Functional Analysis in Applied Mathematics and Engineering:

First Mid term exam (model solution)

(1) (i) (a) Given a metric space (X, d) and an operator T': X — X, provide the definition
of contraction mapping. [1].
Solution. A map T : X — X is called contraction mapping if there exists a
constant ¢ € (0,1) such that d(T(x),T(y)) < cd(x,y).!

(b) Given a metric space (X, d) and an operator 7' : X — X, provide the definition
of fized point for the map T. [1].
Solution. A point z € X is a fixed point for T if T'(x) = x.

(c) State and prove the Contraction Mapping Theorem. [5].
Solution. Statement of the Theorem: If T': X — X is a contraction mapping
on a complete metric space (X, d), then T has exactly one fixed point.?
Proof of the Theorem: Let zg € X be any point in X. We define a sequence
(zp,) in X by

Tny1 = T(zp), for n > 0.

We show that (z,,) is a Cauchy sequence.® If n > m > 1, since T is a

contraction with constant ¢, using the triangle inequality we get

d(Tpy X)) = d(T" 20, T™ x0)
< A"A(T" Mg, 20)

<" [d(T”_mxo, T " o) + ... + d(Txo, :co)]
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1Many students gave the definition of contraction mapping with ¢ € R

2Many students did not write the hypothesis that X has to be a complete metric space

3Many students did not understand in the proof one has to construct a Cauchy sequence



which implies that (x,) is a Cauchy sequence since ¢ < 1. Since X is complete,

(x,) converges to a limit = € X. By continuity of 7', we get

Tx = T< lim l‘n> = lim Tz,= lim z,4+1 ==,
n—-+oo

n—-+oo n—-+o0o

which shows that x is a fixed point. Finally, let x,y € X be two fixed points,
then

0<d(z,y) =d(Tx,Ty) < cd(z,y).

Since ¢ < 1, we have d(z,y) = 0, so x = y and the fixed point is unique.

(ii)  (a) Given a family F of functions from a metric space space (X, dy) and (Y, dy),
provide the definition of equicontinuity. [1].
Solution. The family F is said equicontinuous if for all € > 0 thereisa § > 0
such that if dx(z,y) < 6 then dy (f(z), f(y)) < e for all f € F.A

(b) State (without proof) the Ascoli-Arzeld Theorem. [2].
Solution. Let F be a family of continuous functions on a compact metric
space K. Then, F is compact if and only if F is equicontinuous and bounded.®

(iii) For any n € N, let f, : [0,00) — R be the sequence of functions defined by

nx
o) = T
(a) Show that f, — 0 pointwise in [0, 00). [2].

Solution. If z = 0 then f,(0) =0 for all n € N. If z # 0, then

as n — +o0o.
(b) Is {fn}n uniformly convergent on [0, 00)? Justify your answer in detail. [3].
Solution. The uniform convergence of f, to 0 on [0,400) would hold, by

definition, if
[ fnlloc = sup | fu(z)] — 0
x>0

as n — +oo. To compute the supremum of f,, on [0, +00), differentiate fy,:

n(l — n2x?

2.2 3
(n(1+ n%z?) — 2n32?) = (T

fa(z) = 0+ n222)?

4Many students wrote the definition of equi-continuity for a single function

5Many students did the mistake to state that all the space of continuous functions is compact if and only it is

bounded, closed and equi-continuous. This statement is of course false!



and the only stationary point of f, on [0,400) is x, = 1/n. Such a point is

a maximum point. On z,, f, achieves the value

fa(zn) = fa(l/n) =1/2,

and this proves
1
1 alloc = sup | fu(2)] = 3,
x>0

hence f,, cannot converge to zero uniformly on [0, +00).

(2) (i) Given a measurable function f : R? — [0,+oc], provide the definition of the
Lebesgue integral of f. 2]
Solution. The Lebesgue integral of f is defined by®

/fdx:sup{/qﬁdxz 0§¢§f,¢simple}.

(ii) (a) State (without proof) Fatou’s lemma. 2]
Solution. Let f,, : R — R be a sequence of nonnegative measurable func-

tions. Then,”

/ <171g1+ugg fn($)> dr < léglirolg/fn(x)dﬂf-
(b) Find a sequence f, : R — [0,+00) for which the strict inequality holds in
Fatou’s lemma. 3]

Solution. An example is f,(z) = 1{, 41)- Indeed, for all x € R one has that

fn(z) = 0 for all n > x, which implies that f,(z) — 0 pointwise as n — +00.%
Hence

/ (Eglilgof fn($)> dx = /de =0.
Moreover,

/fn(x)dx = /nnH ldz =1

6Many students here provided other definitions, such f € LP, f measurable; some others also provided the

definition of integral of a sign changing function, which was not required.

"The assumption f nonnegative is crucial, otherwise the statement is not true in general, see the counter
example f, = —1/n discussed in class.

80ther examples could be provided such as f.(x) = nljg,1/n)(), leading to a similar outcome. In any case,
the convergence of f, to zero almost everywhere must be proven! I removed fractions of points in some cases in

which this property was stated but not proven.



(iii)

for all n € N. Hence,

liminf/fn(a:)d:c =1>0.

n—-4o00

Let f,g € LP(R?%) with p € (1, +00). Prove the Hélder inequality

1 gl < 11Fllp lgller

with p’ such that % + z% =1 [5]

Solution. The statement is trivial if either f or g are zero almost everywhere.

Otherwise, we clearly have || f||z» > 0 and ||g||z« > 0. For a fixed @ > 0 we have

@) = |72 gt < 1| 12

+ 2 lagla)l”
where we have used Young’s inequality. By integrating the above inequality on R?
we get

I9lliae < o1y + 0ol

We now choose « such that the two terms on the above right hand side are equal,

namely
1
_ IfIEe
= Lz
191l Za
which yields
1 ||g|lLa L LI
1f9llLr(m) < [rali® 191174,

P\ f|e mw”

and the definition of p and ¢ implies the last term above equals || f|»||g|| -

Let p € [1,+00) and a € R. Prove that the function

sin(|])

flzy=14
0 if |x| > 1,

if |[z] <1

is in LP(RY) for a < %. [3].

Solution. Compute

: p
/ \f(a )|pda:—/ de
(al<1y  lz[*P

sin z [P
/ d— 1/ | o | drdo,
{jz)=r} T

9Some students opted for an alternative procedure in which the functions are normalized in L? and L? respec-

tively, and the proof actually works much faster. Clearly, such alternative procedure (without mistakes) was still

implying the 5 points.



where we have used polar coordinates. Here Cj; is a suitable positive constant
depending on the dimension d. Now, the above integrand is possibly singular at
r =0, and is continuous at any other point r € (0,1]. By Taylor expanding the sin

function near 0 we get sinx = x + o(|x|). This implies, near x = 0,

4 |sinzP ST
7,d 1 | | ~ T‘d 1+p ap.
rop

Now,

d+p—ap|r=1
r =<

1 1
1
/ rd= PPy — Jim [ pdiPePgr = —
0 e—0 J, d—+ p—ap

which equals m(l — gd*P=aP) "and the limit of this quantity as € — 0 is finite

d+p 10

if d+ p — ap > 0, which is equivalent to a < >

10N one completed this proof correctly. I still gave some points for those who got a condition by estimating

the sin term by 1 in absolute value



