Functional Analysis in Applied Mathematics and Engineering:
 Second Mid term exam - 07/12/2018
 Model Solution

(1) (i) Let $(X,\|\cdot\|)$ be a Banach space and let $T: X \rightarrow X$ be a linear map.
(a) Say when T is called bounded and define the operator norm of T.

Solution. T is called bounded if there exists $C>0$ such that $\|T x\| \leq\|x\|$ for all $x \in X$. The operator norm of T is the nonnegative real number $\|T\|=\sup _{x \neq 0} \frac{\|T x\|}{\|x\|}$.
(b) Prove that T is bounded if and only if T is continuous.

Solution. Let T be bounded. Then there exists $C \geq 0$ such that $\|T x\| \leq\|x\|$ for all $x \in X$. Let $x, y \in X$. The linearity of T implies $\|T x-T y\| \leq C\|x-y\|$. Therefore T is Lipschitz continuous, and hence continuous.

Viceversa, suppose T is continuous. Hence, T is continuous at the point 0 . Therefore (by definition of continuity), for $\varepsilon=1$ there exists $\delta>0$ such that $\|x\|<\delta$ implies $\|T x\|<1$. Now, let $x \neq 0$ and set $z=\delta \frac{x}{2\|x\|}$. Since $\|z\|=\delta / 2<\delta$ we have $\|T z\|<1$. Consequently, in view of the linearity of T and of the positive homogeneity of norms, we have

$$
\|T x\|=\frac{2\|x\|}{\delta}\|T z\|<\frac{2\|x\|}{\delta},
$$

and the definition of boundedness for T holds with $C=2 / \delta$.
(c) Say when T is called a compact operator.

Solution. T is called a compact operator if for every bounded set $B \subset X$ we have that $T(B)$ is precompact in X.
(ii) Let $(X,\|\cdot\|)=\left(C([0,1]),\|\cdot\|_{\infty}\right)$, and consider the linear operator $T: X \rightarrow X$

$$
\begin{equation*}
(T f)(x)=\int_{0}^{x} t^{2} f(y) d y . \tag{2}
\end{equation*}
$$

Prove that T is a compact operator.
Solution. Let $B=\left\{f \in X:\|f\|_{\infty} \leq 1\right\}$. For all $f \in B$ and for all $x \in[0,1]$ we have

$$
|(T f)(x)| \leq \int_{0}^{x}\left|t^{2} f(t)\right| d t \leq \int_{0}^{1}|f(t)| d t \leq\|f\|_{\infty} \leq 1,
$$

because $t^{2} \leq 1$ for all $t \in[0,1]$ and by monotonicity of the integral. Therefore,

$$
\|T f\|_{\infty}=\sup _{x \in[0,1]}|(T f)(x)| \leq 1
$$

and therefore the set $T(B)$ is bounded. Moreover, let $f \in B$ and let $x, y \in[0,1]$. Additivity of integrals implies

$$
|(T f)(x-y)| \leq \int_{x}^{y}\left|t^{2} f(t)\right| d t \leq \int_{x}^{y}|f(t)| d t \leq|x-y|
$$

because once again $t^{2} \leq 1$ for all $t \in[0,1]$. Hence, $T(B)$ is equicontinuous. From Arzelá-Ascoli's theorem the set $T(B)$ is relatively compact. Hence, T is compact.
(iii) (a) Let $(X,\|\cdot\|)$ be a Banach space and let $\left(x_{n}\right)_{n}$ be a sequence in X. Define the concept of weak convergence for the sequence $\left(x_{n}\right)_{n}$.

Solution. The sequence x_{n} is said to be weakly convergent to x if $\phi\left(x_{n}\right)$ converges to $\phi(x)$ as $n \rightarrow+\infty$ for all $\phi \in X^{*}$ where X^{*} is the dual space of X, that is the normed space of all bounded linear functionals on X.
(b) Let $X=L^{2}([0,2 \pi])$ and let $f_{n} \in X$ defined as $f_{n}(x)=\sin (n x)$. Prove that f_{n} converges weakly to zero in L^{2}.
Solution. From a known result on the weak convergence in L^{2}, we need to prove that for all $g \in L^{2}([0,2 \pi])$ we have

$$
\int_{0}^{2 \pi} f_{n}(x) g(x) d x \rightarrow 0, \quad \text { as } n \rightarrow+\infty .
$$

Now, let $\varepsilon>0$. Since continuous functions are dense in L^{2}, there exists a continuous function h on $[0,2 \pi]$ such that $\|g-h\|_{L^{2}}<\varepsilon$. Moreover, since polynomial are dense in $C([0,2 \pi])$ with respect to the $\|\cdot\|_{\infty}$ norm, there exists a polynomial p on $[0,2 \pi]$ such that $\|h-p\|_{\infty}<\varepsilon$. This implies

$$
\begin{aligned}
& \|g-p\|_{L^{2}} \leq\|g-h\|_{L^{2}}+\|h-p\|_{L^{2}}<\varepsilon+\left(\int_{0}^{2 \pi}|h(x)-p(x)|^{2} d x\right)^{1 / 2} \\
& \leq \varepsilon+(2 \pi)^{1 / 2}\|h-p\|_{\infty}<\varepsilon\left(1+(2 \pi)^{1 / 2}\right) .
\end{aligned}
$$

Now let us compute via integration by parts

$$
\begin{aligned}
& \left|\int_{0}^{2 \pi} f_{n}(x) p(x) d x\right| \\
& \left.=\left|\int_{0}^{2 \pi} \sin (n x) p(x) d x\right|=\left|-\frac{1}{n} \cos (n x) p(x)\right|_{x=0}^{x=2 \pi}+\frac{1}{n} \int_{0}^{2 \pi} \cos (n x) p^{\prime}(x) d x \right\rvert\, \\
& \leq \frac{2}{n}\|p\|_{\infty}+\frac{2 \pi}{n}\left\|p^{\prime}\right\|_{\infty}
\end{aligned}
$$

where we have used that p and p^{\prime} are continuous (and hence bounded) functions on $[0,2 \pi]$. Therefore, the right hand side above tends to zero as $n \rightarrow+\infty$. Now, triangle inequality implies

$$
\begin{aligned}
& \left|\int_{0}^{2 \pi} f_{n}(x) g(x) d x\right|=\left|\int_{0}^{2 \pi} f_{n}(x) p(x) d x\right|+\left|\int_{0}^{2 \pi} f_{n}(x)(g(x)-p(x)) d x\right| \\
& \quad \leq \frac{2}{n}\|p\|_{\infty}+\frac{2 \pi}{n}\left\|p^{\prime}\right\|_{\infty}+\int_{0}^{2 \pi}|\sin (n x) \| g(x)-p(x)| d x \\
& \leq \frac{2}{n}\|p\|_{\infty}+\frac{2 \pi}{n}\left\|p^{\prime}\right\|_{\infty}+\left\|f_{n}\right\|_{L^{2}}\|g-p\|_{L^{2}},
\end{aligned}
$$

where we have used Hoelder's inequality. Now, since $\left|f_{n}(x)\right| \leq 1$ for all $x \in$ $[0,2 \pi]$ and since $\|g-p\|_{L^{2}}<\varepsilon\left(1+(2 \pi)^{1 / 2}\right)$ we get

$$
\lim _{n \rightarrow+\infty}\left|\int_{0}^{2 \pi} f_{n}(x) g(x) d x\right| \leq \varepsilon(2 \pi)^{1 / 2}\left(1+(2 \pi)^{1 / 2}\right)
$$

and the latter quantity is arbitrarily small, which implies that the above limit equals zero.
(iv) State (without proof) the open mapping theorem.

Solution. Let X and Y be Banach spaces and let $T: X \rightarrow Y$ be a bounded, linear, and invertible operator. Then T^{-1} is bounded.
(2) (i) Let H be a Hilbert space.
(a) State and prove Cauchy-Schwarz inequality.

Solution. Cauchy-Schwarz inequality asserts that for all $x, y \in H$ one has $|(x, y)| \leq\|x\|\|y\|$. Proof: Let $x, y \in H$ and $\lambda, \mu \in \mathbb{C}$. Nonnegativity of the norm, linearity of the inner product with respect to the second component, and antisymmetry imply

$$
0 \leq(\lambda x-\mu y, \lambda x-\mu y)=|\lambda|^{2}\|x\|^{2}+|\mu|^{2}\|y\|^{2}-\bar{\mu} \lambda(y, x)-\bar{\lambda} \mu(x, y) .
$$

Now, write the inner product (x, y) in polar form, that is $(x, y)=r e^{i \phi}$, with $r=|(x, y)| \geq 0$ and $\phi \in[0,2 \pi)$. We choose $\lambda=\|y\| e^{i \phi}$ and $\mu=\|x\|$. We obtain

$$
0 \leq\|y\|^{2}\|x\|^{2}+\|x\|^{2}\|y\|^{2}-\|x\|\|y\| e^{i \phi}|(x, y)| e^{-i \phi}-\|y\| e^{-i \phi}\|x\| \|(x, y) \mid e^{i \phi}
$$

and the obvious cancellations of $e^{i \phi}$ with $e^{-i \phi}$ imply

$$
2\|x\|^{2}\|y\|^{2} \geq 2\|x\|\|y\| \|(x, y) \mid
$$

which implies the assertion upon further cancellations.
(b) State and prove the parallelogram rule.

Solution. The parallelogram rule reads $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$ for all $x, y \in H$. Proof: Let $x, y \in H$. By the elementary properties of the inner product we get

$$
\begin{aligned}
& \|x+y\|^{2}+\|x-y\|^{2}=(x+y, x+y)+(x-y, x-y) \\
& =\|x\|^{2}+\|y\|^{2}+(x, y)+(y, x)+\|x\|^{2}+\|y\|^{2}-(y, x)-(x, y) \\
& =2\|x\|^{2}+2\|y\|^{2} .
\end{aligned}
$$

(ii) Let H be a Hilbert space and let $M \subset H$ be a closed linear subspace of H.
(a) Define the orthogonal complement M^{\perp}.

Solution. The orthogonal complement is defined as

$$
M^{\perp}=\{x \in H:(x, y)=0 \text { for all } y \in M\} .
$$

(b) Given $x_{0} \in H \backslash M$, prove that there exists a point $y \in M$ such that

$$
\begin{equation*}
\left\|x_{0}-y\right\|=\min \left\{\left\|x_{0}-z\right\|: z \in M\right\} \tag{4}
\end{equation*}
$$

and that such a point y is unique.
Solution. Define $d=\inf _{y \in M}\left\|x_{0}-y\right\|$. We have that $d>0$ because x_{0} and M are closed and the pointy set $\left\{x_{0}\right\}$ is compact. By definition of inf there exists a minimizing sequence $y_{n} \in M$ such that

$$
d=\lim _{n \rightarrow+\infty}\left\|x_{0}-y_{n}\right\|
$$

and such that

$$
\left\|x_{0}-y_{n}\right\| \leq d+1 / n
$$

for all positive integers n. Our first goal is to prove that y_{n} is a Cauchy sequence. To prove that, we use the parallelogram rule with the two vectors $x_{0}-y_{n}$ and $x_{0}-y_{m}$ with distinct $n, m \in \mathbb{N}$. We get

$$
\begin{aligned}
& 2\left\|x_{0}-y_{n}\right\|^{2}+2\left\|x_{0}-y_{m}\right\|^{2} \\
& =\left\|2 x_{0}-\left(y_{n}+y_{m}\right)\right\|^{2}+\left\|y_{n}-y_{m}\right\|^{2}=4\left\|x_{0}-\left(y_{n}+y_{m}\right) / 2\right\|^{2}+\left\|y_{n}-y_{m}\right\|^{2} \\
& \geq 4 d^{2}+\left\|y_{n}-y_{m}\right\|^{2},
\end{aligned}
$$

where we have used that the vector $\left(y_{n}+y_{m}\right) / 2$ belongs to M, as M is a linear subspace. Using the defining property of y_{n} we get

$$
\begin{aligned}
& \left\|y_{n}-y_{m}\right\|^{2} \leq 2(d+1 / n)^{2}+2(d+1 / m)^{2}-4 d^{2} \\
& \quad=2 d^{2}+4 / n+2 / n^{2}+2 d^{2}+4 / m+2 / m^{2}-4 d^{2}=4 / n+2 / n^{2}+4 / m+2 / m^{2}
\end{aligned}
$$

Clearly, the latter quantity tends to zero as $n, m \rightarrow+\infty$, which shows that the quantity $\left\|y_{n}-y_{m}\right\|$ is arbitrarily small as $n, m \rightarrow+\infty$, which means that y_{n} is a Cauchy sequence. Now, since H is complete, y_{n} converges to some $y \in M$. Since the distance function is continuous we get

$$
\left\|x_{0}-y\right\|=\lim _{n \rightarrow+\infty}\left\|x_{0}-y_{n}\right\|=d
$$

which proves that the inf above is actually a minimum, and y is the point in M we were looking for. In order to prove uniqueness, assume there are two points $y_{1}, y_{2} \in M$ such that

$$
d=\left\|x_{0}-y_{1}\right\|=\left\|x_{0}-y_{2}\right\| .
$$

Parallelogram rule applied to the pair $x_{0}-y_{1}, x_{0}, y_{2}$ implies

$$
4 d^{2}=2\left\|x_{0}-y_{1}\right\|^{2}+2\left\|x_{0}-y_{2}\right\|^{2}=4\left\|x_{0}-\left(y_{1}+y_{2}\right) / 2\right\|^{2}+\left\|y_{1}-y_{2}\right\|^{2} \geq 4 d^{2}+\left\|y_{1}-y_{2}\right\|^{2}
$$

as $\left(y_{1}+y_{2}\right) / 2 \in M$. Therefore,

$$
\left\|y_{1}-y_{2}\right\|^{2} \leq 4 d^{2}-4 d^{2}=0
$$

which shows that $y_{1}=y_{2}$, hence the point of minimal distance $y \in M$ is unique.
(iii) Let H be a separable Hilbert space and let $\mathcal{U}=\left\{u_{n} \in H: n \in \mathbb{N}\right\}$ be a sequence.
(a) Say when \mathcal{U} is called an orthonormal sequence.

Solution. \mathcal{U} is called orthonormal sequence if $\left(u_{n}, u_{m}\right)=0$ for all $n \neq m$ and $\left\|u_{n}\right\|=1$ for all n.
(b) Let $x \in H$. Prove that

$$
\sum_{n \in \mathbb{N}}\left|\left(u_{n}, x\right)\right|^{2} \leq\|x\|^{2}
$$

Solution. Fix a positive integer N. Set $x_{N}=\sum_{k=1}^{N}\left(u_{k}, x\right) u_{k}$. The elementary properties of the inner product imply

$$
\begin{aligned}
0 & \leq\left(x-x_{N}, x-x_{N}\right)=(x, x)-\sum_{k=1}^{N}\left(u_{k}, x\right)\left(x, u_{k}\right)-\sum_{n=1}^{N} \overline{\left(u_{n}, x\right)}\left(u_{n}, x\right) \\
& +\sum_{k, n=1}^{N} \overline{\left(u_{k}, x\right)}\left(u_{n}, x\right)\left(u_{k}, u_{n}\right) .
\end{aligned}
$$

As \mathcal{U} is an orthonormal sequence, $\left(u_{k}, u_{n}\right)$ is nonzero only if $n=m$, and with some simple cancellations we get

$$
0 \leq\|x\|^{2}-\sum_{k=1}^{N}\left|\left(u_{n}, x\right)\right|^{2}
$$

Hence,

$$
\sum_{k=1}^{N}\left|\left(u_{n}, x\right)\right|^{2} \leq\|x\|^{2}
$$

This shows that the above sum is the partial sum of a convergent series. By letting N go to infinity we get the assertion.

