Functional Analysis in Applied Mathematics and Engineering:
Third Mid term exam - 12/01/2018

FuLL NAME:

MATRICOLA:

(1) (i) Let (H, (-,-)) be a Hilbert space.
(a) Let z € H and let ¢ : H — C be defined by

e(y) = (z,9).

Prove that ¢ € H* and compute ||o]| m+. 2]
Solution. If x = 0 there is nothing to prove. Otherwise, in order to prove that
© € H* we need to prove that it is a linear and bounded functional. Linearity
follows from the properties of the scalar product, while for the boundedness
we argue as follows:

Let y € H, then by using Cauchy-Schwarz inequality we get

o)l = [, y)l < llzllyll,

then ¢ is bounded. To compute the norm we recall that

lollg- = sup 2
yEH,y#0 HyH

then by choosing y = z it easily follows that ||¢|| g+ = ||z||.
(b) State (without proof) Riesz’ representation Theorem. 2]
Solution. If ¢ is a bounded linear functional on a Hilbert space H, then there

is a unique vector y € H such that
o(z) = (y,x) foral x € H.

(ii) Let A be a bounded linear operator on the Hilbert space H.
(a) State the property that defines the adjoint operator A*. 2]
Solution. The defining property of the adjoint A* € B(H) of an operator
A e M(H) is that

(x, Ay) = (A*z,y) for all z,y € H.



(b) Prove that A* is well defined and is a bounded operator. 2]
Solution. To prove that A* exists and is uniquely defined, we have to show
that for every x € H, there is a unique vector z € H, depending linearly on

x, such that
(z,y) = (x, Ay) for all x,y € H.

For fixed «, the map ¢, defined by

ex(y) = (z, Ay)

is a bounded linear functional on H, with |pz| < ||Al|[|z||. By the Riesz
representation theorem, there is a unique z € H such that ¢,(y) = (z,v).
This z satisfies the required property, so we set A*x = z.

We need to prove then that A* is a bounded linear operator. The linearity of

A* is left as an exercise. Regarding the boundedness, we have that

|A*z|| =  sup [(A%z,y)|= sup |(z, Ay)|
yeH, |yl <1 yeH |yl <1

< sup |lz[|Ay|l
yeH, |yl <1
< [|A][||z|.

Then, A* is a bounded linear operator.
(c) Prove that ranA = (kerA*)+. 4]
Solution. See the proof of Theorem 7.18 of the Lecture Notes.
(iii) State (without proof) Banach-Alaoglu’s theorem. 2]

Solution. The closed unit ball of a Hilbert space is weakly compact.

(2) (i) Let A be a bounded linear operator on the Hilbert space H.

(a) Define the resolvent set and the spectrum of A. [1]
Solution. The resolvent set of A, denoted by p(A), is the set of complex
numbers A such that A — Al is invertible. The spectrum of A is the set
o(4) = C\ p(A).

(b) Define the point spectrum, the continuous spectrum, and the residual spec-
trum of A. 1]
Solution. The point spectrum of A is the set of complex numbers A such that
A — Ml is not 1: 1. The continuous spectrum is the set of complex numbers

A such that A — Alis 1: 1 but not onto and Ran(A — All) is dense in H. The



residual spectrum is the set of complex numbers A\ such that A — Al'is 1:1
but not onto and ran(A — Al) is not dense in H.

Prove that if A belongs to the residual spectrum of A then \ is an eigenvalue
of A*. 2]
Solution. Let X be in the residual spectrum of A. Then ran(A — Al) is not
dense in H. Hence, m C H is a proper, closed linear subspace
of H. By the orthogonal projection theorem, there exists z # 0 such that
zeran(A )
implies that z € ker(A* — All). Since z # 0 this shows that A* — Al is not 1 : 1,

. Since Al is the adjoint of AI, the result in exercise 1-(ii)-(c)

and therefore X is an eigenvalue of A*.

(ii) Let H = L*([0,1]) and M : H — H defined by

(a)

(Mf)(x) =zf(x),  xel0,1].

Prove that M has no eigenvalues. 2]
Solution. Let A € C be an eigenvalue for M. Then, there exists f € L2([0,1]),
f not equal to zero almost everywhere, such that M f = Af. By definition of

M this means
(x=N)f(x)=0 almost everywhere on [0, 1].

Since f is not equal to zero almost everywhere, the latter implies that (z—\) =
0 for almost every = € [0,1], which is a contradiction (independently on
whether or not A belongs to [0, 1]!). Hence, M has not eigenvalues.

Prove that o(M) = [0, 1]. 3]
Solution. Since M has no eigenvalues, the only possibility for A € C to be

an element of the spectrum is that the equation
(M-=AD)f=g

has no solution f € L2([0,1]) for some g € L?([0,1]). Formally, the only

possible candidate solution is given by

_ g(z)
fla) ="

Now, if A € [0, 1]° then the function —L is uniformly bounded on [0, 1] because

|z — A| > ¢ for some positive constant c. Hence

1 2—171 wlelew
| ir@pas = [ ——gle@pds < < [ o



and the latter term is finite in view of g € L2, This proves that [0, 1] C p(M)
or equivalently o(M) C [0,1]. On the other hand, if A € [0,1] then the are
examples of g € L? such that the above f is not in L?, for example take g = 1.

We get in this case f(z) = —L5 which is clearly not in L?([0, 1]) because

1 1
1
f(2)[2da = / S
/0 o (x—=A)?
(iii) Let H = ¢*(N) and let S : H — H be the left-shift operator
(Tz)p = Tnyr, k=1,2,3,... z = (zp); 5.

Consequently, [0,1] C o(M).

(a) Prove that ||T']] < 1. 1]
Solution.
+00 +o00 +o00 +00
Tzl =Y (Te)n =) ap = en<) zp=lllp,
n=1 n=1 n=2 n=1
therefore ||T'|| = SUP|z| <1 Tz < 1.
(b) Let A € (—1,1). Prove that A is an eigenvalue of T 3]
Solution.
(c) Prove that o(T) = [-1,1]. 1]

Solution.



