Functional Analysis in Applied Mathematics and Engineering: Final exam: part 3 - 03/02/2017

(1) (i) Let A be a bounded linear operator on a Hilbert space H.

(a) State the property that defines the adjoint operator A^* . [1]

[2]

[5]

- (b) Prove that A^* is uniquely defined.
- (c) Let $H = \ell^2(\mathbb{N})$. Define the left-shift operator $S: H \to H$ by

$$S(x)_k = \begin{cases} 0 & \text{if } k = 1\\ x_{k-1} & \text{if } k \ge 2 \end{cases}$$

Find S^* (justify your answer). [2]

(ii) State and prove the uniform boundedness theorem.

(iii) Let $H = L^2([0, 1])$ and consider the sequence $f_n \in H$

$$f_n(x) = \begin{cases} \sqrt{nx} & \text{if } 0 \le x \le 1/n \\ 0 & 1/n \le x \le 1. \end{cases}$$

- (a) Prove that f_n in uniformly bounded in H. [2]
- (b) Prove that f_n converges weakly to zero in H as $n \to +\infty$. [3]
- (2) (i) Let A be a bounded linear operator on a Hilbert space H.
 - (a) Define the *resolvent set* and the *spectrum* of A. [1]
 - (b) Define the *point spectrum*, the *continuous spectrum*, and the *residual spectrum* of A. [2]
 - (c) Prove that if λ belongs to the residual spectrum of A then $\overline{\lambda}$ is an eigenvalue of A^* (invoke general properties of adjoint operators). [2]
 - (ii) Prove that a compact operator on a Hilbert space maps weakly converging sequences into strongly converging sequences. [4]
 - (iii) Let $K: L^2([0,1]) \to L^2([0,1])$ be the Volterra operator

$$(Kf)(x) = \int_0^x f(y)dy.$$

(a) Prove that 0 is in the continuum spectrum of K. [3]

(b) Prove that there are no other elements in the spectrum apart from 0. [3]