Functional Analysis in Applied Mathematics and Engineering:

Second Mid term exam - 07/12/2018
Model Solution

(1) (i) Let (X,]| - ||) be a Banach space and let T': X — X be a linear map.

(a)

Say when T is called bounded and define the operator norm of T [1,5]
Solution. T is called bounded if there exists C' > 0 such that || Tz| < |||

for all + € X. The operator norm of 7' is the nonnegative real number

|| = sup, o L2l
Prove that T' is bounded if and only if 7" is continuous. [3,5]
Solution. Let 7" be bounded. Then there exists C' > 0 such that ||Tz| < ||z||
for all z € X. Let z,y € X. The linearity of T implies || Tz —Ty| < C||lz—y]|.
Therefore T is Lipschitz continuous, and hence continuous.

Viceversa, suppose T is continuous. Hence, T is continuous at the point 0.
Therefore (by definition of continuity), for ¢ = 1 there exists § > 0 such
that ||z|| < ¢ implies |Tz|| < 1. Now, let x # 0 and set z = 5%. Since
l|z|| = /2 < 6 we have ||Tz|| < 1. Consequently, in view of the linearity of T
and of the positive homogeneity of norms, we have

2|

)

2||
ITz]| < ==,

| = .

and the definition of boundedness for 7" holds with C' = 2/4.
Say when T is called a compact operator. 1]
Solution. T is called a compact operator if for every bounded set B C X we

have that T'(B) is precompact in X.

(ii) Let (X, -|) = (C([0,1]),] - ||cc), and consider the linear operator T : X — X

)@ = | "2 (y)dy.

0

Prove that T" is a compact operator. 2]

Solution. Let B = {f € X : ||f|lc < 1}. For all f € B and for all z € [0,1] we

have

x 1
(Tf) ()] < /0 2 £(1)]dt < /0 FB)]dE < [ fllw < 1,



(iii)

because t? < 1 for all ¢ € [0,1] and by monotonicity of the integral. Therefore,
ITflloc = sup [(Tf)(z)] <1
z€(0,1]
and therefore the set T'(B) is bounded. Moreover, let f € B and let z,y € [0, 1].
Additivity of integrals implies

(Th) - )| < / "1 ) < / " 1F0)ldt < x|

because once again t? < 1 for all ¢ € [0,1]. Hence, T(B) is equicontinuous. From
Arzeld-Ascoli’s theorem the set T'(B) is relatively compact. Hence, T" is compact.
(a) Let (X,]|-||) be a Banach space and let (zy,), be a sequence in X. Define the
concept of weak convergence for the sequence (xy,)n. [1]
Solution. The sequence z, is said to be weakly convergent to z if ¢(x,)
converges to ¢(x) as n — 4oo for all ¢ € X* where X* is the dual space of
X, that is the normed space of all bounded linear functionals on X.
(b) Let X = L?([0,27]) and let f,, € X defined as f,(r) = sin(nz). Prove that
fn converges weakly to zero in L2 [4]
Solution. From a known result on the weak convergence in L?, we need to

prove that for all g € L?([0,27]) we have

2

fn(z)g(z)dz — 0, as n — +o0.
0

Now, let ¢ > 0. Since continuous functions are dense in L2, there exists a
continuous function h on [0,27] such that ||g — hl[2 < . Moreover, since
polynomial are dense in C([0,27]) with respect to the || - ||oc norm, there
exists a polynomial p on [0, 27] such that ||h — p||e < €. This implies
27 1/2
lo=plis < o= hllo + 10 =plle < e+ [ i) = plo)c)
< e+ (2m)" 2 = pllee < (14 (2m)'73).

Now let us compute via integration by parts

2m
fu(2)p(z)dz
0

2T 1 e 1 2T
/ sin(nz)p(x)dx| = ’_n cos(m:)p(x)u:?) + n/ cos(nzx)p' (z)dx
0 0

2 2,
< —[Iplloe + — P lloe;
n n



where we have used that p and p’ are continuous (and hence bounded) func-
tions on [0, 27]. Therefore, the right hand side above tends to zero as n — +o0.

Now, triangle inequality implies

21
fn(x)g(x)dz

27
fn(x)p(x)dz

2

fo(2)(9(x) — p(z))dz

0

+

0

2 2, e
< —[IPlloo + —11P'lloc + |sin(nz)|[g(z) — p(z)|dz
n n 0

0

N

2 2
< =|pllcc + =117 lloo + | fullL2llg — Pl L2,
n n

N

where we have used Hoelder’s inequality. Now, since |f,(z)] < 1 for all z €

[0, 27] and since ||g — p|| 2 < e(1 + (27)Y/2) we get

lim
n—-+o00

7 f@)g(@)da| < <2201 + 2m)2),

0

and the latter quantity is arbitrarily small, which implies that the above limit

equals zero.
(iv) State (without proof) the open mapping theorem. 1]
Solution. Let X and Y be Banach spaces and let T : X — Y be a bounded, linear,

and invertible operator. Then T—! is bounded.

(2) (i) Let H be a Hilbert space.

(a) State and prove Cauchy-Schwarz inequality. [3]
Solution. Cauchy-Schwarz inequality asserts that for all x,y € H one has
|(z,y)| < ||z||lly|]|. Proof: Let z,y € H and A\,u € C. Nonnegativity of the
norm, linearity of the inner product with respect to the second component,
and antisymmetry imply

0< Az — py, A — py) = [AP[lz]]* + [l lyll* — BA(y, ) — Au(z, y).

Now, write the inner product (x,%) in polar form, that is (x,y) = re’®, with
r = |(z,y)| > 0 and ¢ € [0,27). We choose A = ||y|e’® and p = ||z||. We

obtain
0 < [lylPlll® + =Myl = lelllylle’®| (@, y)le™™ = llyle™ ]|, y)le"
and the obvious cancellations of e*® with e~* imply

2|llllyl* = 2llllllyll(z, )]

which implies the assertion upon further cancellations.



(b) State and prove the parallelogram rule. 2]
Solution. The parallelogram rule reads ||z +y||? + ||z — y||? = 2||=||* + 2||y||?
for all x,y € H. Proof: Let z,y € H. By the elementary properties of the

inner product we get

lz +yl” + llz =yl = (@ +y, 2 +y) + (& —y, 2 —y)
= [l2l® + Iy + (2. y) + (v, 2) + llz]* + yl* = (. 2) — (z,y)
= 2||[|* + 2]y||*.
(ii) Let H be a Hilbert space and let M C H be a closed linear subspace of H.

(a) Define the orthogonal complement M. [1]

Solution. The orthogonal complement is defined as
Mt ={zeH: (x,y)=0 forally € M}.

(b) Given zg € H \ M, prove that there exists a point y € M such that
|lzo — y|| = min{||lzo — 2| : 2 € M}

and that such a point y is unique. [4]
Solution. Define d = infyenr [|xo — y||. We have that d > 0 because x¢ and
M are closed and the pointy set {z(} is compact. By definition of inf there

exists a minimizing sequence y, € M such that

d= lm_ [z~

and such that

[0 = ynll < d+1/n

for all positive integers n. Our first goal is to prove that y, is a Cauchy
sequence. To prove that, we use the parallelogram rule with the two vectors

xo — Yp and xg — Yy, with distinet n,m € N. We get

2l|lzo — ynll® + 2[lz0 — ym I
= [|2z0 — (yn + ym)H2 + llyn — ymH2 = 4lzo — (yn + ym)/2”2 + llyn — ymH2

> 4d> + Hyn - ym||27



where we have used that the vector (y, + ym)/2 belongs to M, as M is a
linear subspace. Using the defining property of y, we get

5 — Yml|? < 2(d +1/n)? +2(d + 1/m)* — 4d?

=2d? +4/n+2/n% +2d* + 4/m +2/m? — 4d*> = 4/n + 2/n® + 4/m + 2/m>.

Clearly, the latter quantity tends to zero as n,m — —+oo, which shows that
the quantity ||y, — ym|| is arbitrarily small as n,m — +o0o, which means that
Yn is a Cauchy sequence. Now, since H is complete, ¥y, converges to some
y € M. Since the distance function is continuous we get

lwo —yll = lim_lzo = gall = d.

which proves that the inf above is actually a minimum, and y is the point in
M we were looking for. In order to prove uniqueness, assume there are two

points y1,y2 € M such that
d = [lzo = y1ll = llzo — y2l|.
Parallelogram rule applied to the pair x¢y — y1, xg, y2 implies
4d® = 2|0 — w1 [* + 2[|o — yall® = 4llzo — (y1 + v2) /201> + lly1 — val® > 4d° + ||y1 — v21%,
as (y1 +y2)/2 € M. Therefore,
lyn = w2]]* < 4d* — 4d* =0,

which shows that y; = y2, hence the point of minimal distance y € M is
unique.
(iii) Let H be a separable Hilbert space and let U = {u,, € H : n € N} be a sequence.
(a) Say when U is called an orthonormal sequence. 1]
Solution. ! is called orthonormal sequence if (uy,, uy,) = 0 for all n # m and
|lun|| =1 for all n.

(b) Let z € H. Prove that

> (un, ) < .

neN



3]
Solution. Fix a positive integer N. Set xny = Zévzl(uk,x)uk. The elemen-

tary properties of the inner product imply

N N
0< (:E —IN,T — iL'N) = (l‘,$) - (Uk,l’)(!l?,uk) - Z (un,m)(un,ﬂc)
k=1 n=1
N
+ > (e ) (tn, @) (g, un).
k,n=1

As U is an orthonormal sequence, (ug,u,) is nonzero only if n = m, and with

some simple cancellations we get

N
0 < 2] =D I(un, )|
k=1
Hence,
N
D s 2)? < .
k=1

This shows that the above sum is the partial sum of a convergent series. By

letting N go to infinity we get the assertion.



