

PLL versus Modern Networks
• Modern networks are intrinsically dynamic: change over time

I On-line Social Networks: new friends, removed friends/pages
I Web indexing graphs: new pages/links, broken links, removed

pages
I Blogging: new replies/posts, removed users/posts/replies
I Collaboration networks: new papers
I Infrastructure networks: disruptions, new roads, new trains,

cancelled flights
I Evolving data sets: new entries, outdated entries
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Pruned Landmark Labeling

PLL as it is, fails
• Data (labels) become easily outdated
• The number of queries that become incorrect grows fast
(even after few updates, preliminary experiments show)

• Repeating the preprocessing phase every time something
changes is not doable

• Need for efficient dynamic algorithms!
Further motivation
• There are a lot of applications that inherently rely on knowing
how distances and shortest paths evolve over time

• Need for efficient dynamic algorithms also to efficiently
support historical queries (ask distances at different times)
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Pruned Landmark Labeling

Maximum stretch factor and number of disconnected pairs, on a
”Flight Data“ network subject to up to 10 edge removals.
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Some Applications
Graph Analytics

1. Dynamic Centrality Measures

Mattia D’Emidio Distance Queries in Modern Large-Scale Complex Networks 40 / 104



Some Applications
Graph Analytics

2. Dynamic Community Detection
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Some Applications
Graph Analytics

3. Property Evaluation over Time (e.g. Bioinformatics)
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Dynamic Algorithms for 2–Hop Cover Labelings

Very active field of research
Publications in basically all top notch CS conferences: ESA,
SODA, WWW, SIGMOD, AAAI, KDD, VLDB

Incremental Case
An efficient algorithm for handling both edge and vertex
additions is known [Akiba+ WWW 2014]

Decremental + Fully-Dynamic Case: work by our group
First algorithm for handling edge and vertex removals and for
supporting generic updates [D’Angelo, D’Emidio, Frigioni –
IWOCA 2016]
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Dynamic Algorithms for 2–Hop Cover Labelings

Incremental Algorithm (IncPLL): intuition
• Let (u, v) be an edge to be added to the graph
• There might be some label entries that do not correspond to
shortest paths anymore (insertions can induce decreases of
distances only)

• Lazy strategy: forget outdated label entries, insert new ones
only

• Correctness: query remains correct since the minimum is
searched

• Performance: might degrade over time, perform from-scratch
preprocessing periodically
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Dynamic Algorithms for 2–Hop Cover Labelings

IncPLL algorithm
For all vertices vi ∈ L(u) ∪ L(v)

• resume the BFS, originally rooted at vi, from vertices u and v

• add new pairs if the query test succeeds
• prune with the same policy of preprocessing

Vertex addition: add an isolated vertex, add its edges, perform
IncPLL
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Dynamic Algorithms for 2–Hop Cover Labelings

IncPLL at work2

2Thanks to Akiba+ for providing some of the figures
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Dynamic Algorithms for 2–Hop Cover Labelings

Why the lazy strategy?
• Removing outdated entries is costly, takes O(n) worst-case per
update

Alternative
• Ignore outdated entries, simply add new ones
• ”Exact“ still holds, query looks for the minimum
• Does not guarantee minimality, requires periodical
reconstruction

• Experimentally behaves pretty well [Akiba+ WWW 2014]
I Performance degrades very slowly, few new entries added
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Dynamic Algorithms for 2–Hop Cover Labelings

Decremental Algorithm (DecPLL)
• Outdated entries must be removed
• Cannot be ignored (as in the incremental case), they might
lead to underestimation of distances

• Algorithm DecPLL works in three phases
I Detection of so-called affected vertices

I vertices whose label contains at least one entry that might be
out-of-date

I Removal of outdated entries by analyzing such affected
vertices’ labels

I This might break the cover property
I Restore the cover property for vertices that are uncovered by

computing and adding new label entries
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Dynamic Algorithms for 2–Hop Cover Labelings

Affected Vertices

u

h

x y

v

• Suppose we are given a shortest path between u and v

• Solid line: edge {x, y}
• Dashed lines: shortest paths
• Assume that h ∈ L(u) ∩ L(v) and h is a hub for pair (u, v)

• That is (h, δvh) ∈ L(v) and (h, δuh) ∈ L(u)

Mattia D’Emidio Distance Queries in Modern Large-Scale Complex Networks 50 / 104



Dynamic Algorithms for 2–Hop Cover Labelings
Affected Vertices

u

h

x y

v

• If {x, y} is removed
• Then pair (h, δvh) in L(v) is not correct and must be updated
(or removed)

I v is said to be affected
I Formally, v affected if there exists a shortest path induced by L

between v and any other vertex u that passes through edge
{x, y}

I A shortest path is induced by L if it can be obtained by
combining two hops

I By analyzing such vertices we can find and remove obsolete
labels
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Dynamic Algorithms for 2–Hop Cover Labelings

Detection of Affected Vertices: baseline

u

h

x y

v

• Trivial computation of all affected vertices would require
finding (and checking) the status of all hubs of all pairs (u, v)
of vertices of G
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Dynamic Algorithms for 2–Hop Cover Labelings
Detection of Affected Vertices: advanced

u

h

x y

v

• A more convenient way of computing and storing them is that
of dividing them into two sets A(x) and A(y)

• Set A(x) (A(y), resp.): vertices that are affected w.r.t. y (x, resp.)
• It can be proved that is sufficient to test pairs

I (i, x) for all i ∈ V and (y, j) for all j ∈ V
I to determine all affected vertices

• Intuition: if v is affected because of the shortest path toward u
if v is affected because of the shortest path toward x
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Dynamic Algorithms for 2–Hop Cover Labelings

Detection of Affected Vertices
Different possible strategies for computing affected vertices
Common Intuition:
• Grow two BFS-like visits rooted at x and y

• During visit rooted at x (y, resp.), compute set A(y) (A(x), resp.)
as follows:

I Start the BFS visit by adding x to A(y)
I For each settled vertex u, test the status of the corresp. hub

w.r.t. y
I Let h be the hub of pair u, y

I If h is in A(y), add vertex u to A(y), i.e. u becomes affected
I If u becomes affected, visits its neighbors and continue
I Else break
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Dynamic Algorithms for 2–Hop Cover Labelings

PseudoCode (some details omitted)
A← ∅;
foreach v ∈ V do

mark[v]← false;
Q← ∅;
Q.Enqueue(x);
while Q 6= ∅ do

v ← Q.Dequeue();
mark[v]← true;
A(x)← A(x) ∪ {v};
foreach u ∈ Ni(v) such that ¬mark[u] do

if di(u, y) 6= di−1(u, y) then
Q.Enqueue(u);

else
if h ∈ A(x) for some h in the set of hubs of pair (u, y) in Gi−1 then

Q.Enqueue(u);
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Dynamic Algorithms for 2–Hop Cover Labelings

x1x4

x5

x2x6

x7 x3

x y

j

A(y) A(x)
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Dynamic Algorithms for 2–Hop Cover Labelings

x1x4

x5

x2x6

x7 x3

x y
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A(y) A(x)
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Dynamic Algorithms for 2–Hop Cover Labelings

x1x4
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Dynamic Algorithms for 2–Hop Cover Labelings

x1x4
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Dynamic Algorithms for 2–Hop Cover Labelings

x1x4
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Dynamic Algorithms for 2–Hop Cover Labelings

x1x4

x5

x2x6

x7 x3

x y
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A(y) A(x)
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Dynamic Algorithms for 2–Hop Cover Labelings

Theorem (Correctness)
At the end of the above routine, all affected vertices are found

Proof.
By induction on the distance from x (y)
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Dynamic Algorithms for 2–Hop Cover Labelings
Removal of Outdated Labels
1. For all vertices v ∈ A(x)

I Remove from L(v) any entry (u, δuv) such that u ∈ A(y), if it exists
2. A symmetrical algorithm to remove labels of vertices in A(y)
PseudoCode
foreach v ∈ A(x) do

foreach u ∈ L(v) such that u ∈ A(y) do
Remove (u, δuv) from L(v);

foreach v ∈ A(y) do
foreach u ∈ L(v) such that u ∈ A(x) do

Remove (u, δuv) from L(v);

Theorem (Correctness)
At the end of the above routine, all outdated entries are removed

Proof.
Trivial, we have shown that affected nodes are those which
contain outdated entries
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Dynamic Algorithms for 2–Hop Cover Labelings

Restoring the cover property
1. A BFS-like visit rooted at each vertex a ∈ Â is restarted, where Â

is the smaller in size between A(x) and A(y)

2. Restore the cover property, by adding labels to vertices
settled during the BFS

3. Do not add redundant labels, by performing queries during
the visit

I Guarantees minimality
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Dynamic Algorithms for 2–Hop Cover Labelings
PseudoCode
foreach a ∈ A(x) do

Q← ∅;
mark[a]← true; dist[a]← 0;
foreach v ∈ V \ {a} do

mark[v]← false;
dist[v]←∞;

foreach v ∈ Ni(a) do
Q.Enqueue(v);
dist[v]← 1;

while Q 6= ∅ do
v ← Q.Dequeue();
mark[v]← true;
if dist[v] < Query(a, v, L) and v ∈ A(y) then

if v < a then
Insert (v, dist[v]) in L(a);

else
Insert (a, dist[v]) in L(v);

foreach u ∈ Ni(v) such that ¬mark[u] do
dist[u]← dist[v] + 1;
Q.Enqueue(u);
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Dynamic Algorithms for 2–Hop Cover Labelings

Theorem (Worst-case Complexity)
Algorithm DecPLL takes O(mÂ` log |Â|) + |Â|(m+ n log |Â|+ n`)) worst
case timea

aworse than PLL

Theorem (Minimality)
Algorithm DecPLL computes minimal 2–Hop Cover labelings

Theorem (Fully Dynamic)
Algorithm DecPLL can be combined with IncPLL to obtain a fully
dynamic algorithm, namely FulPLL, that computes minimal
2–Hop Cover labelings under general updates occurring onto
the graph
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Extensions

Weighted Graphs
• Use Dijkstra’s instead of BFS
• Modify labels, priorities and comparisons over labels in order
to consider real-weighted edges

Directed Graphs
• It is enough to define two label sets Lin and Lout

• The former stores a set of pairs (u, δuv), while the latter stores
pairs (u, δvu), where δuv = d(u, v) and δvu = d(v, u)

• A query from vertex s to vertex t is answered by

Query(s, t, L) =


min{δsv + δvt | v ∈ Lout(s) ∩ Lin(t)}

If Lout(s) ∩ Lin(t) 6= ∅
∞ Otherwise
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Experiments

Setting & Executed Tests
• Real-World and Synthetic Dynamic Network Instances
• Real-World and Synthetic Edge Modifications3
• Wide combination of input parameters: various densities,
topologies, number of queries, number of modifications, . . .

• Basic Vertex Ordering: Degree + Approx Betweenness
• Dynamic Algorithms against PLL from scratch, to compare:

I Computational Effort (i.e. time for building vs time for updating)
I Space Occupancy (proxy for quality of labeling)
I Query Time (proxy for quality of labeling)

3Known repositories Konect, SNAP, . . .
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Experiments – Inputs
Dataset Network |V| |E| AvgDeg S D W
Eu-All (eua) email 265 214 365 570 2.77
Twitter (twi) social 465 017 834 797 3.59
Brightkite (bkt) Location-based 58 228 214 078 7.35
Caida (cai) Communication 32000 40 204 2.51
Epinions (epn) Social 131 828 841 372 12.76
Google (goo) Web 875 713 4 322051 9.87
BerkStan (wbs) Web 685 230 7 600595 22.18
WikiTalk (wtk) Communication 2394385 4 659565 4.19
Netherlands (nld) Road 892027 2 278290 5.11
YouTube (ytb) Social 1 134 890 2 987624 5.26
FlickrImg (fli) Meta-data 105 938 2 316948 43.74
SimpWiki-En (swe) Hyper-link 100 312 826 491 16.5
Wiki-It (itw) Hyper-link 1 203 995 21 639725 36.9
ForestFire-U (ffu) Synthetic 2 000 000 14 908267 14.91
ForestFire-D (ffd) Synthetic 2 100 000 16 044834 15.28
Gnutella (gnu) p2p 36 682 88 328 4.82
AS-Skitter (ski) Computer 1 696 415 11 095298 13.08
FlickrLinks (fll) Social 1 715 255 15 550782 18.13
DBPedia (dbp) Miscellaneous 3 966 924 13 820853 6.97
Barabási-A. (baa) Synthetic 631 912 1 000772 3.17
Erdős-Rényi (erd) Synthetic 50 000 6 252811 250.11
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Experimental Results – DecPLL

Dataset
dec workload

OCT (s) LS (mb) QT (µs)
PLL DecPLL PLL DecPLL PLL DecPLL

Eu-All 19.8 0.073 217 217 7.2 7.5 d
Twitter 25.4 0.018 390 390 7.3 7.3 d
Brightkite 98.7 0.328 81 81 23.1 25.7 d
Caida 1.1 0.497 24 23 39.5 40.1 d
Epinions 71.8 0.630 372 372 13.5 14.6 d
Google 3 950 4.27 3 862 3 862 39.9 57.2 d
BerkStan 2510 0.639 1 659 1 659 31.4 28.9 d
WikiTalk 3 920 5.15 5 035 5 035 35.2 37.9 d
Netherlands 1 280 371 7 410 7 553 63.9 70.9 b
YouTube 2 720 104.0 2 899 2 899 43.9 60.4 d
FlickrImg 1770 48.4 836 836 81.5 82.4 d
ForestFire-U 35 300 14.3 23 556 23 556 110 153 d
ForestFire-D 29 200 18.7 16 499 16 499 57.3 90.8 d
Gnutella 102 21.1 322 322 62.7 61.3 d
AS-Skitter 15 800 17.2 11 826 11 826 70.8 110.0 d
FlickrLinks 17 900 9.92 12 970 12 970 77.8 102.0 d
DBPedia 20 600 2.61 14 877 14 877 45.9 48.7 d
Barabási-A. 143 48.4 954 954 41.8 48.1 b
Erdős-Rényi 2 530 4.37 881 879 123 119 b
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Experimental Results – FulPLL
Dataset

ful workload
OCT (s) LS (mb) QT (µs)

PLL FulPLL PLL FulPLL PLL FulPLL

Eu-All 19.6 0.032 217 217 7.2 7.0 d
Twitter 25.6 0.007 390 390 7.3 7.3 d
Brightkite 95.3 0.217 81 81 22.7 26.4 d
Caida 1.21 0.331 24 25 39.9 41.5 d
Epinions 71.8 0.121 372 372 13.5 13.6 d
Google 3 950 0.566 3 862 3 872 39.4 52.3 d
BerkStan 2480 0.176 1 659 1 659 30.9 27.3 d
WikiTalk 3 920 2.03 5 035 5 035 34.0 49.9 d
Netherlands 1 350 350 7 057 6 990 60.5 54.9 b
YouTube 2 650 79.3 2 899 2 899 40.6 55.6 d
FlickrImg 1740 33.9 836 836 80.1 81.0 d
SimpWiki-En 78 0.232 181 180 47.4 49.2 d
Wiki-It 17 400 16.8 11 253 11 253 54.5 80.9 d
ForestFire-U 35 300 10.1 23 555 23 555 112 143 d
ForestFire-D 25 500 9.46 16 499 16 499 53.7 64.6 d
Gnutella 113 7.2 322 322 62.7 61.4 d
AS-Skitter 17 000 3.95 11 826 11 826 72.8 120.1 d
FlickrLinks 17 300 7.29 12 970 12 970 75.8 125.0 d
DBPedia 20 700 0.583 14 877 14 877 43.8 57.9 d
Barabási-A. 141 6.97 954 954 41.1 45.9 b
Erdős-Rényi 2 520 2.42 882 880 122 119 b
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Experimental Results – Speed-up of DecPLL
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Experimental Results – Speed-up of FulPLL
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Experiments – Cumulative computational time of
PLL vs DecPLL

Real-World network Google: increasing number of edge update
operations
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Experiments – Cumulative computational time of
PLL vs FulPLL

Real-World network Google: increasing number of edge update
operations
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Experiments – Cumulative computational time of
PLL vs DecPLL

Synthetic network ForestFire-U: increasing number of vertices
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Experiments – Cumulative computational time of
PLL vs FulPLL

Synthetic network ForestFire-U: increasing number of vertices
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Conclusion #1 and Future Work

What it is done
• First non trivial fully dynamic scheme for distance queries on
large-scale dynamic networks with practical performance

I Answer queries in microseconds (no degradation)
I Update indices in few seconds
I No increase in avg label size

What it has to be done
• Improve practical performance of DecPLL in ”bad instances“
• Build a comprehensive theoretical background

I Better characterize trade-off approaches, such as PLL and its
dynamic versions, from the computational point of view

I Fully distributed algorithms
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Future Work

What it has to be done
• Extensions

I Support historical queries and batches of updates
I Parallel versions of dynamic algorithms, if possible
I More extensive experimental evaluation (weighted graphs)

• Fault-Tolerant Labelings?
I Promptly react to transient failures by making the labeling

robust
I Add some “data” in advance

• Stretched labelings?
I Relax optimality constraints

Many of the above stuffs are currently under investigation
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2-Hop Cover Path-Reporting Labeling

A generalization, better suited for communication networks,
WANs, MANET

Path-Reporting Labeling of a Graph G

• Given a graph G = (V,E), let:
I A label P (v) is assigned to each vertex v of G
I The labeling P (G) of G is given by {P (v)}v∈V

• A path query between two vertices s and t returns the next
hop on the shortest-path

• Can be answered by simply looking at the labels P (s) and
P (t) of the two vertices i.e. πGst = f(P (s), P (t))
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2-Hop Cover Path-Reporting Labeling

Again 2–Hop Covers yield Path-Reporting Labelings
• A label is now intended as a set of triples (entries)

(u, δuv, p(u, π
G
uv)), where

I u is a vertex in V
I δuv = dG(u, v)
I p(u, πG

uv) is the predecessor of u within a shortest path πG
uv

• Compute a 2–Hop Cover H(G) of the collection P of the
shortest paths of G

• For each hop (h, u) ∈ H add entry (v, w(h), p(h)) to L(u)

• Where v is the other endpoint of h, w(h) is its weight, and p(h) is
the predecessor of u on h
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2-Hop Cover Path-Reporting Labeling

Path-Reporting Labeling of a Graph G

A path query from s to t is defined as follows:

pQuery(s, t, P ) =


〈h, δhs, p(s, πGhs)〉 | h = argmin{δvs + δvt | v ∈ P (s) ∧ v ∈ P (t)}

If P (s) ∩ P (t) 6= ∅
∅ Otherwise

Mattia D’Emidio Distance Queries in Modern Large-Scale Complex Networks 85 / 104



Example of Path-Reporting Labeling
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Example of Path-Reporting Labeling
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L(a) = {(b, 2), (c, 3), (d, 6)} L(f) = {(c, 3), (d, 3), (e, 1)}
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Example of Path-Reporting Labeling
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L(a) = {(b, 2), (c, 3), (d, 6)} L(f) = {(c, 3), (d, 3), (e, 1)}

(c, 3) (c, 3)

(d, 6) (d, 3)

L(a) L(f)

+ −→ 6

+ −→ 9
c is the hub and 6 is the distance between a and f .
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Example of Path-Reporting Labeling
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L(a) = {(b, 2, b), (c, 3, b), (d, 6, b)} L(f) = {(c, 3, e), (d, 3, d), (e, 1, e)}
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Example of Path-Reporting Labeling
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L(a) = {(b, 2, b), (c, 3, b), (d, 6, b)} L(f) = {(c, 3, e), (d, 3, d), (e, 1, e)}

(c, 3, b) (c, 3, e)

(d, 6, b) (d, 3, d)

L(a) L(f)

+ −→ 6

+ −→ 9

c is the hub, 6 is the distance between a and f , b and e are the next hops.
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Example of Path-Reporting Labeling
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L(b) = {. . . (c, 1, b), (d, 4, d), . . .} L(e) = {. . . , (c, 2, e), (d, 3, d), . . .}
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Example of Path-Reporting Labeling
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(c, 1, b) (c, 2, e)

(d, 4, d) (d, 3, d)

L(b) L(e)

+ −→ 3

+ −→ 7

c is the hub, 3 is the distance between a and f , c is the next hop.

L(b) = {. . . (c, 1, b), (d, 4, d), . . .} L(e) = {. . . , (c, 2, e), (d, 3, d), . . .}
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State-tof-the-Art

Known Limits
• We already know that computing a compact 2-Hop Cover is
hard

• An approximation algorithm is known, but it is not practical for
large graphs

• PLL takes cubic time in the worst case
• Modern networks are prone to (often transient) failures

I A link in a network can temporary be unavailable
I A road can be blocked
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State-tof-the-Art

Limits of Dynamic Algos
• Dynamic algorithms update times are still far to be used in a
real-time applications (e.g. routing)

• Fault-Tolerant approaches are advisable

Fault-tolerant scheme
• An approach that allows to answer to queries even in
presence of a number of (transient) graph failure operations
(e.g., edge or vertex removals)

• Usually achieved by suitably enriching the underlying data
structure and by accordingly modifying the query strategy to
consider such enrichment
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State-tof-the-Art

Limits of Exact Fault Tolerance
• Computing an exact fault-tolerant labeling is not feasible in
terms of both space and time

I If we want to tolerate the failure of a single edge at a time
I It can be shown that we need to store in the worst case m

times the space of a single labeling
I And to spend m times the time taken by PLL in the worst case

• Approximation
I Reasonable compromise: relax the optimality constraint
I Devise more compact schemes that return approximate (a.k.a.

stretched) distances (shortest paths, resp.)
I Stretch: ratio between quality of optimal solution and quality of

returned solution
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Recent Results
Fault-Tolerant approach for 2-Hop Cover Labeling
• Recently proposed by our group (unweighted graphs)
• k-Edge Fault-Tolerant Path-Reporting Labeling scheme
(k-EFTPL)

• Exhibits the following properties (should any set of k edges
fail):

• Time/Space overhead
I for k = 1, 2, 3 and G at least (k + 1)-edge connected, the

enrichment takes O(m+ n), O(n2) and O(n3) additional time,
resp., and O(n) additional space;

I for k > 3 and G at least (2k + 2)-edge connected, the
enrichment takes O(k2n2) additional time and O(kn) additional
space

• Query time linear in the length of the retrieved path (as
non-fault-tolerant)

• Linear stretch (in n and k)
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Independent Trees

How to make a labeling resistent to the failure of k edges
• Exploiting Edge-Independent trees
• A well-known concept from the 80’s

Edge-Independent Trees
Given a graph G = (V,E) and a distinguished root vertex r ∈ V ,
then IT = {T1, T2, . . . , Tq} is a collection of q edge-independent
spanning trees of G if and only if
• for each vertex v ∈ V , and for each i 6= j, πTirv and π

Tj
rv are

pairwise edge-disjoint paths, i.e. they do not share any edge
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Independent Trees

Theorem (Menger’s Theorem)
Let IT be a graph obtained by merging a collection of q + 1
edge-independent spanning trees {Ti}i=1,2,...,q+1 of a graph G.
Then, IT is (q + 1)-edge connected
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k-Edge Fault-Tolerant Path-Reporting Labeling

How to build a k-EFTPL
1. Start from a 2-Hop Cover Path Labeling
2. Compute k + 1 independent trees
3. Enrich each vertex’s label by adding k tree entries

I A tree entry contains the parent (aka next-hop) of the node in
the corresponding k–th tree
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On the availability of k + 1 Ind-Trees

• Depending on the value of k, different approaches can be
used to build the k + 1 edge-independent trees

• Clearly, a necessary condition to guarantee that any pair of
vertices remains connected even in presence of k edge
failures is that G is at least (k + 1)-edge connected
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On the computation of k + 1 Ind-Trees

1. If k ∈ {1, 2, 3} and G is (k + 1)-edge connected, k + 1
edge-independent trees can be computed in polynomial
time, with a time complexity of O(m+ n), O(n2) and O(n3),
resp.

I A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed
networks. Inf. Comput., 79(1):43–59, 1988

I J. Cheriyan and S. Maheshwari. Finding nonseparating induced cycles and
independent spanning trees in 3-connected graphs. Journal of Algorithms
9(4):507–537, 1988

I S. Curran, O. Lee, and X. Yu. Finding four independent trees. SIAM J. Comput.,
35(5):1023–1058, 2006

2. If k > 3 and G is h-edge connected, with k + 1 ≤ h ≤ 2k + 1
I To the best of our knowledge it is not known how to build k + 1

edge-independent trees in polynomial time
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On the availability of k + 1 Ind-Trees

1. If k > 3 and G is h-edge connected, with k + 1 ≤ h ≤ 2k + 1
and G is at least (2k + 2)-edge connected

I We can build k + 1 edge-disjoint spanning trees of G, which are
clearly also edge-independent, in O(k2n2) time by using the
approach

I J. Roskind and R. E. Tarjan. A note on finding minimum-cost edge-disjoint
spanning trees. Mathematics of Operations Research, 10(4):701–708, 1985

Mattia D’Emidio Distance Queries in Modern Large-Scale Complex Networks 96 / 104



The k-EFTPL

How to query a k-EFTPL (note: it is distributed)
1. Let x and y be the endpoints of our query
2. Starting from x, compute the next-hop via path-query
3. If the next-hop is not available, start using tree entries to reach

the root
4. Symmetrically, do the same from y

Theorem (From Menger’s Th)
There always exists at least
• a path from the root toward vertex x
• a path from the root toward vertex y

Mattia D’Emidio Distance Queries in Modern Large-Scale Complex Networks 97 / 104



Experimental setting

• The above solutions have replacement paths which can be
linearly (in n and k) stretched (as compared to new shortest
paths in the surviving graph)

• What about in practice?
• Experiments to assess the performance of the approach:

I Real and synthetic networks
I Implemented and run both PLL and khl for each networkm for
k = 1

I Performed 10k queries as follows
I Randomly remove an edge e
I Let e be on the shortest path with probability p = 5/100
I Run a POI rerouting scheme to compare (the only known

distributed fault-tolerant)
I Measured query time and stretch
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Results: Space and Preprocessing Time

Network |V | |E|
time (seconds) space per

vertex (bytes)
PLL khl P (G) T (G, 1)

Barabasi 365 488 734 347 68 500 6.41 5 198 18

Brightkite 33 187 188 577 5 680 1.75 2 326 18

CA-GrQc 2651 10 480 499 0.03 1 271 18

CA-HepTh 5 898 20 983 1 130 0.03 2 085 18

Caida 6855 13 341 1 650 0.02 1 412 18

com-youtube 452 060 2 295072 66 200 5 090 4 136 18

Denmark 252 416 320 914 147 000 0.75 13 152 18

flickredges 105 512 2 316450 2 180 165 12 415 18

ForestFire 1 178 888 13 849776 212 000 16 100 17 983 18

flickrlinks 704 985 14 501930 125 000 17 700 12 525 18

oregon 7218 19 448 638 2.54 286 18

skitter 1 443 769 10 830987 197 000 11 100 10 666 18

WikiVote 4 786 98 456 751 1.12 1 890 18

WikiTalk 622 315 2 889703 47 700 38 700 2 951 18
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Results: Query Time
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Query time of our approach (light gray) versus query time of POI
rerouting.
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Results: Stretch
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Estimation of stretch factor based on 10.000 measures.
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Conclusion #2 and Future Work

Conclusion
• First 2–Hop Cover distance/path-reporting labeling scheme in
the fault-tolerant setting

• Compact, small query time, can be computed quickly and
exhibits worst case linear stretch

• Practically effective (through an extensive experimental
evaluation, surprisingly small stretch)

Future Work
• Implement the algorithms for k = 2 and k = 3

• Deeper investigation of the case of k > 3 using other
techniques

• Can we design a scheme with a better theoretical guarantee?
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Q&A

mattia.demidio@gssi.it

www.mattiademidio.com
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