i DATRYET G MURAZ..

ss (K., ~ Abstract Harmonic Analvsis, vol. 1. ~ Berlin, Springer-
ned modules and almost periodicity, Menarsch. fiir Math., vol, 70,

Invertibility of almost-periodic operators, Funet. Anal, and its appl.,
o p. 2232224,

wwol (A wnd Wang (. K3, — Group represenlations in Banach
almost periodicity. Stidies amd essays presented 1o Yu-Why-Chen,
rei, Math. Research center, 1970,

211 (AL and Wang (] K.). — A generalized Fourier transformation
s, Austral, Marh. Soc. (Series A). vol, 36, 1984, p. 365-377.

he spectral churucterization of a class of almost periodic functions,
of. 72, (2). 1960, p. 361-368.

Elémenss ergodiques et tolalement ergodiques dans L™ {G), Studia
8T, p. 191-225,

- lin Russian|, Mar. Zamerki, vol. 11, {3), 1972, p. 269-274,

icité et fonctions de Riemann, Real Analvsis Exchange, vol. 21, (1),

dcal Fourier anatysis on locally compact groups. — Oxford Univ,
[nduced Banach Representations of Banach Algebras and Locally

Lo Funct, Anal,, vol. 1, 1967, p. 443-491,
ant meuns on L™, Studia Mar., vol, 44, 1972, p. 219-227,

Bull. Sci. math.
1996, 120, p. 537-533.

SOME PROPERTIES OF HYPERSURFACES
OF PRESCRIBED MEAN CURVATURE IN H"!

BY

Bareara NELLI and Ricarpo SA EARP (%)

ABSTRACT. — We prave that certain graphs of preseribed mean curvature in H* ! cannot
have an isoluted singularity. Then, we discuss a flux formula for surfaces with conslant mean
curvaiure in HY and some consequences of it

REsUME. ~ Nous démontrons que quelques graphes @ courbure moyenne prescrite dans
H"*! ne peuvent pas avoir une sicgularité isolée. De plus, nous décrivons une formule de
Mux pour des surfaces & courbure moyenne constante dans H et nous en analysons queicues
conséquences.

1. Introduction

In this paper, we study the behaviour of graphs with prescribed mean
curvature in hyperbolic space of dimension n - L.

There are different possibilities in choosing coordinates to define a graph
in hyperbolic space and the form of the mean curvature equation obtained
depends on this choice.

We consider H"*! in the half-space model ie.

{1, wps1) € R m,ug > 0}
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* . 2 P b <1
with the metric ds” = 7y (des + .+ diej o).

Above all, we deal with the following system of coordinates.

17 Let £ be & domain on a totally geodesic hyperplane x; = ¢ (j < n),
and f a real function that at cach p € £} associates a point on the horocycle
passing by p and orthogonal to the hyperplane {z; = ¢}.

This system of coordinates is treated in [BaS|, where the following
existence result is proved. Let € be a domain in a hyperplane whose
boundary is a closed submanifold with principal curvatures greater than
one and let H : @ — R be a C** function with [{H ()| < 1foreachx € O
then there exists a C**1 function on € that is zero on 952, whose araph,
in this system of coordinates, is a hypersurface of meun curvature /.

The paper is organized as follows,

In section 2, we introduce another system ol coordinates and discuss
some differences. Then we come back to system 1: in section 3. we prove
a removable singularity theorem. in section 4, we prove a flux formula
and two nice applications of it and in section 5, we give an estimate of
the height of our graphs.

The first author would like to thank her thesis advisor, Professor Harold
Rosensers, for interesting discussions and useful remarks.

2. The two equations

Consider the following system of coordinates.

29 Let 2 be a domain on a horosphere Tyget = oo >0 and f a real
function that at each p € 1 associates a point on the geodesic passing by
p and orthogonal to the horosphere.

In [RoS| Rosensera and Spruck resolve the following Plateau problem.
Given a constant ¥ € (—1,0) and a codimension one embedded
submanifold [' of the boundary at infinity of H"TI. there exists a
hypersurface A of H"+! with constant Gauss curvature K and asymplotic
boundary I'. An important part of their study is an existence theory for
I -hypersurfaces which are graphs in this system of coordinates over a
bounded domain in a horosphere; the desired A is constructed as the
limit of such graphs,
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Recently Rosenserc proved that if ' is a codimension one, convex,
compact embedded submanifold of a horosphere {41 = ¢} of H'H!
the only minimal hypersurface bounded by [' is a graph in this system
of coordinates.

We now write the mean curvature equations for both system 1 and 2
and discuss some differences.

Let {ey..... &, } be un orthonormal basis of the tangent space to the
hypersurface, N a normal unitary vector and ¥ the Riemannian connection
of H"H1: we recall that the mean curvature vector of a hypersurface is
H= }7 (V. ¢i» N)YN and it does not depend on the choice of N, while
the mean curvature function of a hypersurface is [ = %(_Y?(.l e;. N} and
its sign depends on the choice of IN.

Let € be a domain in the plane {x; = 0} (j < ), [: Q2 —R
a C* function and H : © — R a continuous function; let N
be the unitary exterior normal vector to the graph ie. N =

Tyl II’f”l (=fioe Lo, = fus1) where 1 s in the j-th place, f; = 5’{—’-
for i = Loyn+ 1o i # 4. VF = (flooee fios fugr) and W) =

VI+IVfIR

If the graph of [ (in one of the two senses) is a surface of mean curvalure
11 with respect to the unitary exterior normal vector to the graph. then f
satisfies one of the following equations.

o div (L) = gy o Lt
Wy Tyl We

o div (LY = P (e -
2 (357) = 5 (760~ 7).

where div is the divergence in R".

Remark 2.1, - The equations we have obtained are quasi-linear elliptic
equations and they satisfy a general maximum principle {GT].

Remark 2.2. — The first term of both equations is » times the mean
curvature function of the graph in euclidean space; we denote it by H.

We will prove that a solution of equation 1 in a pointed domain extends
to the point: on the countrary here is an example that shows that a
solution of equation 2 in a pointed domain doesn’t extend necessarily
to the point, at least if {H| > 1. Take a cylinder in hyperbolic space,
for example the locus of points with equal hyperbolic distance from the

BULLETIN DES SCIENCES MATHEMATIQUES
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ay axis fe. O = {{x1. ma, my)|ws = (.’I?% + :r:i)tam #} and consider the
part of it contained in the slab 0 < w3 < 1. It has mean curvature
H = —35((sin 0y~ +siné) < —1 with respect to the exterior norma)
unitary vector and it is a graph on Dy, that doesn’t extend to the
puncture.

3. A removable singularity theorem

In this section, we prove a removable singularity theorem that, in the
case of euclidean space, is proved in [RS].

First we prove a lemma by using techniques developed in [CNS].

Lemsa 3.1, — Let Q be a compact domain in the plane {&; = 0} (j < n),
sueh that infeq wyo1 > 0 Let H : 0 — R be a C! function and let
w: Q2 — R bea C? function that satisfies the following partial differential

equarion in £l
AR T , U1 )
div|[ — | = H{e)+ —
( W, ) Bl ( ( } W,

Assume further that w is bounded in & and |V u} is bounded in 082, Then
IV w| is bounded in int (1) by a constant that depends only on supg bl
and supge |V ul.

Progf. — Let j = 1. To estimate |V | in iut{$}) we shall obtain a
bound for 5 = |Vu|e? where A is a positive constant to be chosen
fater. I z achieves its maximum on Jf then, by the estimates in the
hypothesis, we are through. 1If it is not the case, z assumes ifs maximum
at a point & € int (). Up to a rotation of coordinates we can assume that
IVau(e)| =u{z) >0y () =0, k 2 3. As x is a point of maximum
for z, it is a maximum for the function In{z} = Aw -+ iV

It follows that at =

wa .

+ Ay = 0, k=2 ...n+1

U2

S0
(N ttyy = —d 'u.%, g, =0 E=3.....n+1

TOME 120 - 1996 — N° 6




SOME PROPERTIES OF HYPERSURFACES 541

Further at «, we have JQF’ (uy ! wyp = Au) €0 for k= 2,041
and this gives

(2) saay < 2 A° Hg o pn = — A g h=3..n+1

We remark that w. |V u| and div (ﬁ“) are invariant by rotations in the

plane {x; = 0} but V « is not invariant, hence when we rotate coordinates
as ubove we have to take care of the fact that the mean curvature equation
changes. Let O {n) be the matrix of the rotation and let az. ..., a1 be
the coefficients of the last line of G {n) (o < L. k=2, n+ 1) the
mean curvature equation in the rotated coordinates (that we still denote
by (xa,.s wyay)) is

Vo n . o
liv]| —— ] = I (x L.
o (W,,) o L ( () + W, )

where summation convention is used.

Denote by T € €1 (22 x R x R?) the second term of the previous
equation, then it is equivalent to

) -1 _a
(3} E o, WU = W,
roj=2
e - .. . .
where a;; = W7 o; —uju; fori, j=2,....n+ 1.

By differentiating (3) with respect to xz and calculating at » we have

, QU

w222 + {1 + :;) W pge 22 w2 g = 3 W v wae U+ W B
o)

By substituting (1} and (2) in the obtained equation. we have at @

3 (nd _] .
@) A (iz__()_i_z_mmil) 4+ AW w W < — .Qlll
(u3 + 1) o

The derivative of ¥ with respect to w2, calculated at x is

Wt_fg’_ _ _nay (II u.; (}3) L (Hg 4 ,“_%;u)
daa ”+1 W, Tyt H/r'n

where H and Hs are the values at @ of the curvature function and its
derivative respectively and, by abuse of notation, we denote by ;11 the

BULLETIN DES SCIENCES MATHEMATIQUES
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third coordinate before the rotation. Now. by substituting the value of

L‘j+l' in (4) we obtain

-

) A (ui’ (uj — i)) nAHuy nHoar oy nw a3

E 5 ] - L] -
(‘“é +1)% wpeq W X5 ki an o Wy

"

We remark that the following inequality
(6)

yields a bound for . and hence for max |V u|e™ ",
By (5). inequality (6) is implied by

i —

(7)

e T -

1 ( nAHu  nHay nHa Ny a3 ) <
a1 Wy a0 Tyl ::ri a We/ ™

thus we are looking for a constant 4 such that (7) holds.

Now let A = iuf,ge  and

K o= um.x{f—{', siupo [Hi+ e supq [Hal + —Ii; «fisnp“ iH|}
A- A A5TA "

By & straightforward computation we have that if 4 > K + VA= +2 K
then (7) and so (6) holds. We remurk that A does not depend on .

Remark 3.2. — In the case n = 2 Leon Simon establishes interior a priori
aradient estimates for solutions of equations of type 1, assuming a priori
C%.bounds. The reasons equation 1 satisfies the hypothesis of theorem 2/
of [S] are:

1°. The second term of equation 1 (4" in |S]) does not depends on .
xy and u (considering « as an independent variable), it is bounded and
its derivatives with respect to ;. wt; {considering wu;, u; as independent
variables) are bounded;

2°. The coefficients a;; are the same as the coefficients of the mean
curvature equation in R

Tueorem 3.3. ~ Let 2 be a domain in the hyperplane {x; =0} (j < n),
pel H:Q—RaC? function. Let f: N\{p} — R be a C? function

TOME 120 - 1996 —~ N° 6
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such that the graph of [ has mean curvature funcion I (witl respect 1o
. 3 Bl
the exterior normal vector). Then | extends C- 1o p.
Proof. — We will prove this theorem by the following three steps.
1. [ is bounded.

2. There exists & > 0 such that the closed euclidean n-ball Dp with
center al p and euclideun radius R is contained in € and the Dirichlet

problem
. Vo T 41 .
; e = S i —— D
dliv (IT",,) — (U(J_) + T ) i Dp

we= foon dDp

. . - . . . . .
has a solution in ¢ (Dg) (this result is established in [B] in a more
general context).

-

3. f =u on Dp\{p}. Le. w is an extension of f.

1% Srip. — We can assume that p is the origin: we look at the graph of
J as a hypersurface in euclidean space with mean curvature ff; we want
to use a generalized real Delaunay hypersurface as a barrier [HY].

As H is bounded in a compact set & < €1, there exists a constant
a > ( which depends on supy H and inf 2,41 such that |[H] < "H”;l;
let B < a be such that a ball D centered at the origin, of radius R 1s
contained in K and let £ < R. We consider a portion Del- of a Delaunay
hypersurface such that:

(A) Del: has mean curvature Hp., = ”ﬁ]—

(B) Del, is a graph over the annulus A: = Dp\D-.

(C) Del. is tangent to the hypereylinder {o € R"+! 7 +...+:F:f 4.+
x b= £21. f is bounded on A, then by a translation in the direction
of the x; axis we can place Del: at the right side of the graph of f, to
be disjoint from it. Now move Del- horizontally to the left in order to
find a first point of contact between the two hypersurfaces. As the mean
curvature vector of Del: points into the interior of the hypersurface, by the
interior maximum principle (see [RS]) the first point of contact cannot be
interior, hence it is on the boundary. If it is on the internal cylinder, by (C),
the graph of f must be vertical there and this is a contradiction with the
fact that f is a €* graph on the pointed dise. So the first point of contact

3

is on the hypersphere r{:rf + . :i:_'f- S ""i-{-l = R,y =supsp, [}

BULLETIN DES SCIENCES MATHEMATLQUES
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Letting & — 0, the height of Del- tends to , thus we have

na
-1

f<supgp, [+

on D}. By the same argument, using Del. . instead of Del. we obtain
infop, f— -5 < f on Dj,.

2" SrEp. -~ We remark that, by theorem 3.56 [A] the function [ is
C2 {0\ {p}), hence by theorem 13.8 [GT] we have only to prove that

for each w that is a €7+ (Dg) solution of the Dirichlet problem

Vi

div (—1) =7 (II{ 4 L 1) in Dy
W, TR W,

w=ocf on dDp

where o € [0, 11, w is @ priori bounded in C! (Dpg).
It will be evident that it is sufficient to prove it for ¢ = 1.
The two Dirichlet problems

div (D) = :i:(“ — 1) in Dp

W iy

we=f on dDgp

are solvable in (2 (Dp) by theorem 16.11 [GT]. So. we have a
subsolution and a supersclution of our previous Dirichlet problem and,
by the maximum principle, we have an a priorf estimate for w in Dp
and for |Vu| on dDg.

Now, we can apply lemma 3.1 to have an a priori estimate of |V ]
in int (Dpg).

3™ S1ep. — Let R be as above and let u be a solution of the Dirichlet
problem of the preceding step (¢ = 1).

Consider the form # defined in D} by

f—u i-1 — i i
(f:T Zi:l {—1): 1 [:[’ “/” dri A /\(h,/\ /\dz,/\ Adiay 4

i+l

U i f ,
:_;H_l(%l)'(-:ff——f#)d:l/\ Adai A /\rlrJ./\ /\rlr,,.H}

TOME 120 — 1996 — N° 6
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The form # is bounded on D}, because f is bounded and bd ed < 1.

",
AT
Vi, Let A; = Dp\D-; since f = w in dDp we have

/ =0 as e — (0.
Ja,

By Stokes” theorem we have

/ #= / dl.
JaA, S,

n = {1 1+ div —m'{'-’ / — | = (':zr,,+1)"":'1 div _Vz.t
i 7y T 1T

we obtain that

1 n-1 ) fi iy N -
dfl = —— {Z,‘:].i,ij (fi = ;) (m - ﬁm:) } dyodi o da gy

4 n+1

(MW S (g
O\ 2ah, i=tigi \ Wy W,

I 1\’ o
+ (ﬁ—f— - W:) } day.odiydey, o

Thus df is non negative and it is 0 il and only if [; = w;, ¥i; letling
¢ — U weobtain Vf=Veandso f=uwon Dy, O

4. A flux formula and applications

Let M be an immersed surface in I with constant mean curvature and
such that its boundary &M is contained in the plune {xs = 0}, Let H be
the meuan curvature vector as defined in section 2. let f = |H
M Dby the unit normal vector defined by N = H—1H.

Let & C {ws = 0} be such that A = 98 and let n be the unitary
interior conormal vector to AL oriet JAL by the counterclockwise
orientation of the plane @y — w3 and let v be the tangent vector to &AM
with this orientation.

and orient

BULLETIN DES SCIENCES MATHEMATIGUES
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Then let:

I. Ng = (0. 3.0} if (H, v An) > 0 ie if the orientation on A
induces the counlerclockwise orientation on JAa{;

2. N = (0. =3, 0) if {H. v An} <0 ie if the orientation on A/
induces the clockwise arientation on dJif,

From now on by {. } we mean the scalar product in H? and for indicating
the scalar product in R* we will use a subscript: even for integrals. when
we don't specify the form. we meuns integrals in hyperbolic space.

In the next theorem we prove a Flux Formula: the correspending result
in the euclidean case is proved in [BS]. For further considerations on this
kind of formula, see for example [KKMS] and [R].

Tusorem 4.1, — Let j = (0, 1, 0), then in the ubove notation

/uu uonp =20 [' Nex. 3

Proof. — Consider the 1 parameter family of surfaces {A4;}, obtained
from M by the translations defined by {p. 1) — p + £ j. Denote by A(#)
the area of the surface M;. As j is a killing vector field, the area A (})
is constant, so we have

0=A(0) = / divarj.
AT

Let j'T be the component of j on the tangent space to M and j¥ = {j, N} N
the normal component. We can write the previous formula as

/ divar G5) + / divm (M= 0

NEY JM

and by Stokes™ theorem

M) [ @+ [ ™) =0
JOM Jas

where on 844 we take the orientation induced by the orientation on A,
Let Xy, X7 be an orthonormal basis of the tangent space to Af, then

2 - 2 - -
divay (iN) = Ziz} (VN Xy = - Z;:] GN, V., X))
= G NYNL Vi X = -2 H () N)

TOME 120 - 1996 -~ 8° 6
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where 20 and 4% equalities are given respectively by (V. X)) = 0
and the definition of mean curvature. By substituting in (1) and using

(1. n) = (§T. n) we obtain

@) I/(;” Gonm=—20 / G, N

A

In the halfspace model the relation between the area forms of hyperbolic
and euclidean spaces is dwpps = .-::3") dwgs, hence

5 / (. Ny = / (:r::'j"r‘}j, .'1:;1 Nips dwgs = —/ € :r:;3 dieg
S JAT JAA

where the orientation on @A is induced by the orientation on Af and the
fast equality is given by Stokes™ theorem (see theorem 5.9 [S]). By the
Gauss-Green formula in the plane (see theorem 5.7 [S])

- / i€ :1::',_:J i = & / :1:3_3 ey dig
JOM J Ot

where there is + in the case that the orientation induced on &AF is
clockwise und there is — in the case that the orientation induced on AL
is counterclockwise. Then we have

4) / {j. Ny = i/ ::::";“3 diry dus,
JAS S

By definition of Ng

(5) / :1:5._'3 diey dy = o+ / :I:EJ‘ (Ng, j)re dry dg = i/ {(Na. i)
J1)

JE) S

(we remark that last integral is calculated with respect to the hyperbolic
metric).
By substituting (3} in (4) we have

[ Ny = [ (%o
JA J4
and by substituting this last equality in (2) we obtain

/‘ Gony =20 / (No.j). O
JAX J0

BULLETIN DES SCIENCES MATHEMATIQUES
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Remark 4.2, — Theorem 4.1 holds under slightly more general hypothesis,
that is: AL an immersed surface in 2, with constant mean curvature and
such that its boundary is a graph over the plane {2 = 0}.

In this case we take Q < {@2 = 0} such that @M is a graph over
dQ. We ohserve that

/ € ;1:3—3 diy = £ / e ;175“3 i
JaAr Jao )

because the integrand does not depend on w2 (here the sign depends on
the orientation induced on JA{ by the orientation of A{). Then we can
use the Gauss-Green formula in the plane and proceed uas in the proof
of theorem 4.1,

We recall some elementary facts of hyperbolic geometry. useful to show
two nice applications of the flux formula. A circle in the plane {w2 = 0},
with hyperbolic center at (0. {1. 1) and hyperbolic radius p is the euclidean
cirele

Spo={{er, wa. ) e =0, :1."{’ + (g — cosh p)? = sinh? p}

and the curvature of S, is cotangh p. Further, the mean curvature of a
sphere of hyperbolic radius p is H = cotangh p.

We now prove a result that in the euclidean case is proved in [BS].

Tueorem 4.3, — Ler A be an immersed surface in T° such thar the
boundary of M is a circle of hyperbolic radins p and the mean curvature of
M is H = cotangh p. Then M iy a half-sphere of hyperbolic radius p.

Proof. — We use the nolations of the beginning of this section.

Up 1o an isometry of H* we can assume that ¢A7 {s contained in
the totally geodesic plane {r: = 0} and that the hyperbolic center
of dM is the point (0.0, 1), so @ = D = {{w1, w2, 23)fea = 0,
:r:% + (2 — cosh p)® < sinh? ol

First of all we prove the following equality:

{6) / :r:‘.?"1 ds = 2 cotangh p / :r:g"q' elary ey
Jap Ny
where & is the euclidean arc on 00,

TOME |20 — 1996 - N° 6
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Let (r, #) € [0. sinh p] x [0, 2 7] be parameters for D such that

i = reos
3 = rsind 4+ cosh p

=)

. ., 2w ~sinh p -
/ awn Py diey = / / - L = | df.
fn 7 Jo Jo (rsin @ 4+ cosh p)?

By integration with respect to + (Hermite formula for rational integrals)

then

we obtain
/'”“l‘ L i o sinh p
0 (

reint + cosh pi® — 2eotangh p (rsin f + cosh P

Further, as ds = \/dx] + (Lr:}j’ = sinh p ¥
D e

/‘ _2 /‘ ‘ sinh p ol
@ s = . .
Jap 7 Joo (rsiné 4 cosh p)?

The last three equalities imply (6).
By the proof of the flux formula we have (with sign depending on
orientation induced by M on 9D)

(N {j. n) ‘)H/ o Sy day.
JO0D

As I = cotangh p. by substituting (6) and (7) we have

(8) / (j.n)y =% / :r:_{2 fls.
D Jop

The scalar product and the first integral in (8) are calculuted with respect
to the hyperbolic metric, so

(%) / (j.ny ==+ / a7 .'l-':;l n)Re ds;
Jald JaD

by (8), (9 and |}l = I'r_l nfgs = 1 we obtain {j, 23 n)gs = +1.

This means that the boundary of A is orthogonal to the plane {r2 =0}
and it is a line of curvature and a geodesic. So. we may extend A by
reflection along the boundary (i.e. with respect to the plune {m = 0});
denote by Al the union of A and its reflection. At a point p € JM,

BULLETIN 1325 SCIENCES MATHEMATIOUES




i
th
fyoe]

B NELLD AND B Sa-EAULD

the two principal directions are determined by the conormal vector n at
p and the tangent vector to JA at p; as the curvature of JAL and the
mean curvature of Ad are both cotangh p, the principal curvature of A
on the boundary are both equal to cotangh p then the boundary of Af is
composed of umbilical points.

Following the method of [H] (section VI} by using Codazzi-Mainardi
equations of A4 in H? one may derive that an umbilical peint of a constant
mean curvature surface in H® is either isolated, or the surface is totally
umbilic.

As dM < M is composed of umbilical points, then A is totally umbilic;
by the classification of totally umbilic surfaces in H? ([S1] theorem 29)
M is a hyperbolic sphere. [

We now use the flux formula to obtain an estimate of the mean curvature
of a surface.

TheoREM 4.4, — Let Dy, = {(ar1, @2, wy) | = 0, @f + {wg —coship)? <
sinh? oty let M be an inmersed surface with constant mean curvatire
H = [H|, such that OM is a graph of a C? function | JdD, — R Then

cotangh p

H< P \/.‘%‘lllll‘2 b4 81D A Y2
—  sinhp f DPap, (f")

In particutar if f = O and H rakes the maximum value H = colangh p
then M is a part of a sphere.

Proof. — We continue (o use the notation of the beginning of this section;
by (2) and (3) of the proof of theorem 4.1 (we remark that up (o that point
the proof of 4.1 does not invoelve the fact that 941 ¢ {22 = 0}) we have

[ G
(1 D £ 1.} —

/ a _-,,-3_3 diay
JAN

The sign of the second term does not depend on the orientation on dAT as
we integrate on JA4 twice. On JM we choose the orientation that gives
the sign + in the remark 4,2, We have

/ €1 :1:_3"'3 iy = / I ;,;_,_“}"5 diy = / :::3_3 dy day
NEY Jap, ID,

i

i _a
= — wy " ds
2eotanghp Jop,
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where s is the euclidean arc on dD),, and equalities are given respectively
by remark 4.2. the Guuss-Green formula in the plane and (6).
Now we transform the numerator of (10).
A parametrization of JAL is given by v : [0, 2] — H” defined by
() = (Reosd, f(8), Rsiné 4+ coshp)

where R = sinh p. This gives |} = £R° + {[7)?, then

/l (_] n) == /‘I’ﬁ (-] D-). I+ (Iu)l i
JON S

(Rsin 8 + cosh g)

As (j.n) < |j| = «37'. we have

. 1 5 TEG
25 .R' + 5%
/ . n) £ / . L ~ dd
Jiil Joo (Hsinf 4 cosh p)=
/ il
= PP 2 4] e+ / (Rsind + cosh p)?

\/(smhp) +sUpy. 2, ;(J’ 2oy a
< / a3 ds
an,

sinh p

By substituting (1) and this last formula in (10), we obtain

2 cotangh p \/(siuh p)? + SUP[). 2 7] ()

sinh p

2H <

In the case f = 0 this inequality gives H < cotangh p and the proposition
follows from theorem 4.3. {J

5. A further property

Let © C {w2 = 0} be a compact domain and fet [ : @ — R be
a (% function such that floss = 0 let Gy denote the graph of f. Let
Hy 0§ — R be a continuous function such that ¢ < |Hy| < 1 and that
is the mean curvature function of Gy (as in section 2).
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TueorEM 5.1, — In the notation above, there exists g constant O which
depends on supe [H | and supg {an ] (0. an) € Q) such thar

supe |f (e, eg)] < C

Proof. — Let 8 € (0. 7). ¢ € R and consider the plane Py which is
paralie]l to the @ axis. forms an angle # with the w2 axis and passes by
the point (0. 0. —c).

The mean curvature vector of %) is the constant vector

Hy = cosf{cost ey —sindes)

where {e1. 2. es} is the standard basis of R2.

The mean curvature vector of I points upwards and depends on & only:
further, we remark that changing ¢ means translating F parallel to itself
in the 22 direction. From now on we omit the superscript c.

As 0 < |Hp| < 1 there exists # such that supg, {H ] = [Hy| = jcos 0] by
choosing either ¢ € (0, 5) or # € {5, 7) we have that the mean curvature
vectors of &y and Py point in the same direction. Then. without loss of
generality, we can restrict to the case § € (I, §) and supg, Hy = cos .

As Gy is compact, it is possible to translate /% along the x> axis such
that [y NGy = . Then translate [% towards G if the first point of
contact between the plane and the graph of f is interior to the graph,
we have a contradiction by the maximum principle, hence it must be on
JG . This means that

naxg [Hy
supg 1 € ——et i :
V1 — (maxqg [Hfl)?

For further considerations on Height Estimates see [R].

waxe {as e, wgy € QF. O
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