Functional Analysis in Applied Mathematics and Engineering: Final exam: part 2-03/02/2017

Full name:

\qquad
Matricola: \qquad
(3) (i) Let X be a Banach space and let $\mathcal{B}(X)$ be the linear space of bounded linear operator from X to X.
(a) Define the operator norm on $\mathcal{B}(X)$.
(b) Prove that $\mathcal{B}(X)$ is a Banach space if equipped with the operator norm. [4]
(ii) Let $\left(T_{n}\right)$ be a sequence in $\mathcal{B}(X)$.
(a) Define the notion of uniform convergence for $\left(T_{n}\right)$.
(b) Define the notion of strong convergence for $\left(T_{n}\right)$.
(iii) Let $X=C([0,1])$ and let $\left(T_{n}\right) \subset \mathcal{B}(X)$ be defined by

$$
\left(T_{n} f\right)(x)=\int_{0}^{1} \sin (n \pi x) f(x) d x .
$$

(a) Prove that T_{n} converges strongly to zero.
(b) Prove that T_{n} does not converge uniformly to zero.
(iv) Let $\left(x_{n}\right)$ be a sequence in a Banach space X. Define the notion of weak convergence for $\left(x_{n}\right)$.
(4) (i) Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space.
(a) Define the norm $\|\cdot\|$ induced by the inner product $\langle\cdot, \cdot\rangle$.
(b) For all $x, y \in H$ prove that $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$.
(ii) Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space.
(a) Define the notion of orthonormal set in H.
(b) Let $\left(e_{n}\right)$ be an orthonormal sequence in H and let $x \in H$. Prove that

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left|\left\langle e_{n}, x\right\rangle\right|^{2} \leq\|x\|^{2} . \tag{4}
\end{equation*}
$$

(c) On the Hilbert space $H=L^{2}([0, \pi])$, let $e_{n} \in H$ be defined by $e_{n}(x)=$ $\sqrt{\frac{2}{\pi}} \sin (n x)$. Prove that the set $\left\{e_{n}: n \in \mathbb{N}\right\}$ is orthonormal.
(d) Say under which additional property an orthonormal set is called orthonormal basis.

