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ABSTRACT

The subject of this paper is to give a Weierstrass type representation for mean curvature one surfaces in the
hyperbolic space. This representation depends on the hyperbolic Gauss map. Some known examples are
described and a new one, associated to the minimal Bonnet surface is construct with this representation.
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INTRODUCTION

A Weierstrass type formula for surfaces of prescribed mean curvature in B3 was given by Kenmotsu in 1979,
Tn 1987, R. Bryant studied the surfaces of mean curvature one in hyperbolic space as local projections of
nuil curves in the space of the 2 x 2 Hermitian symmetric matrices with its Cartan-Killing metric. Recently,
Umehara (in 93. 95 and 96), Yamada and Rossman produced an explicit tool to construct examples of these

surfaces.

In this note we announce how to describe surfaces in H? with mean curvature one in a similar manner
as the minimal surfaces in B3 that means, given by an integral formula. It is aiready well known that
these surfaces have a hyperbolic holomorphic Gauss map; a suitable choice of a second function will give
us a Weierstrass type representation. Some solutions of this problem can be constructed by using this

representation.

Let L4 = {& = {xp, #1, T2, T3) € R*} be the Lorentz space with the inner product
{x,y) = —xoyo -+ T131 + T2y2 + Tays.
The hyperbolic space is the submanifold
H* = {z e L*| {&,2) = —1,mq > O}.

In H® we will consider the induced orentation from L* for which the vectors vy, va, vg in Tp}HI3 form a

positive oriented basis iff {p, v1, ve, v3} forms a positive oriented basis of .4,
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Let Am A7 ~ H* be an isometric immersion of an orientable Riemann surface M in the hyperbolic
space and V(p) the oriented unitary normal vector at p € M. In local isothermal coordinates = = « + v
we have || X, || = [|X,|| = A, {(Xo» Xu} = 0, and N is such that

- )
{'X (p) 1 :\:.3{1“ :\:IXU: N (P)}

is a positive basis of 7,17,

We will consider the map

®:H? —
L1 o X3
{(wo, 1,39, 23) — (1,22 Py
Iy To Xg

and the vector @, (N (p)) where
D = {(zg, 2. 20, 23) | g = Lzl + w3+ wi < 1k
This map is the natural isometry between H* and the Klein model for the hyperbolic space given by
the unitary disc with the appropriated metric.

The boundary of D can be identified with the Riemann two sphere §2,

DEFINITION.  The hvperbolic Gauss map of an immersion X: M — 3 is the map n: M — 2D given
by

(p) = ®(X(p)) + 1. (N (p))
where ¢ > 0 and n(p) € OD.

Taking = = u + iv isothermal parameters in I/ © C we have the diagram:

M s 9D~ &2
i gt

Uveg C

with II the stereographic projection; from the definition it follows that

g

1
= —— X LN
iL‘G"}"N{){ )

and from the above diagram we have

n(z) =

] 2Reh  2Jmh |B)° -1
NS RRTTEE RN LI
and  is holomorphic if and only if & is holomorphic.

We observe that ||ln, | = |In, || = 0 if and only if the immersion is umbilical and H = 1; in this case
we have a horosphere and the hyperbolic Gauss map n is constant.

The hyperbolic Gauss map behaves as the classical Gauss map for minimal surfaces in an euclidean
space, that is, we have the following theorem first proved by Bryant:

THEOREM [. Letn: M —— 8D be the Ityperbolic Gauss map of a sutface X: M — 3, 5 ron constant. j
The map n: M — 9D is conformal iff the immersion X either has mean curvature I consiant and equal

fo one (in which case n preserves the orientation }or X is totally umbilic (in which case n reverses the
orientation).

We can now state our main result:
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THEOREM 2. Let X: M — B3 be a non-wmbilic immersion in W® with mean curvature one, X (z) =
(xolz),21{z), a(z), w3(z)) and

2Meh 2Jmh (A -1
T (R L R R L

its Iyperbolic Gauss map. The real functions ¢ (z) = xo(z) + w3(z) and ¢a(z) = zo{z) — x3(=) and the
complex function ¢{z) = x,(z) + iza(z) satisfy

.
e =1+ ldg|”

Dy g Oy "
L= 2 {*)
(iba 1 Oip
gz 7 h 9z
Canversely, given a holomorpiic non-constant function U7 & € —s C, two real funcrions ¢ and
Y. & . . 1

ga{cha > ) and a complex function ¢y satisfving («} in the simply connected domain U, then

X(z) = (ﬂﬁ—;‘%‘)‘ y Repy(z), Tmes(z), El&i)_:_q‘):'_(:_))

2

defines a conformal immersion in H3 with constant mean curvature one and hyperbolic Gauss map n given
by h as above,

SKETCH OF PROOF. First of all we observe that
X(z) = (@, 21, 20, ) € HY e —28 +ad 42l 42 = -1 == gygp =1 + |(j)3|2;
from the first equivalence if also follows that if i = 2 — ®3 then éda > 0.
Given oy, g, by as above we have (X.,n) = 0 if and only if

Iy 2 Oepa 8;53 0y
_— R PN R R A
az dz "oz "= 0 D

The assumption on the mean curvature gives us

+ 10|

H=1+ (X..n=) =0,

and as h is nonconstant (h. £ 0) it follows

8&'3‘3 a("'h
T2 = h= 2
5.~ an @

Returning with this last equation in (1) we have

8(})1 - h% .

&z Oz

Conversely, from (*) it follows that (X, X.} = {) and we have isothermal parameters. We can show
that the hyperbolic Gauss map of the immersion X is given by h. From the fact that & is holomorphic we
have H = 1; h non constant gives us a non-umbilic immersion. 3

REMARKS

1. The compatibility condition for the two partiat differential equations in (*} is the same and writes

Jm{hAps} = 0. 4
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This follows from the fact that each differential equation of (*} is as

o
== = Iz
oz (z)
or as .
—g—E = 2F; (u,v)
%% = —2Fa(u,v)
with

z = u+iv, F(z) = Fi(u,v) +iF(u,v),0/0z = %(8/811 —id/0u) .

The integrability condition for the system is:

ar,  ar ) arFy
Ew—aumﬁm{ :}—O

Returning to the system (*), each equation will have its integrability condition respectively given by:

03, \ _
Jm {ha;:a;} =0

1 hd¢. 1 3.
:] — it T e s 3 )', 4 _ 0
" { th|* 9zd=z } ihl? Jm{ ?858;}

Consequently, the two compatibility conditions are verified if and only if, locally,

Jm{h Ags} =0

and

2. Anintegral formula can be written:

- = 653 1 a¢3 = 8?53 1 8([‘)3
X = e e e = He 1 G ) e e .
X (D%e‘/:” ('8:-: -+ A dz, Me g, T g, %e‘/~ h Ep P d

zn
3. Calling (Hopf, 1983)
‘l;’.’ = :)]-.- [(]1.11 bt h.gg) - 21]?13}

we know that the Codazzi equations can be written as

8, . L OH

Consequently H is constant if and only if A*s is holomorphic. We can verify that (*) implies this last
condition {Proposition 2 in Bryant's paper), and we have the Codazzi equations; with some calculations we
can also verify the Gauss equation.

EXAMPLES
To get examples we have to find solutions of
jm{ﬂ A(f)g} =
and a linear combination of this solutions in order to have
i
¢1¢'2 =1+ |d)3|~:

that is, in order to have the corresponding immersion in L* contained in H®,
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1. Given the function h we can search solutions as
¢3 = h(z)F{|z[")

with F a one real variable differentiable function. We have an immersion with constant mean curvature one
solving (*) with h(z) == z, F,(t) = t® and

#3(2) = h(z) [AFu((sl*) + BEa(l=P)] .

The condition yehy =~ 1 + l(;")glg is verified under the restrictions:

2’1+1))_=1, e +1£0.

These surfaces are called “catenoid cousins”.
2. The system (¥) also admits solutions as
#3(z) = F(z)G(z)
with ', (7 and h holomorphic functions. In this case if
Fliz) = M=)G'(2) (5)
the integrability condition (4) is verified.
The surfaces called “Enneper Cousins™ are corresponding to
3 = AF1Gy + BF:Go,
) h(z) = tanhdz, G'(z) = coshAz, Gh(z) = zcoshhz, AB= i,\iﬁ, rAeC.
More details can be found in Umehara and Yamada (1993, 1996).

3. By taking
h(z) = tan h \_/_i _ sin h(az) +sinh(aqz) ’
2 cos b 2} + cos h{azz)
- 5
with ay = 1 and an = \/—:_ ! and

<~ o

03 = ARG, + BFGa,

we can obtain the “Bonnet Cousins” corresponding to the solutions:
1 1
Fi(z) = — cos h{a;z) + — cos h{asz)
25} [8%]

1
Gi(z) = Cl% sinh(ayz) + - sin i(anz)

(=)= g: sinfi(arz) — é sin A{aaz)

Ga(z) = Cl_%l cos h(apz) — i: cos h(aaz),

1

AB = s
(a3 — ai)?

With these three examples we have hyperbolic mean curvature one surfaces associated to euclidean
minimal surfaces whose coordinate curves are planar curvature lines, as we show in Hyperbolic Mean
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Curvature One Suifaces associated to Minimal Surfaces with Planar Curvature Lines, in preparation by B.
Nelli and M. Elisa Galviio.
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