Functional Analysis in Applied Mathematics and Engineering: Final exam: part 2 - 03/02/2017

Full name:		
MATRICOLA:		

(3) (i) Let X be a Banach space and let B(X) be the linear space of bounded linear operator from X to X.

- (a) Define the operator norm on $\mathcal{B}(X)$. [1]
- (b) Prove that $\mathcal{B}(X)$ is a Banach space if equipped with the operator norm. [4]
- (ii) Let (T_n) be a sequence in $\mathcal{B}(X)$.
 - (a) Define the notion of *uniform convergence* for (T_n) . [1]
 - (b) Define the notion of strong convergence for (T_n) . [1]
- (iii) Let X = C([0,1]) and let $(T_n) \subset \mathcal{B}(X)$ be defined by

$$(T_n f)(x) = \int_0^1 \sin(n\pi x) f(x) dx.$$

- (a) Prove that T_n converges strongly to zero. [3]
- (b) Prove that T_n does not converge uniformly to zero. [3]
- (iv) Let (x_n) be a sequence in a Banach space X. Define the notion of weak convergence for (x_n) . [2]
- (4) (i) Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space.
 - (a) Define the norm $\|\cdot\|$ induced by the inner product $\langle\cdot,\cdot\rangle$. [1]

(b) For all
$$x, y \in H$$
 prove that $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$. [4]

- (ii) Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space.
 - (a) Define the notion of *orthonormal set* in H.
 - (b) Let (e_n) be an orthonormal sequence in H and let $x \in H$. Prove that

$$\sum_{n=1}^{+\infty} |\langle e_n, x \rangle|^2 \le ||x||^2.$$

[4]

[1]

- (c) On the Hilbert space $H = L^2([0,\pi])$, let $e_n \in H$ be defined by $e_n(x) = \sqrt{\frac{2}{\pi}} \sin(nx)$. Prove that the set $\{e_n : n \in \mathbb{N}\}$ is orthonormal. [4]
- (d) Say under which additional property an orthonormal set is called orthonormal basis.