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Motivation

Many physical, chemical and biological processes are driven by diffusion and
reactions, representing instantaneous interactions between particles. Typical
examples are chemical kinetics, population dynamics, flame propagation and
combustion, movement of biological cells in plants and animals, and charge
carrier transport in semiconductors.

A significant variant to many of these situations is given by the presence of
a heterogeneous enviroment.



Basic modeling

Let U = U(x, t) ∈ RN denote the concentration vector describing N
interacting species, where x ∈ Rn denotes the position variable and t > 0
time. Then, the diffusion part of the motion is described by

Ut = div(D∇U),

where D = D(x, t, U) is a positive definite, symmetric diffusion matrix, in
general depending on position x, time t, and on the concentration vector U
itself.

Given a reaction process in terms of a ‘local’ dynamical system of the form
Ut = F (x, t, U), then the interaction of both reaction and diffusion leads to

Ut = div(D(x, t, U)∇U) + F (x, t, U).



Classical literature

Reaction–diffusion systems are a classical topic, going (at least) back to the
pivotal works of e.g. Fisher and Kolmogorov et al.

Vast literature: see the textbooks by Smoller, Rothe, Amann, and the
references therein for existence of solutions and their global boundedness,
stability and asymptotics, traveling waves, geometry and topology of
attracting sets and singular limits.

Stability vs. instability: in 1952, A. M. Turing first pointed out diffusion–
induced instability of stable homogeneous reaction systems in chemistry.
The classical mathematical analysis of the long–time asymptotic behavior
involves linearized stability techniques, spectral theory, perturbation and
invariant regions arguments, and Lyapunov stability.



Entropy method

Our approach is different and motivated by the recent great progress in
the understanding of long–time asymptotics of scalar linear and nonlinear
diffusion and diffusion–convection equations due to the so called entropy
approach. Literature:

• Arnold, Markowich, Toscani, Unterreiter 2000 – 2001

• Markowich, Villani 2001

• Carrillo, Toscani 2000

• Carrillo, Juengel, Markowich, Toscani, Unterreiter 2001



Basic ideas:

• A functional inequality relation between an entropy functional of a system
and its monotone change in time, usually called the entropy dissipation.

• Such an entropy–entropy dissipation inequality entails convergence to an
entropy minimizing equilibrium state, at first in entropy and further in
L1 using Cziszár-Kullback-Pinsker type inequalities (cf. Otto, Carrillo et
al., Markowich et al.)

Advantages:

• It’s a nonlinear method avoiding any kind of linearization and capable of
providing explicitly computable convergence rates.

• Being based on functional inequalities rather than particular differential
equations, it has the advantage of being quite robust with respect to
model variations.

• It does not require any restriction on the space dimension.



Previous results

Related to the context of this paper, the entropy approach has already
been applied to semiconductor drift–diffusion–Poisson systems (Arnold et
al.), or to drift–diffusion–reaction–Poisson systems on bounded domains in
R2 (Glitzki et al.) but with the drawback of a proof based on an indirect
contradiction argument without control on the rates and constants. We also
mention a paper by Degond – Genieys – Juengel dealing with general cross–
diffusion systems. It was first in the works by Desvillettes and Fellner that
explicit exponential convergence to equilibrium has been shown via entropy
methods for nonlinear reaction–diffusion systems modeling reversible mass
action kinetics of two, three, and four species. A general framework
for reaction–diffusion systems however (long–time asymptotic convergence,
convergence rates, etc.) is still lacking.



Simple examples

In order to demonstrate the entropy approach we consider the simple
problem {

ut = ∆u, u(t = 0, x) = uI(x), x ∈ Ω
n(x) · ∇u(x, t) = 0. x ∈ ∂Ω

All constants are stationary states and the equilibrium state is determined
by the conservation of the initial mass:

u(t) :=
1
|Ω|

∫
Ω

u(x, t) dx =
1
|Ω)|

∫
Ω

uI(x) dx =: uI for all t > 0.



A simple computation gives

d

dt

∫
Ω

(u− u)2 dx = −2
∫

Ω

|∇u|2 dx ≤ − 2
D2

Ω

∫
Ω

(u− u)2 dx ,

where we have used the H1(Ω)–Poincaré inequality with constant 1/D2
Ω,

which is the spectral gap of the homogeneous Neumann–Laplace operator.
Hence, after integration in time we obtain the sharp decay estimate:∫

Ω

(u(x, t)− uI)2 dx ≤ exp
(
− 2
D2

Ω

t

)∫
Ω

(uI − uI)2(x) dx.



Let us add now a linear absorption term with a constant rate:{
ut = ∆u− λu, u(t = 0, x) = uI(x), x ∈ Ω
n(x) · ∇u(x, t) = 0. x ∈ ∂Ω

Clearly, this shifts the spectrum and convergence to the unique equilibrium
state u∞ = 0 (u is no more conserved) follows from the sharp estimate:∫

Ω

u(x, t)2 dx ≤ exp(−2λt)
∫

Ω

uI(x)2 dx.



Thus, even in this most simplistic scalar example equation, diffusion and
stable reaction do not ‘cooperate’ in the rate of decay to equilibrium
(since constant states are not affected by diffusion). Nevertheless, full
asymptotic cooperation between diffusion and stable reaction is observed
for the intermediate asymptotic state u(t):∫

Ω

(u(x, t)− u(t))2
dx ≤ exp

(
−2
(
λ+

1
D2

Ω

)
t

)∫
Ω

(uI(x)− uI)2
dx



Remarks:

• Linear systems combining ‘purely diffusive’ modes obeying conservation
laws with ‘diffusive–reactive’ modes are particular interesting as far as
(non)cooperation of reaction and diffusion effects on the convergence
rates are concerned.

• An explicitly computable 2 × 2 system with constant coefficients
demonstrates the complicated system related interaction effects of
diffusion and reaction. Such systems are typical in many physical
and biological applications.

Our aim is to start developing a framework for the quantitative analysis of
the large–time asymptotics of stable reaction–diffusion–convection systems
based on the entropy approach. For systems on the whole space with
confinement, the present paper provides the first attempt in this generality.



Outline

1. First we outline the presented approach in the clearest possible way,
namely for systems posed on bounded domains with constant equilibrium
states. We prove their exponential stability.

2. Then we turn to the analysis of whole–space systems with confinement in
each component. In the general case of N species we prove exponential
stability of constant equilibria under a quite elaborated set of assumptions.

3. A refined convergence result for a linearized 2 × 2 drift–diffusion–
recombination system with confining potentials is also shown, under
a lighter (and more physically reasonable) set of assumptions.

4. For a nonlinear 2 × 2 drift–diffusion–recombination system we show
exponential convergence towards the inhomogeneous equilibria.



Linear systems on bounded domains
with constant equilibria

We consider linear systems in the symmetrized form

∂t(SU) = div(D̃(x)∇U) + R̃(x)U, x ∈ Ω ⊂ Rn, U = U(x, t) ∈ RN
(1)

We further prescribe the initial datum

U(x, 0) = U0(x), (2)

and assume zero-flux boundary conditions

(D̃(x)∇U(x))·ν(x) = 0 on ∂Ω. (3)



Structural assumptions:

(A1) The matrix S ∈ RN×N is constant, symmetric and strictly positive
definite. More precisely, there exists a constant s > 0 such that
Sξ · ξ ≥ s|ξ|2 for all ξ ∈ RN .

(A2) The matrix D̃(x) is symmetric with eigenvalues (0, . . . , 0, µd+1(x), . . . , µN(x))
for an integer d < N and 0 < µ ≤ µj(x) for all j ∈ {d + 1, . . . , N}.
Moreover, D̃(x) has a constant eigenvector othonormed matrix F .

(A3) The matrix R̃(x) is symmetric with eigenvalues (0, . . . , 0, λc+1(x), . . . , λN(x))
for an integer 1 ≤ c < N and λj(x) ≤ −r < 0 for all j ∈ {c+1, . . . , N}.
Moreover, R̃(x) admits a constant orthogonal eigenvector matrix E.

(A4) The following Kawashima–type condition holds

KerD̃(x) ∩KerR̃(x) = {0} for all x ∈ Ω. (4)



Example 1: Semiconductor devices with trapped state.

Let us consider the system
∂tn−∆n = Ccntr − Can(Ntr − ntr) =: Rn
∂tp−∆p = Cd(Ntr − ntr)− Cb p ntr =: Rp
∂tntr = Rp −Rn

(5)

modeling transport and diffusion of charged particles in a semiconductor
device combined with a recombination–generation mechanism called band–
trap capture and emission (due to the presence of impurities, see the book
by Markowich–Ringhofer–Schmeiser). For simplicity, we have neglected the
effect of the self–consistent potential, therefore coupling occurs only due to
the recombination–generation terms.



The equilibrium vectors (n∞, p∞, n∞tr ) satisfy

n∞p∞ =
CcCd
CaCb

, n∞tr = Ntr
Can

∞ + Cd
Can∞ + Cc + Cbp∞ + Cd

< Ntr,

whereas the uniqueness of the equilibrium state is achieved by imposing

|Ω|(n∞ − p∞ + n∞tr ) = M.

The linearization of system (5) around the unique equilibrium state gives
the linear system

Ut −∆(DU) = R (6)

where

D =
[
I2 0
0 0

]
, R =

 Ca(n∞tr −Ntr) 0 Cc + Can
∞

0 −Cbn∞tr −Cd − Cbp∞
−Ca(n∞tr −Ntr) −Cbn∞tr −Cd − Cbp∞ − Cc − Can∞

 .



A symmetrizer forR is the diagonal matrix S = diag
(

1
n∞,

1
p∞,

1
n∞

(
1 + Cd

p∞Cb

))
and the symmetrized reaction matrix reads

R̃ = SR =


Ca
n∞(n∞tr −Ntr) 0 Cc

n∞ + Ca

0 −Cbn
∞
tr

p∞ −Cb − Cd
p∞

Cc
n∞ + Ca −Cb − Cd

p∞ −Ntr(Can∞ + Cd)
Cd+Cbp

∞

Cbp
∞

 .
The matrix R̃ has the only 0–eigenvector E1 := (n∞, p∞, CcCd

Ca(p∞Cb+Cd)
),

which implies that the assumptions above are satisfied. An elementary but
tedious calculations shows that the two remaining eigenvalues λ2 and λ3 of
R̃ are both negative. Therefore, the symmetrized form of the linear system
(6) satisfies all assumptions (A1)–(A4).



Example 2: Reaction–diffusion system with four species

We consider a diffusive and reversible chemical reaction of the type A1 +
A3 
 A2 + A4 on a bounded domain Ω ⊂ Rn. Denote by ai(x, t),
i = 1, . . . , 4 the concentration of the four reacting species A1, . . . ,A4 and
by di > 0, i = 1, . . . , 4 their respective diffusivity constants. Assuming
mass action kinetics for the reactions, we obtain the system

∂tai = di∆ai + (−1)i(a1a3 − a2a4),

where we have rescaled – without loss of generality – the reaction rates to
one.



The stationary states (a∞1 , . . . , a
∞
4 ) consists of the unique set of positive

constants, which balance the reaction, i.e. a∞1 a
∞
3 = a∞2 a

∞
4 , and satisfy the

conservation laws of the systems. Linearization around those states produces
the linearized reaction matrix R and the associated diagonal symmetrizer
matrix S

R :=


−a∞3 a∞4 −a∞1 a∞2
a∞3 −a∞4 a∞1 −a∞2
−a∞3 a∞4 −a∞1 a∞2
a∞3 −a∞4 a∞1 −a∞2

 , S := diag
(

1
a∞1

, . . . ,
1
a∞4

)
.

It is easy to check that all assumptions (A1)–(A4) are satisfied in this case.



Stationary states and their exponential stability

Lemma 1. [Conserved quantities] Let U(x, t) be a classical solution to
system (1). Then, for every j ∈ {1, . . . , c}, the quantity

lj :=
∫

Ω

EjSU(x, t)dx (7)

is conserved for all times t ≥ 0.

Proposition 1. [Stationary solutions] For every fixed set of quantities
l1, . . . , lc, there exists a unique (constant) stationary solution U∞ to (1)
such that

lj := |Ω|EjSU∞ (8)

for all j ∈ {1, . . . , c}.



Two facts justify symmetrization as a suitable method:

• In case R and D and S be constant matrices, then, the functional
defined in (10) is a Lyapunov functional for our linear system if and only
if SD +DS and −(SR+RTS) are nonnegative definite.

• In case of absence of symmetry of R, one can easily construct examples
of D producing Turing instabilities.

We introduce the normal modes vector variable

V (x, t) := EU(x, t) (9)

and the following energy functional

E [U ] :=
1
2

∫
Ω

U(x)TS U(x)dx. (10)



Theorem 1. [Exponential convergence towards constant equilibrium states]
Let U(x, t) be a classical solution to (1) with initial datum U0(x) ∈ L2(Ω)
satisfying

lj :=
∫

Ω

EjSU0(x)dx (11)

for some given l1, . . . , lc ∈ R. Then, for all times t ≥ 0 the following
estimate holds

E [U(t)− U∞] ≤ E [U(0)− U∞] exp
(
−
(

Kr

s(K + L)
− δ
)
t

)
, (12)

where K :=
µ CF
CP (Ω) and CP (Ω) is the optimal constant in Poincaré inequality

on the domain Ω, L and CF are constants depending on the matrices E
and F respectively, the constant s, µ and r are defined in the assumptions
(A1)–(A3) and δ is an arbitrary positive small constant, 0 < δ � 1. In
particular, U(t)→ U∞ exponentially fast in L2 as t→ +∞.



Confined linear systems on Rn with integrable equilibria

We consider now

∂tU = div (D(x)∇(S(x)U)) +R(x)U, (13)

with U = U(x, t) ∈ RN , d ≥ 1, t ≥ 0, x ∈ Rn. We prescribe the
initial datum U(x, 0) = U0(x). System (13) generalizes a model of N
reacting–diffusing species convected by N external potentials.

We develop:

1. a general theory for N ×N systems including an exponential asymptotic
stability result;

2. an improved result on the 2 × 2 case, obtained under less restrictive
assumptions.



Structural assumptions:

(B1) Essentially convex and diagonal confinement: The confinement matrix
is of the form S(x) = diag(s1(x), . . . , sN(x)) and such that there exist
two functions s, s > 0 and a constant K > 0 such that s−1 ∈ L1

+(RN)
and, for all j’s,

s(x) ≤ sj(x) ≤ s(x), s(x) ≤ Ks(x). (14)

Moreover, we shall assume that the functions Rn 3 x 7→ log sj(x) are
L∞ perturbations of uniformly convex functions for all j = 1, . . . , N .

(B2) Positive definite diffusion matrix: The diffusion matrix D(x) is symmetric
and positive definite. Moreover, the following inequality is satisfied for a
certain positive constant d0

ξTD(x)ξ ≥ d0ξ
TS−1(x)ξ, for all ξ ∈ RN . (15)



(B3) Confinement compatible reaction matrix: The confinement matrix S(x)
is a symmetrizer for the reaction matrix R(x), i. e.

R̃(x) := S(x)R(x) is symmetric.

Moreover, the symmetrized reaction matrix R̃(x) has eigenvalues

λ1(x), . . . , λN(x)

satisfying λ1(x) ≡ . . . ≡ λd(x) ≡ 0, λj(x) ≤ 0 for all j ∈ {d+ 1, . . . , N}
and there exists two positive constant C1 and C2 such that

C1sj(x) ≤ −λj(x) ≤ C2sj(x), (16)

for all x ∈ RN and for all j ∈ {d+ 1, . . . , N}.



(B4) Bounded eigenvector matrix E of the reaction matrix R̃: The orthogonal

eigenvector matrix E(x) of R̃(x) satisfies

E(x)R̃(x)E(x)T = Λ(x), Λ(x) := diag(0, . . . , 0︸ ︷︷ ︸, λd+1(x), . . . , λN(x)).

d

Moreover, E(x) has uniformly bounded coefficients eij(x), i, j =
1, . . . , N , such that |eij| ≥ CE > 0 for all i, j.

(B5) Conservation laws: The reaction matrix R(x) has d constant left zero–
eigenvectors, i. e. there exist F1, . . . , Fd ∈ RN such that

FTj R(x) = 0, j ∈ {1, . . . , d}.



Example 3: N ×N reaction drift–diffusion system on Rn

∂tuj = div(∇uj + uj∇Vj) +Rj(x) · U, j = 1, . . . N, (17)

where U(x, t) = (u1(x, t), . . . , uN(x, t)), x ∈ Rn, t ≥ 0, Rj denotes the
j–th row of a reaction matrix R and Vj is a confining potential acting on
the j–th species uj. A simple computation shows that the system (17) can
be written in the above form (13) with

S(x) = diag(eV1(x), . . . , eVN(x)), D(x) := S(x)−1

and R(x) any reaction matrix such that S(x)R(x) is symmetric. The
assumption (B1) can be fulfilled by assuming that all potentials Vj(x) are
all continuous and convex with equal asymptotic behaviour of the tails as
|x| → +∞. However, this assumption on the tails is often too restrictive.



Lemma 2. [Conserved quantities] Let U(x, t) be a classical solution to
system (13) such that U decays rapidly at |x| → +∞. Then, for every
j ∈ {1, . . . , d}, the quantity lj :=

∫
RN(F j)TU(x, t)dx is conserved for all

times t ≥ 0.

Proposition 2. [Stationary solutions] For every fixed set of real numbers
l1, . . . , ld, there exists a unique stationary solution U∞(x) to (13) such that

lj =
∫

RN
F jU∞(x)dx (18)

for all j ∈ {1, . . . , d}. Moreover, U∞(x) has the form

U∞(x) = S−1(x)C∞ (19)

for a certain constant vector C∞ = (C∞1 , . . . , C∞N )T .



We introduce the following variables

W (x, t) := E(x)U(x, t)

Z(x, t) := S(x)U(x, t) = S(x)ET (x)W (x, t).

Similarly to the previous case, we shall consider the energy functional

E [U ] :=
1
2

∫
RN

UTS(x)Udx =
1
2

∫
RN

ZTS−1(x)Zdx.



Theorem 2. [Exponential convergence towards inhomogeneous equilibria]
Let U(x, t) be a classical solution to system (13) with initial datum U0,
such that U decays rapidly at |x| → +∞. Suppose

lj =
∫

RN
(F j)TU0(x)dx, j ∈ {1, . . . , d}, (20)

for fixed quantities l1, . . . , ld ∈ R. Let the stationary state U∞ be uniquely
determined by the lj’s as in Proposition 2. Then, there exists a fixed
constant ε > 0 (depending on the structural assumptions (B1)–(B5)) such
that

E [U(t)− U∞] ≤ E [U0 − U∞]e−εt (21)

for all t ≥ 0.



A typical 2× 2 example case

We consider a 2× 2 whole space drift–diffusion–recombination system (the
linearization of the nonlinear semiconductor model to be studied later on){

∂tu = ∇·(∇u+ u∇V1)− F (n∞, p∞, x)(p∞u+ n∞v)
∂tv = ∇·(∇v + v∇V2)− F (n∞, p∞, x)(p∞u+ n∞v).

(22)

where

n∞(x) := e−V1(x), p∞(x) := e−V2(x), V1, V2 ∈ C2(Rn),

V1 and V2 are L∞ perturbation of uniformly convex functions (23)

which implies in particular that n∞, p∞ ∈ L1
+(Rn).



The reaction rate F (·, ·, ·) shall denote a continuous function, typically
thought to be of Shockley–Read–Hall type

F (n, p, x) = (r1 + r2n+ r3p)−1, (24)

for some positive, bounded below functions r1(x), r2(x), r3(x) ≥ r > 0.

We use the entropy (or free energy) functional

E(u, v) :=
1
2

∫
RN

(
u2

n∞
+
v2

p∞

)
dx.

We introduce the variables z1 = u
n∞

and z2 = v
p∞

and we obtain

d

dt
E(z1, z2) =

1
2
d

dt

(∫
RN

z2
1 dn∞ +

∫
RN

z2
2 dp∞

)
= −D(z1, z2) ,



with

D(z1, z2) =
∫

RN
|∇z1|2dn∞+

∫
RN
|∇z2|2dp∞+

∫
RN

F n∞p∞(z1 +z2)2 dx ,

and the measures dn∞ = n∞dx, dp∞ = p∞dx.

We denote

dξ1 =
dn∞
N∞

, N∞ =
∫

RN
dn∞ , dξ2 =

dp∞
P∞

, P∞ =
∫

RN
dp∞ ,

and we estimate the Fisher–information terms using a weighted Poincaré
inequality∫

RN
|∇zi|2dξi ≥ Pi

∫
RN

(zi − zi)2
dξi , with zi :=

∫
zi dξi .



The constants P1 and P2 are the whole space Poincaré constants with
respect to ξ1 and ξ2 respectively, therefore they depend on V1 and V2.
Then, for a suitable constant C > 0, we are looking for the following
entropy–entropy dissipation estimate

D ≥ P1

∫
RN

(z1 − z1)2dn∞ + P2

∫
RN

(z2 − z2)2dp∞ +
∫

RN
F n∞p∞ (z1 + z1)2 dx

≥ C E =
C

2

(∫
RN

z2
1dn∞ +

∫
RN

z2
2dp∞

)
,

under the constraint for the conservation of mass :∫
RN

z1 dn∞ =
∫

RN
z2 dp∞ . (25)



Lemma 3.
Consider measurable functions zi, i = 1, 2 such that (25) holds. Let
F (n∞, p∞) be integrable with respect to the measure n∞p∞dx and satisfy

Fn∞ ≤
1
τn
, Fp∞ ≤

1
τp
. (26)

Then

D ≥ K(1− ε)
K1

E

holds provided that

K ≤ min

{
P1

2
τn

1−ε
ε + 1

2k1

,
P2

2
τp

1−ε
ε + 1

2k1

}
, (27)

with K1 defined in (??) and where 0 < ε < 1 can be chosen in order to
maximise the constant K.



A reaction–diffusion model with nonlinear reaction

In this section we study the nonlinear model system arising in semiconductor
and plasma physics{

nt = divJn −R(n, p) , Jn := ∇n+ n∇Vn
pt = divJp −R(n, p) , Jp := ∇p+ p∇Vp

(28)

where n and p model two species of charged particles subject to confinement
and to a recombination–generation mechanism R(n, p). We suppose non-
negative initial data

n(x, 0) = nI(x) ≥ 0 , p(x, 0) = pI(x) ≥ 0 ,

and the following assumptions:



(NL1) The confining potentials Vn and Vp satisfy

D2Vi(x) ≥ σiIN , for certain constants σn, σp > 0, i ∈ {n, p}.

Moreover, ‖∆Vi‖L∞(Rn) is finite for i ∈ {n, p}, and we define µi :=
e−Vi(x) and introduce the related measures dµi := µi(x)dx.

(NL2) The recombination–generation term is of the form R(n, p) =
F (n, p, x)(np − δ2µnµp) for a constant δ > 0, which – without loss of
generality – shall be rescaled as δ = 1. The scalar function F (n, p, x) ≥ 0
is assumed to be such that

R(n, p) ≤ A1 +A2n+A3p, (29)

for constants A1 > 0, A2, A3 ≥ 0, which includes the typical Shockley–
Read–Hall form (24).



We recall that the initial mass M ∈ R is conserved for all t > 0∫
RN

n(x, t) dx−
∫

RN
p(x, t) dx = M :=

∫
RN

nI(x) dx−
∫

RN
pI(x) dx .

(30)
Given M as fixed, the equilibrium n = n∞, p = p∞ is uniquely determined
by{

n∞(x) = Cn e
−Vn(x), p∞(x) = Cp e

−Vp(x),

Cn, Cp > 0 : CnCp = 1, Cn
∫
e−Vndx+ Cp

∫
e−Vpdx = M.

(31)

The relative entropy E = E(n, p) of the system (28) with respect to the
equilibrium (31)

E =
∫

RN

[
n ln

n

n∞
− (n− n∞) + p ln

p

p∞
− (p− p∞)

]
dx (32)



dissipates (i.e. d
dtE(n, p) = −D(n, p)) with the entropy dissipation

D =
∫

RN

|Jn|2

n
dx+

∫
RN

|Jp|2

p
dx+

∫
RN

F µ2

(
n

n∞

p

p∞
− 1
)

ln
(
n

n∞

p

p∞

)
dx .

(33)



Uniform L∞ bound

Lemma 4. [Uniform L1 ∩ L∞ bounds] Assume the initial data nI, pI
are in L1∩L∞(Rn) with finite entropy E(nI, pI) < +∞. Then the solution
(n, p) of (28) satisfies

sup
t≥0

[‖n(t)‖Lr + ‖p(t)‖Lr] <∞

for all r ∈ [1,+∞].



Exponential convergence to equilibrium

In the following we show exponential convergence (with constants that can
all be made explicit) towards the unique equilibrium states n∞, p∞ as
defined in (31). In addition to the assumptions (NL1) and (NL2) we will
suppose that :

(NL3) The confining potentials are equal V := Vn = Vp and µ := e−V (x) is –
without loss of generality – normalized with

∫
RN dµ =

∫
RN µdx = 1.

(NL4) There exists a constant lower bound F (n, p)µ(x) ≥ CF (‖n‖−1
∞ , ‖p‖−1

∞ )
and moreover, due to the bounds of Lemma 4, CF (‖n‖−1

∞ , ‖p‖−1
∞ ) ≥

CF > 0.



Lemma 5. [Entropy entropy-dissipation inequality] Let n and p be
nonnegative functions in L1 ∩ L∞(Rn) satisfying the conservation law
N − P = Cn − Cp as given in (30). Suppose the assumptions (NL1),
(NL3), and (NL4) hold. Then, the following inequality holds for a constant
K depending only on the stated quantities

E(n, p) ≤ K(‖n‖1, ‖p‖1, CF )D(n, p) . (34)



Thanks for your attention!


