Functional Analysis in Applied Mathematics and Engineering: Model Mid term exam

- (1) (i) Let X be a set and $d: X \times X \to \mathbb{R}$. Say when d is called a *distance* on X. [2]
 - (ii) Let Y be a finite set, let $k \in \mathbb{N}$, and

$$X = Y^{k} = \{x = (x_{1}, \dots, x_{k}) : x_{i} \in Y \text{ for all } i = 1, \dots, k\}.$$

Set $d: X \times X \to \mathbb{N}$ as $d(x, y) = \#(\{j \in \{1, \dots, k\} : x_j \neq y_j\})$. Prove that d is a distance on X. [4]

- (iii) Let $(X, \|\cdot\|)$ be a Banach space and let $B \subset X$ be a closed subset. Prove that B is a complete metric space with the induced distance $d(x, y) = \|x - y\|$. [3]
- (iv) Let C be a subset of a metric space.
 - (a) Say when C is called a sequentially compact set. [1]
 - (b) Say when C is called a totally bounded set. [1]
 - (c) Prove that every sequentially compact set is totally bounded. [3]
- (i) Let X = C([0,1]) be the linear space of continuous functions f : [0,1] → R and let f_n be a sequence in X.
 - (a) Say when f_n is said to converge *pointwise* to f. [1]
 - (b) Say when f_n is said to converge *uniformly* to f. [1]
 - (c) Prove that if f_n converges uniformly to f then it converges pointwise to f. [1]

[2]

[2]

[1]

- (ii) State (without proof) Arzelá-Ascoli's Theorem.
- (iii) Let X = C([a, b]) be the space of continuous functions $f : [a, b] \to \mathbb{R}$ equipped with the infinity norm $\|\cdot\|_{\infty}$. Let $B = \{f \in X : f \text{ is strictly increasing on } [a, b]\}$. Answer the following questions by proving all your statements.
 - (a) Prove that B is not closed. [2]
 - (b) Find the set \overline{B} .
 - (c) Is B dense in X?
- (iv) Let $f_n : [-2,3] \to \mathbb{R}$ be the sequence defined by

$$f_n(x) = \frac{nx^2}{5 + n^4 x^4}$$

Answer the following questions by proving all your statements.

- (a) Does f_n converge pointwise to some $f \in C([-2,3])$? [2]
- (b) Does f_n converge to f uniformly? [2]