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(1) (i) Let (H, (·, ·)) be a Hilbert space.

(a) Let x ∈ H and let ϕ : H → C be defined by

ϕ(y) = (x, y).

Prove that ϕ ∈ H∗ and compute ‖ϕ‖H∗ . [2]

Solution. If x = 0 there is nothing to prove. Otherwise, in order to prove that

ϕ ∈ H∗ we need to prove that it is a linear and bounded functional. Linearity

follows from the properties of the scalar product, while for the boundedness

we argue as follows:

Let y ∈ H, then by using Cauchy-Schwarz inequality we get

|ϕ(y)| = |(x, y)| ≤ ‖x‖‖y‖,

then ϕ is bounded. To compute the norm we recall that

‖ϕ‖H∗ = sup
y∈H,y 6=0

|ϕ(y)|

‖y‖
,

then by choosing y = x it easily follows that ‖ϕ‖H∗ = ‖x‖.

(b) State (without proof) Riesz’ representation Theorem. [2]

Solution. If ϕ is a bounded linear functional on a Hilbert space H, then there

is a unique vector y ∈ H such that

ϕ(x) = 〈y, x〉 for al x ∈ H.

(ii) Let A be a bounded linear operator on the Hilbert space H.

(a) State the property that defines the adjoint operator A∗. [2]

Solution. The defining property of the adjoint A∗ ∈ B(H) of an operator

A ∈ M(H) is that

〈x,Ay〉 = 〈A∗x, y〉 for all x, y ∈ H.



(b) Prove that A∗ is well defined and is a bounded operator. [2]

Solution. To prove that A∗ exists and is uniquely defined, we have to show

that for every x ∈ H, there is a unique vector z ∈ H, depending linearly on

x, such that

〈z, y〉 = 〈x,Ay〉 for all x, y ∈ H.

For fixed x, the map ϕx defined by

ϕx(y) = 〈x,Ay〉

is a bounded linear functional on H, with ‖ϕx‖ ≤ ‖A‖‖x‖. By the Riesz

representation theorem, there is a unique z ∈ H such that ϕx(y) = 〈z, y〉.

This z satisfies the required property, so we set A∗x = z.

We need to prove then that A∗ is a bounded linear operator. The linearity of

A∗ is left as an exercise. Regarding the boundedness, we have that

‖A∗x‖ = sup
y∈H,‖y‖≤1

|(A∗x, y)| = sup
y∈H,‖y‖≤1

|(x,Ay)|

≤ sup
y∈H,‖y‖≤1

‖x‖‖Ay‖

≤ ‖A‖‖x‖.

Then, A∗ is a bounded linear operator.

(c) Prove that ranA = (kerA∗)⊥. [4]

Solution. See the proof of Theorem 7.18 of the Lecture Notes.

(iii) State (without proof) Banach-Alaoglu’s theorem. [2]

Solution. The closed unit ball of a Hilbert space is weakly compact.

(2) (i) Let A be a bounded linear operator on the Hilbert space H.

(a) Define the resolvent set and the spectrum of A. [1]

Solution. The resolvent set of A, denoted by ρ(A), is the set of complex

numbers λ such that A − λI is invertible. The spectrum of A is the set

σ(A) = C \ ρ(A).

(b) Define the point spectrum, the continuous spectrum, and the residual spec-

trum of A. [1]

Solution. The point spectrum of A is the set of complex numbers λ such that

A − λI is not 1 : 1. The continuous spectrum is the set of complex numbers

λ such that A− λI is 1 : 1 but not onto and Ran(A− λI) is dense in H. The



residual spectrum is the set of complex numbers λ such that A − λI is 1 : 1

but not onto and ran(A− λI) is not dense in H.

(c) Prove that if λ belongs to the residual spectrum of A then λ̄ is an eigenvalue

of A∗. [2]

Solution. Let λ be in the residual spectrum of A. Then ran(A − λI) is not

dense in H. Hence, ran(A− λI) ( H is a proper, closed linear subspace

of H. By the orthogonal projection theorem, there exists z 6= 0 such that

z ∈ ran(A− λI)
⊥
. Since λI is the adjoint of λI, the result in exercise 1-(ii)-(c)

implies that z ∈ ker(A∗−λI). Since z 6= 0 this shows that A∗−λI is not 1 : 1,

and therefore λ is an eigenvalue of A∗.

(ii) Let H = L2([0, 1]) and M : H → H defined by

(Mf)(x) = xf(x) , x ∈ [0, 1].

(a) Prove that M has no eigenvalues. [2]

Solution. Let λ ∈ C be an eigenvalue forM . Then, there exists f ∈ L2([0, 1]),

f not equal to zero almost everywhere, such that Mf = λf . By definition of

M this means

(x− λ)f(x) = 0 almost everywhere on [0, 1].

Since f is not equal to zero almost everywhere, the latter implies that (x−λ) =

0 for almost every x ∈ [0, 1], which is a contradiction (independently on

whether or not λ belongs to [0, 1]!). Hence, M has not eigenvalues.

(b) Prove that σ(M) = [0, 1]. [3]

Solution. Since M has no eigenvalues, the only possibility for λ ∈ C to be

an element of the spectrum is that the equation

(M − λI)f = g

has no solution f ∈ L2([0, 1]) for some g ∈ L2([0, 1]). Formally, the only

possible candidate solution is given by

f(x) =
g(x)

x− λ
.

Now, if λ ∈ [0, 1]c then the function 1

x−λ
is uniformly bounded on [0, 1] because

|x− λ| ≥ c for some positive constant c. Hence
∫

1

0

|f(x)|2dx =

∫
1

0

1

(x− λ)2
|g(x)|2dx ≤

1

c

∫
1

0

|g(x)|2dx



and the latter term is finite in view of g ∈ L2. This proves that [0, 1]c ⊂ ρ(M)

or equivalently σ(M) ⊂ [0, 1]. On the other hand, if λ ∈ [0, 1] then the are

examples of g ∈ L2 such that the above f is not in L2, for example take g ≡ 1.

We get in this case f(x) = 1

x−λ
which is clearly not in L2([0, 1]) because

∫
1

0

|f(x)|2dx =

∫
1

0

1

(x− λ)2
dx = +∞.

(iii) Let H = ℓ2(N) and let S : H → H be the left-shift operator

(Tx)n = xn+1, k = 1, 2, 3, . . . x = (xk)
+∞
k=1

.

Consequently, [0, 1] ⊂ σ(M).

(a) Prove that ‖T‖ ≤ 1. [1]

Solution.

‖Tx‖2ℓ2 =

+∞∑
n=1

(Tx)2n =

+∞∑
n=1

x2n+1 =

+∞∑
n=2

x2n ≤

+∞∑
n=1

x2n = ‖x‖2ℓ2 ,

therefore ‖T‖ = sup‖x‖
ℓ2
≤1 ‖Tx‖ℓ2 ≤ 1.

(b) Let λ ∈ (−1, 1). Prove that λ is an eigenvalue of T . [3]

Solution.

(c) Prove that σ(T ) = [−1, 1]. [1]

Solution.


