



Esercizio 1	[3 punti]
Sia $f: \mathbb{R} \to \mathbb{R}$ monotona. Allora	
Risoluzione	
Esercizio 2	[3 punti]
Il limite $\lim_{n \to +\infty} 2 \cdot \left(1 - \frac{1}{n^2} \cdot \sum_{k=1}^{n} k\right)$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	
Risoluzione	
Esercizio 3	[4 punti]
Calcolare il limite $\lim_{x \to 0} \frac{\ln(1+x) \cdot (1+\sin(2x)) - x}{x^2}$	
Risoluzione	

Sia $f \in C^2(\mathbb{R})$ tale che f(0) = 0 e $f'(x) \cdot f''(x) > 0$ per ogni $x \in \mathbb{R}$. Allora parte del grafico di f è

Riso	luzione
TUBU	uzione

Esercizio 5	[4 punti

Calcolare l'integrale definito $\int_0^{\sqrt{\ln 2}} x^3 \cdot e^{x^2} dx$.

Risoluzione

Esercizio 6 [4 punti
Calcolare il gradiente e la derivata direzionale di $f(x,y) = 3e^{x^2+y} + 2x + 4xy^2$ in $(0,0)$ nella direzione del versore $y = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
del versore $v = \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$.
Risoluzione