Cognome:	Nome:	
Matricola:	Corso di Laurea:	DI
Domanda 1	[2+3 punti]	D2 E1
 (i) Dare la definizione di derivabilità di una fu (ii) Dimostrare che se f é derivabile in x₀, allor 		E2 E3 E4
Risposta (i) f & dice den valile		E5 E6 Σ
finite il limite $\lim_{X\to X_0} \frac{f(x)-f(x)}{x-x_0}$	$(x_0) = : P(x_0) = $	denivola di f in Xo
(ii) & $f \in denvalile in$ $f(x) - f(x_0) = \frac{f(x)}{x_0}$	x_0 , allow per $x \to 0$ x_0 (x_0) (x_0)	
$\frac{1}{x - 0x_0} f(x) = f(x_0) = 0 f$ Domanda 2		[2+3 punti]
(i) Enunciare il Teorema della formula di Tayl	or con il resto di Lagrange.	
(ii) Dare una stima dell'errore che si commette	approssimando $e^{\sqrt{3}}$ con il valore 1 +	$\sqrt{3}$.
Risposta (i) Sia FE C ⁿ⁺¹ (a,b) Allon 3 c fm x e x $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)$	e siamo X, X, E (co t. c. K plati)(c) (unti)!	(x-Xo) 4+1
- 7 (V)		^

(ii) = $T_n(x)$ Restor di Penno Gon $f(x) = e^{x}$, x = 0, $x = \sqrt{3}$ e n = 1 Signe $J_n(i)$: $J_n(x) = e^{x}$, $J_n(x) = 0$ $J_$

Sia $(a_n)_{n\in\mathbb{N}}$ una successione tale che $a_n=1$ per $n<10^9$ e $a_n=\frac{(-1)^n}{n}$ per $n\geq 10^9$. Allora

- $\boxed{\mathbf{a}}$ a_n è definitivamente positiva
- b a_n è oscillante
- $d \mid a_n \text{ non è limitata}$

Risoluzione

Visto de li an =0, an < 1 deprimbanche.

Esercizio 2

[3 punti]

Sia $D \subset \mathbb{R}$ and $x \in D$. Che cosa significa che f è continua in x?

- a Per ogni $\varepsilon > 0$ esiste $\delta > 0$ t.c. $|y x| < \delta$ per ogni $y \in D$ con $|f(y) f(x)| < \varepsilon$
- Per ogni $\varepsilon > 0$ esiste $\delta > 0$ t.c. $|f(y) f(x)| < \varepsilon$ per ogni $y \in D$ con $|y x| < \delta$
- c Esiste $\varepsilon > 0$ tale che per $\delta > 0$ si ha $|f(y) f(x)| < \varepsilon$ per ogni $y \in D$ con $|y x| < \delta$
- d Per ogni $\varepsilon > 0$ e per ogni $\delta > 0$ si ha $|f(y) f(x)| < \varepsilon$ per ogni $y \in D$ con $|y x| < \delta$

Risoluzione

Per la defici r'one (alternativa) della continuità

Esercizio 3

[4 punti]

Se $|a-10| \le 2$ e $|b-10| \le 3$, allora

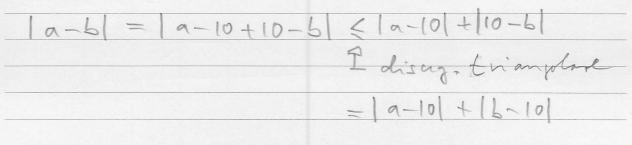
$$|a-b| \leq 5 \qquad \qquad \boxed{\text{b}} \quad |a-b| \leq 2 \qquad \qquad \boxed{\text{c}} \quad |a-b| \leq -2 \qquad \qquad \boxed{\text{d}} \quad |a-b| \geq 1$$

$$\boxed{b} |a-b| \le 2$$

$$|a-b| \leq -2$$

$$\boxed{\mathbf{d}} |a-b| \ge 1$$

Risoluzione

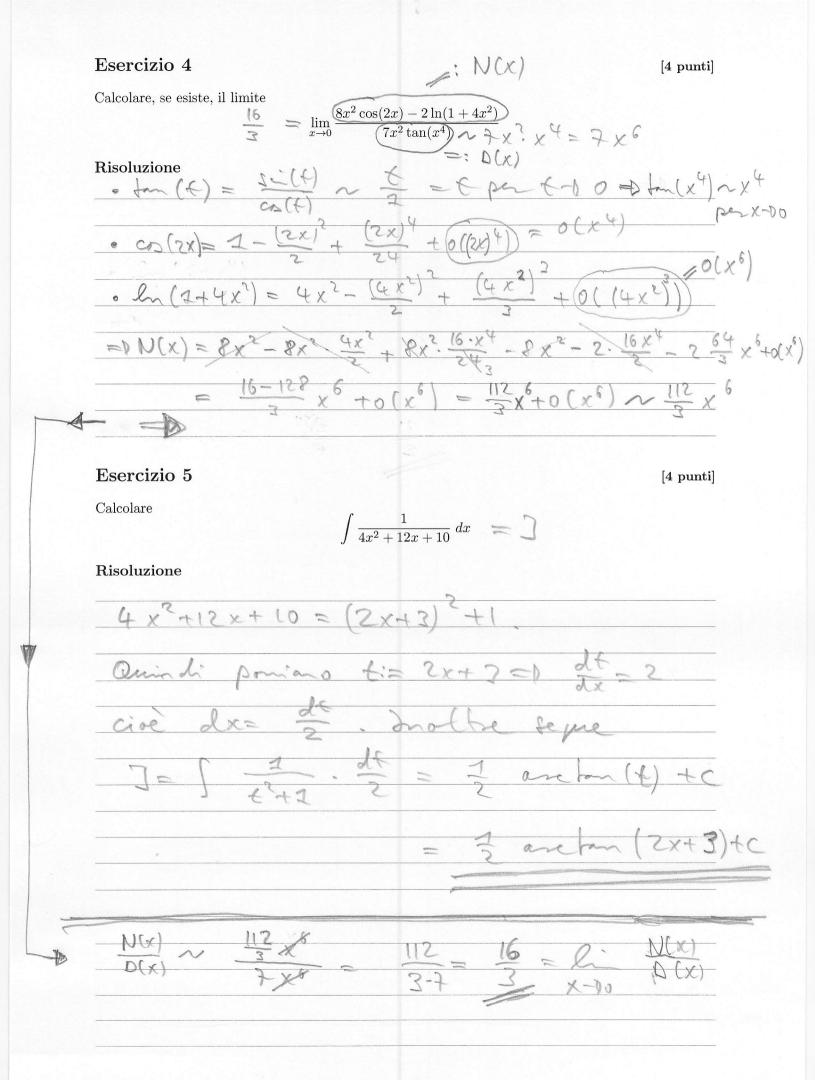


17+7=5

13 12

1 a-10 = dishinta

10-10 = distata



Esercizio 6 [4 punti] Studiare i punti critici di di $f(x,y) = -x^3 + x^2 + y^2 - xy^2 + 4x - 4$. Risoluzione Panticritici: fx(x,y)=-3x2+2x-q2+4=0 2x + 4 = 0 = 0 X = = =0 -9+2-43+4=0=0