Analisi Matematica 1, Scritto 1-A. Durat	a della prova: 2 ore	2.7.12
Cognome:	Nome:	
Matricola: Corso di Laurea:	Canale:	: ABCD
Domanda 1	[3 punti]	D1
(i) Dare la definizione di divergenza a $+\infty$ per u	na serie $\sum_{n=1}^{+\infty} a_n$.	D2 E1
(ii) Dire se esiste una serie a termini positivi che (ne finita, ne infinita). Giustificare la risposta		E2 E3 E4
Risposta		$\begin{array}{ c c c }\hline E5 \\\hline \Sigma \end{array}$
(i)		
(ii)		
Domanda 2		[3 punti]
Sia $f \in C^1[-1,1]$ tale che $f(-1) = 0$ e $\int_{-1}^1 (x-1)^2 dx$	$(1) \cdot f'(x) = 0$. Allora	
a f è costante c $f'(x) = 3x + 1$ per $x \in [-1, 1]$	b esiste $c \in (-1, 1)$ tale che $f(0)$ d $f(1) = 0$	(c) = 0
Risposta		

Firma:....

Calcolare, se esiste, il limite	$\lim_{n \to +\infty} n^2 \left(\cos\left(\frac{1}{n^2}\right) - \cos^2\left(\frac{1}{n}\right) \right)$	
Risoluzione		
Esercizio 2		[4 punti]
Calcolare l'integrale definito		
	$\int_0^{\ln(3)} \frac{e^{2x}}{2 + e^x} dx$	
Risoluzione		

[3 punti]

Esercizio 1

Data la funzione $f(x, y, z) = x - \sin(y + z)$ calcolare il versore v per cui la derivata direzionale è massimo.	$D_v(1,1,1)$
Risoluzione	
Esercizio 4	[4 punti]
Studiare la continuità, derivabilità e differenziabilità in $(x_0, y_0) = (0, 0)$ della funzione	
$f(x,y) = \begin{cases} \frac{x^3 + y^2}{x^2 + y^2} & \text{se } (x,y) \neq (0,0), \\ 0 & \text{se } (x,y) = (0,0). \end{cases}$	
Risoluzione	

[3 punti]

Esercizio 3

Esercizio 5 [6 punti]

Trovare il dominio, eventuali simmetrie, zeri, punti di estremo locale ed asintoti della funzione $f(x) = \ln((x+2) \cdot |x-1|)$ e tracciarne un grafico approssimativo.

Risoluzione