
Functional Analysis in Applied Mathematics and Engineering:

Second Mid term exam - 07/12/2018

Model Solution

(1) (i) Let (X, ‖ · ‖) be a Banach space and let T : X → X be a linear map.

(a) Say when T is called bounded and define the operator norm of T . [1,5]

Solution. T is called bounded if there exists C > 0 such that ‖Tx‖ ≤ ‖x‖

for all x ∈ X. The operator norm of T is the nonnegative real number

‖T‖ = supx 6=0
‖Tx‖
‖x‖ .

(b) Prove that T is bounded if and only if T is continuous. [3,5]

Solution. Let T be bounded. Then there exists C ≥ 0 such that ‖Tx‖ ≤ ‖x‖

for all x ∈ X. Let x, y ∈ X. The linearity of T implies ‖Tx−Ty‖ ≤ C‖x−y‖.

Therefore T is Lipschitz continuous, and hence continuous.

Viceversa, suppose T is continuous. Hence, T is continuous at the point 0.

Therefore (by definition of continuity), for ε = 1 there exists δ > 0 such

that ‖x‖ < δ implies ‖Tx‖ < 1. Now, let x 6= 0 and set z = δ x
2‖x‖ . Since

‖z‖ = δ/2 < δ we have ‖Tz‖ < 1. Consequently, in view of the linearity of T

and of the positive homogeneity of norms, we have

‖Tx‖ =
2‖x‖

δ
‖Tz‖ <

2‖x‖

δ
,

and the definition of boundedness for T holds with C = 2/δ.

(c) Say when T is called a compact operator. [1]

Solution. T is called a compact operator if for every bounded set B ⊂ X we

have that T (B) is precompact in X.

(ii) Let (X, ‖ · ‖) = (C([0, 1]), ‖ · ‖∞), and consider the linear operator T : X → X

(Tf)(x) =

∫ x

0
t2f(y)dy.

Prove that T is a compact operator. [2]

Solution. Let B = {f ∈ X : ‖f‖∞ ≤ 1}. For all f ∈ B and for all x ∈ [0, 1] we

have

|(Tf)(x)| ≤

∫ x

0
|t2f(t)|dt ≤

∫ 1

0
|f(t)|dt ≤ ‖f‖∞ ≤ 1,



because t2 ≤ 1 for all t ∈ [0, 1] and by monotonicity of the integral. Therefore,

‖Tf‖∞ = sup
x∈[0,1]

|(Tf)(x)| ≤ 1

and therefore the set T (B) is bounded. Moreover, let f ∈ B and let x, y ∈ [0, 1].

Additivity of integrals implies

|(Tf)(x− y)| ≤

∫ y

x
|t2f(t)|dt ≤

∫ y

x
|f(t)|dt ≤ |x− y|

because once again t2 ≤ 1 for all t ∈ [0, 1]. Hence, T (B) is equicontinuous. From

Arzelá-Ascoli’s theorem the set T (B) is relatively compact. Hence, T is compact.

(iii) (a) Let (X, ‖ · ‖) be a Banach space and let (xn)n be a sequence in X. Define the

concept of weak convergence for the sequence (xn)n. [1]

Solution. The sequence xn is said to be weakly convergent to x if φ(xn)

converges to φ(x) as n → +∞ for all φ ∈ X∗ where X∗ is the dual space of

X, that is the normed space of all bounded linear functionals on X.

(b) Let X = L2([0, 2π]) and let fn ∈ X defined as fn(x) = sin(nx). Prove that

fn converges weakly to zero in L2. [4]

Solution. From a known result on the weak convergence in L2, we need to

prove that for all g ∈ L2([0, 2π]) we have

∫ 2π

0
fn(x)g(x)dx → 0, as n → +∞.

Now, let ε > 0. Since continuous functions are dense in L2, there exists a

continuous function h on [0, 2π] such that ‖g − h‖L2 < ε. Moreover, since

polynomial are dense in C([0, 2π]) with respect to the ‖ · ‖∞ norm, there

exists a polynomial p on [0, 2π] such that ‖h− p‖∞ < ε. This implies

‖g − p‖L2 ≤ ‖g − h‖L2 + ‖h− p‖L2 < ε+

(
∫ 2π

0
|h(x)− p(x)|2dx

)1/2

≤ ε+ (2π)1/2‖h− p‖∞ < ε(1 + (2π)1/2).

Now let us compute via integration by parts
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where we have used that p and p′ are continuous (and hence bounded) func-

tions on [0, 2π]. Therefore, the right hand side above tends to zero as n → +∞.

Now, triangle inequality implies
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0
| sin(nx)||g(x)− p(x)|dx
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2

n
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n
‖p′‖∞ + ‖fn‖L2‖g − p‖L2 ,

where we have used Hoelder’s inequality. Now, since |fn(x)| ≤ 1 for all x ∈

[0, 2π] and since ‖g − p‖L2 < ε(1 + (2π)1/2) we get

lim
n→+∞
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≤ ε(2π)1/2(1 + (2π)1/2),

and the latter quantity is arbitrarily small, which implies that the above limit

equals zero.

(iv) State (without proof) the open mapping theorem. [1]

Solution. Let X and Y be Banach spaces and let T : X → Y be a bounded, linear,

and invertible operator. Then T−1 is bounded.

(2) (i) Let H be a Hilbert space.

(a) State and prove Cauchy-Schwarz inequality. [3]

Solution. Cauchy-Schwarz inequality asserts that for all x, y ∈ H one has

|(x, y)| ≤ ‖x‖‖y‖. Proof: Let x, y ∈ H and λ, µ ∈ C. Nonnegativity of the

norm, linearity of the inner product with respect to the second component,

and antisymmetry imply

0 ≤ (λx− µy, λx− µy) = |λ|2‖x‖2 + |µ|2‖y‖2 − µλ(y, x)− λµ(x, y).

Now, write the inner product (x, y) in polar form, that is (x, y) = reiφ, with

r = |(x, y)| ≥ 0 and φ ∈ [0, 2π). We choose λ = ‖y‖eiφ and µ = ‖x‖. We

obtain

0 ≤ ‖y‖2‖x‖2 + ‖x‖2‖y‖2 − ‖x‖‖y‖eiφ|(x, y)|e−iφ − ‖y‖e−iφ‖x‖|(x, y)|eiφ

and the obvious cancellations of eiφ with e−iφ imply

2‖x‖2‖y‖2 ≥ 2‖x‖‖y‖|(x, y)|

which implies the assertion upon further cancellations.



(b) State and prove the parallelogram rule. [2]

Solution. The parallelogram rule reads ‖x+ y‖2+ ‖x− y‖2 = 2‖x‖2+2‖y‖2

for all x, y ∈ H. Proof: Let x, y ∈ H. By the elementary properties of the

inner product we get

‖x+ y‖2 + ‖x− y‖2 = (x+ y, x+ y) + (x− y, x− y)

= ‖x‖2 + ‖y‖2 + (x, y) + (y, x) + ‖x‖2 + ‖y‖2 − (y, x)− (x, y)

= 2‖x‖2 + 2‖y‖2.

(ii) Let H be a Hilbert space and let M ⊂ H be a closed linear subspace of H.

(a) Define the orthogonal complement M⊥. [1]

Solution. The orthogonal complement is defined as

M⊥ = {x ∈ H : (x, y) = 0 for all y ∈ M} .

(b) Given x0 ∈ H \M , prove that there exists a point y ∈ M such that

‖x0 − y‖ = min {‖x0 − z‖ : z ∈ M}

and that such a point y is unique. [4]

Solution. Define d = infy∈M ‖x0 − y‖. We have that d > 0 because x0 and

M are closed and the pointy set {x0} is compact. By definition of inf there

exists a minimizing sequence yn ∈ M such that

d = lim
n→+∞

‖x0 − yn‖

and such that

‖x0 − yn‖ ≤ d+ 1/n

for all positive integers n. Our first goal is to prove that yn is a Cauchy

sequence. To prove that, we use the parallelogram rule with the two vectors

x0 − yn and x0 − ym with distinct n,m ∈ N. We get

2‖x0 − yn‖
2 + 2‖x0 − ym‖2

= ‖2x0 − (yn + ym)‖2 + ‖yn − ym‖2 = 4‖x0 − (yn + ym)/2‖2 + ‖yn − ym‖2

≥ 4d2 + ‖yn − ym‖2,



where we have used that the vector (yn + ym)/2 belongs to M , as M is a

linear subspace. Using the defining property of yn we get

‖yn − ym‖2 ≤ 2(d+ 1/n)2 + 2(d+ 1/m)2 − 4d2

= 2d2 + 4/n+ 2/n2 + 2d2 + 4/m+ 2/m2 − 4d2 = 4/n+ 2/n2 + 4/m+ 2/m2.

Clearly, the latter quantity tends to zero as n,m → +∞, which shows that

the quantity ‖yn − ym‖ is arbitrarily small as n,m → +∞, which means that

yn is a Cauchy sequence. Now, since H is complete, yn converges to some

y ∈ M . Since the distance function is continuous we get

‖x0 − y‖ = lim
n→+∞

‖x0 − yn‖ = d,

which proves that the inf above is actually a minimum, and y is the point in

M we were looking for. In order to prove uniqueness, assume there are two

points y1, y2 ∈ M such that

d = ‖x0 − y1‖ = ‖x0 − y2‖.

Parallelogram rule applied to the pair x0 − y1, x0, y2 implies

4d2 = 2‖x0 − y1‖
2 + 2‖x0 − y2‖

2 = 4‖x0 − (y1 + y2)/2‖
2 + ‖y1 − y2‖

2 ≥ 4d2 + ‖y1 − y2‖
2,

as (y1 + y2)/2 ∈ M . Therefore,

‖y1 − y2‖
2 ≤ 4d2 − 4d2 = 0,

which shows that y1 = y2, hence the point of minimal distance y ∈ M is

unique.

(iii) Let H be a separable Hilbert space and let U = {un ∈ H : n ∈ N} be a sequence.

(a) Say when U is called an orthonormal sequence. [1]

Solution. U is called orthonormal sequence if (un, um) = 0 for all n 6= m and

‖un‖ = 1 for all n.

(b) Let x ∈ H. Prove that

∑

n∈N

|(un, x)|
2 ≤ ‖x‖2.



[3]

Solution. Fix a positive integer N . Set xN =
∑N

k=1(uk, x)uk. The elemen-

tary properties of the inner product imply

0 ≤ (x− xN , x− xN ) = (x, x)−
N
∑

k=1

(uk, x)(x, uk)−
N
∑

n=1

(un, x)(un, x)

+

N
∑

k,n=1

(uk, x)(un, x)(uk, un).

As U is an orthonormal sequence, (uk, un) is nonzero only if n = m, and with

some simple cancellations we get

0 ≤ ‖x‖2 −

N
∑

k=1

|(un, x)|
2.

Hence,
N
∑

k=1

|(un, x)|
2 ≤ ‖x‖2.

This shows that the above sum is the partial sum of a convergent series. By

letting N go to infinity we get the assertion.


