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Polyhedral Surfaces in R® with Minimality Conditions.

BarBaARA NELLI

Sunto, - Prendendo spunto delle nozione di superficie minimaole classica,
iniroduciamo sulle superfici poliedrali, condizioni che permettano il ri-
prodursi di aleuni dei principali fenomeni del caso liscio.

1. — Intreduction.

We consider polyhedral surfaces 8 in R obtained as image, by a
symplicial proper embedding of a regular, 2-dimensional locally fi-
nite symplicial complex, which is homeomorphic to a surface of
genus g without boundary minus a closed discrete set of points,

The goal of this paper is to find metric and combinatorial condi-
tions on 8, which allow the reproduction of some of the behaviours of
classical minimal surfaces in RS, in particular the faet that a com-
plete minimal suwrface with finite total cwrvature has paralie] ends
and it is conformally equivalent to a compact Riemann surface minus
a finite number of points, and that a formula of Gauss-Bonnet type
holds (for a survey on classical minimal surfaces see fOD.

We proceed in the following way.

A} We pick out a notion of minimality on polyhedral surfaces;
roughly speaking, the idea arises from the fact that the coordinate
functions of 2 smooth minimal surface are harmonic and so they have
the mean value property (Section 2).

B) We introduce some natural hypothesis on the ends of § {es-
sentially the existence of a limit normal vector in each end and
bounded growth of the number of triangles) and we prove that these
hypothesis, finite total curvature (cf. Definition 2.6), finite topologi-
cal type and the property of semi-minimality (which is a conse-
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' C) We replace the hypothesis on ends by a different hypothe-
sis on the embedding of S; also in this case we obtain the above re-
sult (c¢f. Seetion 4, 5).

D) We construct a family of examples of minimal polyvhedral
surfaces with genus 0 and two ends, which have all the properties
listed above (ef. Section 7).

2. - Definitions and first properties.

Let K be a piecewise linear peometric realization in some R* of a
2-dimensional, locally finite, regular simplicial complex (also denot-
ed by K)[RS].

We assume that K is homeomorphic to a surface obtained by tak-
ing away a closed diserete set of points {p:}ics from a surface M of
genus g without boundary.

If g and #(I) are finite we say that the surface MNA{p;}ier has fi-
nite topological type. Once for all, we fix a homeomorphism between
MNApi}ics and K.

Let us recall the definition of ends of K in a suitable way.

We assume that for every i=7 there exists a neighborood If{p;) of
P in M sueh that:

1) the boundary of U(p;)\p; in K is made by 1-simplies of K;
2) (U(]'J1 g n (U(Pj)\Pj) =@ if i=j.

For any given U(p;) with the property above, there exists a se-

quence of neighborhoods {U,(p;)}, .+ with the same properties such
that

Uirr(pdeU(pide...clUy(p;) = Ulpy)

and that for each compact set CcB*, COU,(p;)=0 for »n large
enough.,

Let B =U,(p;)\p; where nel, iel and let
8={Ei,nelM,iel}.

We say that two elements E} and FY, are equivalent if and only if

7= 4 MThic i an Areafrrelasee aonbalio o

POLYHEDRAL SURFACES IN Y WITH MINTMALITY CONDIFIONS 519

we say that a certain property holds for E if it holds for the set
{E, },on of its representants for # large enough.

Let v be a vertex of K: the sfar of v is the union of simplies of K
which contain ». We denote it by st(v).

A simplicial immersion iz a continuous map :K— R which
sends i-simplices in i-simplices, i=40,1,2, it is linear on each simpex
and injective on each star,

A simplicial embedding is a globally injective simplicial immer-
sion and if it is such that the inverse image of a compact set is a con-
pact get, it is a proper simplicial immersion.

Let z: K—R? be a simplicial immersion; we call polyhedral sur-
face the set S=g(K)

Vertices, stars and ends of S are the image of vertices, stars and
ends of K respectively; in particular when we speak about angles we
mean the angles in S.

REMARK 2.1. — An orientation on K induces an orientation on S;
then it is possible to choose a system of unit normal vectors to all the
triangles of S in a compatible way. If £ belongs to the interior of a
triangle of 5, we denote by NV, the unit normal vector to the triangle
that contains &.

Henceforth S will always denote a polyhedral surface with a

fixed orientation.

REMARK 2.2, -« We interpret the Il-skeleton of K as a metric
geodesic space, giving length 1 to each edge. Fix a vertex v, of K and
consider the ball of radius » and center v; in this metric; let B2 he
the subset of K formed by the simplices which either lie or have
their boundary in the ball just defined.

Let p: K— R? be a proper immersion which defines S; then for
every ® there exist vy, s such that B(0,r) N Sca(B) cB(B,1) NS
(B(0,») is the Euclidean ball). We freely use this property in the
following.

Let v be a vertex of 8, a’,...,a" the boundary vertices of st{»)
and «!,...,2" the angles at » of st(») in 8 (by abuse of notation, we
will often denote a vector in R? and its terminal point with the same
symbol).

Now, we give a notion of minimality on a polyhedral suwrface. The
idea of this definition arises from the faet that the coordinate func-
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DEFINITION 2.8. — We say that the star st(v) is minimal it
z (¢! —v)=0.
=1
The surface S is minimal if, for each vertex » of S, st(y) is
minimal.
If.' we interpret each vertex of S as a point of unitary mass, this
condition means that every vertex of S is the barycenter of its
star, -

REMARK 24. - It follows from the definition that:

(i} the minimal star with three boundary vertices is a planar
star;

(ii) if st(z) is 2 non planar minimal star and P is a plane such
that ve P, then st(v) cannot He completely in one of the closed halfs-
paces determined by P.

We often use this last property instead of minimality so it is con-
venlent to give the following definition.

DEFINITION 2.5. — The non planar star st(v) is called semi-mini-
mal if for any plane P passing by w, st(¢) eannot lie completely in
any of the two closed halfspaces determined by P. The surface ‘S is
caHIed semi-minimal if for each vertex v of S st(v} i3 semi-mini-
mal,

Thig condition is analogous to Gauss curvature strictly smaller
than 0 in the smooth case. A non planar minimal surface (i.e. a mini-
mal surface without planar stars) is in particular a semi-minimal
surface.

DEFINITION 2.6. — The real number

C(St(@f)) =27 — Z aj
Jj=1

is called curvature of st(v); if {#i }ier Is the set of vertices of S, the
formal series

C(8) = ,EIC(st(vf))

LIS | SR S S . P
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If the series is convergent we say that S has finite folal
cwrvature and we write O(8) > — .

REMARK 2.7. — In the case of semi-minimal surfaces (and so for
minimal surfaces) it is easy to see that the formal series which ex-
primes the total curvature has all the terms of sign less or equal to
zero, so its convergence and sum do not depend on the ordering of
terms; furthermore a minimal star has curvature equal to 0 (we say
cylindrical star, see fig. 2.1} if and only if it is planar star; so for a
minimal surface S, C(8) =0 if and only if S is a plane.

REMARK 2.8, - Let S be a semi-minimal, not planar polyhedral
surface with finite total curvature. Then curvature of stars in the
ends of 5 tends to be 0, ie. for each >0 there exists n(e) e IV such
that for every n 2 n(c) and ve S\ B, (where v, is an arbitrary fixed
vertex of S), we have

Clst(v)) = —=.

This is a sort of convergence to planes for the stars which belong to
the ends of a semi-minimal surface with finite total curvature. We
recall that in the smooth case, a complete minimal surface with finite
total curvature has the conformal structure of a compact Riemann
surface minus a finite number of points, it has normal vector well de-
fined in the ends and each end is a graph over the complementary of
a compact set of the plane orthogonal to the limit vector. Further, if
ends are disjoint, this limit vector {(and so the plane) is the same for
each end of the surface (ef. [JM]).

The convergence we have remarked for semi-minimal polyhedral
surfaces does not guarantee that stars in the ends are graph over a
plane and that the normal veetor is well defined in each end., in faet
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Figure 2.2,

In Section 3, we will define a type of end such that patologies of
this kind are excluded. This condition will be a consequence of mini-
mality, finitness of curvature, bounded growth and good triangles
{ef. Section 8).

3. — Good ends.

DEFINITION 3.1, — Let E be an end of a polyhedral surface S; we
say that E is a good end if there exists an unitary veetor w < B? such
that for each >0 there exists n(c) such that for every # > n(z) and
for each normal vector N to (triangles of) E,:

|(N,w)| zl—¢,
where (,) is the standard scalar produet in RY.

If E is a good end, angles between triangles of E tend to be 0 i.e.
stars in the ends tend to planar,

If an end B of S is good we say that normal vectors to E tend to a
limit vector w,
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surface 8 is a graph over the complementary of a compact set of the
plane P orthogonal to the limit vector of the normal vectors to If.
In fact it is obvious that E is a graph over a subset of P and by the
fact that the immersion is proper, the map which deseribes I as a
graph is defined over the complementary of a compact set of the
plane P.

THEOREM 3.8. — Let S be u polykedral, properly embedded, semi-
minimal swrfoce, with good ends. Then each end is a graph over the
complementary of @ compact set of the same plane.

PROOF. —~ We restict to an end T of 8 and let {= (74,50, 53) be its
coordinates in R®; up to a rotation we can assume that E is a graph
over a non ecompact set of the plane {z =0} that does not contain the
origin; the limit vector for E is w=(0,0,1), hence for every ¢ there
exists 7, such that

(3.1) |(Vow)| 21—

for every r>nr, Lek,, n>n,.

For each Ze E there exists a vertical plane =, passing by the ori-
gin and containing ¢. The projection of E N =, on the plane {z=0} is
the upion of two half straight-lines, say I. and m., that do not inter-
sect; hence E Nz, has two connected components that are graphs
over [, and m. of a piecewise linear function f:: .U m,—R.

We ean assume that ¢ is the image of a point of I. and consider
the parameter t on [.; for every tel. the absolute value of the
angle between [. and the linear tract to which f.(¢) belongs is
equal to the absolute value of the angle between the normal
to f:(f) on =, and w which is smaller than the absolute value
of the angle 0, between the normal to the simplex of the surface
to which f.(¢) belongs and w; so, where it is defined

| f£ ()] < {tano, | .
By (3.1}, there exists ¢, such that for every {>¢,
(3.2) lcost,| =1~z |sinf, | <V2e
and then

2e

-
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This means that the piecewise linear curves that constitute £ N =,
have horizontal asymptotic directions. ’

For r big enough, S*(r) N E is 2 union of points and piecewise
smooth curves. If we exclude a discrete growing sequence {s, },.n
of values of » (where §%(») N E contains points), $7(r) N E is consti-
tuted by only one curve C, that turns around the z axis. In faet if
S%(ry N E has more than one curve or a curve that does not turn
around the z axis, there exist a compact set on E with boundary on
S*(r) and this easily gives a contradiction by semi-minimality.

From now on, we exclude the sequence {s, },,.;; from the values
allowed for v. We will prove that C, tends to the horizontal equator
?2(:1) N {z=0} as r— o ; this is equivalent to prove that for each
fixed =

for every {eS*(r) NE, for » big enough.
Let £=(r, f:(»)) then

e

It follows easily from (3.2) that for every "> 0 there exists ».. such
that

|£(P)] < (ec + V2

for »>7.., where c; is a constant depending on the direction detar-
mined by =.N {z=0}; hence ¢ = supec. = supc- < = and ¢ depends on

E only. e ges!
Thus, if ¢’ =¢*/8 and »>max {c,7..}, we have
£ ( c+r )
—.Ww}| = R’ =
I( N > "

If two ends E, E' of S have different normal limit vectors, the
curves C,=S*(r)NE and C; =S*(r) N E must intersect for + big
enough (as they are asymptotic to different equators) and this is in
contrast with the fact that S is embedded. ®

...... bt AR
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4. - The Gauss-Bonnet formula and the topological structure.

There is a classical analogous of Gauss-Bonnet theorem for com-
pact polyhedral surfaces, proved in[B] and[P)], that is the follow-

ing.
Assume that S is a compact polyhedral surface and let »(S) be its
Euler characteristic. If § has not boundary then

{4.1) C(8) =2=x(8);
if S has a boundary made up by a finite number of piecewise linear
curves, then

2
12 EORPIPICE

21} = 2my(8)

where if C7 is the j-th boundary curve, each a’;: i=1,...,p is the sum
of the angles of the surface at the i-th vertex of o
Consider a polyhedral surface S such that its intersection with
S$%(7) iz made by Jordan piecewise smooth curves Ci,i=1,...,k
We define the total curvature of the boundary curve Cf as
follows.

p
Con(CI) = fE[o{,f +814]

where 44 ; is the leng'th of the are of circle which determines the i-th

tract of the curve Ci = U Ci; and 07 ; is defined as follows: let y4,;,

and y4; be the angles (mtelna} to S,) that the ares Cf;_; and Ci;
(i.e. their tangents) form with the edge common to the two triangles
of S which determine Cf,_,, Cf;; then 64 ;= |z —yi;-1— v}l (see
Fig. 4.1).

Here is an easy generalization of polyhedral Gauss-Bonnet theo-
rem in the case of a polyhedral surface whose boundary is made by
ares of circle.

LeEmma 4.1 — If S,=SNB%») in the notations above, we
have:

Aol LS S
faRats;
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Figure 4.1.

PROOF. — We want to obtain (4.3) from (4.2) by approximating
the boundary ares of circle in a suitable way.

Fix a boundary curve C{ and one of its tracts. For simplicity of no-
tation we omit indices and denote the fixed tract by [, the radius of the
corresponding circle by R and the subtended are by 5. Approximate /
by the sequence of linear tracts {L,} defined as follows:

L, is the segment which joins the extremities of [; let 7, I be the
two ares which result by dividing [/ in two equal parts and let L, be
the unicn of the segments which joint the extremities of these arcs;
in general let If,...,l5- be the arcs obtained dividing by half the
ares If 7', ..., 15 and let L, be the union of the segment that joint
their exf:remlties Ly is a eurve made by 2" ! linear tracts, whose
vertices divide the arc { in 2"~ equal parts.

Let o and b be the two extremities of [, and let ¢, and e, be the
two 1-simplices of the surface S (and then of S,) which contain o and
b; let y, and y, be the angles that the tangent to I form mth €, and g,
in @ and b respectively, let v* and ! be the angles that /' and -
make with e, and e, respectively, then:

y e

b
vt sy, vioy, as h—w.

By computing the contributions K; of each L, in (4.2} we obtain:

K=0, K=%2, K= 8= (-2 g,

ooy Ll
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Now, writing (4.2) for surfaces S! obtained from 8, by approxi-‘
mation of the boundary ecurves in the way described above, we
obtain:

@4 OB+ Z E[(af Du+ (1270 ] = 28l
7 i=

where k, is the number of the boundary curves, pi is the number of
arcs of circle in the j-th bmmdary curve of 5,, and ﬁ{,.!- are the equiva-
lent to the previous |=—y,—y.| (where v, and y, are on the two
triangles of S which have ¢ in common) and 2 respectively.

Observe that »(8) = x(8,); turther C(8!) = C(8,) because the to-
tal curvature invelves complete stars only and they are the same in
§* and in 8,). Then, if we take the limit of the two sides of (4.4) as
h— = we obtain

I

C(S)+ZE[0

Jj=1li=1

Biil=2my(S,). =

We introduce a further hypothesis on the ends of S and we prove
a formula of Gauss-Bonnet type for S (the same formula in the
smooth ease is established in[JMY); we remark that the examples
that we discuss satisfy this hypothesis (see Section 7).

DEFINITION 4.2. — Let E be an end of a polyhedral embedded sur-
face S and L a positive constant; we say that E has L-bounded
growth if for each »

# {triangles T of E|TNS*(r) =6} <L.

THEOREM 4.3. — Let S be a polyhedral, properly embedded, semi-
minimal surface of finite topological type, with k good ends with
L-bounded growth. Then:

C(8) =2=(x(8) — k) .

PRrOOF. — By Theorem 3.3 we may assume that all the ends of 8
are graphs over the plane {z=0} and we can choose » big enough

such that 8*(r)NS= U Ci, where C{ are disjoint Jordan curves,

each union of a finite numbm of ares of cirele. As in Theorem 3.3 we
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r big enough, S, is a compact surface WIth boundary components

Cl,...,CE. By the generalized Gauss-Bonnet formula applied to S,,
we have

I
a8, + Zl Ciot(C1) = 274(S,).

Observe that for + big enough, #(S,) = (S) and that C(8,) = ((S) as
r— . Then it is enough to prove that for each j=1,...,k

pi o
(4.5) Cor(C) = D61, + 81127  as ro o,
i=1
We fix a je {1,...,k} and we omit the index j in all the symbols in-

volved with the curve Ci.
We claim that

Pr Pr

Z“Ur’iw-}(}zﬁrli%‘ZW
i= i=1

Let &, =  max 9,.;and 0, =
..... Pr i

cause each pan of triangles Whlch "determine @ ; tend to be on the
same plane (good ends). Then for each e there exists r, such that
(0,1, 1@.| <L ™! for every »>+,; as p, <L we have

{4.6)

as yr— w0 |

mln G,. i, then 6., 0, —0 as r— «© be-

Dr

—csld,. =
i=1

Or'iSL@rSE

and this gives the former limit in (4.6).

For the latter limit we proceed in the following way.

The curve ¢, =C, /r is the radial projection of C, on S? the angles
f,; are invariant for this projection, hence we can compute the limit
by considering the curve c¢.. We parametrize ¢, as follows. Let
2:[0,27] — 8 be a parametrization by arc length of S}c{ =0}; for
every te[0,2x] consider the maximum circle %, ; of S passing by «(t)
and by the point (0,0,1) and let 3.(¢) be the point common to %, , and
¢, which is nearest to (). Each point 3,(¢) is uniquely detem’lined,
so that g,: [0,27] —S? is a parametrization of ¢,; it is piecewise dif-
ferentiable because it is made by a finite (<L) number of ares of
circle.

ot
3]
<
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tion @,: [0,27] —2 such that
B.(t)=(costsing,(t),sintsin g, (¢), cos ,.({))

and |3, | =Vsin2;r(i) + z1{t)?, where ¢, is defined.
We have that

Ty

ZBrl fir‘r(t)ldt

where the integral is well defined beeause 8, is in L'({{0,2x]).
The 3™ component of 3, tends to 0 as r-—» « ie. for each « there
exists +, such that for every »>v. and te[0,2x]

4.8 |cos g, ()] ==

As ends are good, the tangent vector to 8. (where it is defined) tends
to have 0 as third component i.e. for each = there exists 7, such that

for every »>7,

(4.9)

(4.7)

|sing, (e ()| Se

where ¢, is defined.

Inequalities (4.8) and (4.9) imply that |, | —1-n L'([0,2=]) then _
the integral in {(4.7) tends to 2~ and this gives the latter limit in
(4.6). =

With a further hypothesis of uniform convergence of the normal
vectors to (the faces of) the ends of the surface {that is obviously sat-
isfied when the surface has a finite number of ends) we will deduce
finite topological type from finite total curvature.

More precisely, let S be a polyhedral semi-minimal surface with
finite total eurvature and good ends and let w be the limit normal
veetor for the ends of 5.

DEFINITION 4.4, — We say that S has wniformiy good ends if there
oxists a dense subset D of R such that for each = there exists (e

such that for every re[(e), @) ND
(N w)| =z1—¢
for every eSNS*(r) such that N, is defined.

This means that the normal vectors to each end tend to w uni-

farmly Now wa ecan eiata the followinge theorem.
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minimal surface with finite total curvature and uniformly good
ends with bounded growth; then S has finite topological type.

Proor, - We want to use the generalized Gauss-Bonnet formula
for the surfaces

S,=B(0,7) NS

whose curvature tends to the ewrvature of 8 as r— o,

Let g, & and g,, k. be the genus and the number of boundary com-
ponents of S and S, respectively; g,—yg and k. —k% as r— .

As the er}cds of S are good, for »eD hig enough, we have that

S*rN8= _U1 Ci, where C{ are closed eurves or points.
;2

F01" each S,, we have equality (43) and by uniformity
Cit(C{)—27 as r— o independently on j. Hence, for every j=
1,...,k. and >0 there exists 7 such that for every r>7%

I — 50 (CHs2x+e¢.
Then: ‘
2ap(S.) — b (Br +2) < ((S,) = 2nx(8,) — k. (8r —e).

Theorem 4.5 follows easily by this inequality and C(8) > — .

5. = The conformal structure.

Let 5 be a polyhedral surface; we define a conformal structure on
S by constructing an atlas {U,,¢,}:eq for S in the following
way.

If PelS is an interior point of a triangle T, then U,(P)=int(T) |

and ¢; maps int(?) identically on an open set of the complex
plane.

If PeS is an interior point of an edge [ and T}, T/ are the trian-
gles whose boundaries contain /[, then 7, (P) =int(T,) Uint(T;) and
¢, maps [ on an interval {a, b] of the real axis of the complex plane
and int(7}), int(7} ) identieally on two open sets such that intersee-
tion of closures of the sets ¢, (int(T})) and 2, (int(7y)} is equal to
[w, B].

If PeS is a vertex and y is the sum of the angles of st(P)
ineidant in P then TT.(PY=at(P) and A.

ix the eoamnogitiom of
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map defined by z—z% ", The transiction functions of the atlas
{U,,65}ses are conformal.

We remark that this conformal structure depends on the immer-
sion in 12%; for some remarks about conformal structures on minimal
poiyhedral surfaces cf. [PP].

THEOREM 5.1, — Let S be a polyhedral, properly embedded, semi-
minimal surface with finite total curvature, good ends with bound-
ed growth and finite topological type. Then S is conformally equiva-
lent to a compact Riemann swurface minus a finite number of
potnts.

ProoF. — By hypothesis, S is homeomorphic to a compact Rie-
mann surface of genus g < = minusk < « points and each end of S is
a graph over the complementary of a compact set of the same plane,
that we can assume to be {z =0}, so it is homeomorphic to a dise mi-
nus one point.

This implies that each end of S is conformally equivalent to a disc
minus one point or to an annulus. To prove that only the first case is
realized, we make use of some properties of guasiconformal maps in
the plane (ef.[A],[LV]).

Let E be an end of 8, let {7, }me s be the triangles of K, 4,, ,,, the
angle between the plane {z =0} and the plane =, ,, to which T, ,, be-
longs. Let 4, = sup3,,,,; as E is a good end, we have "1% 2, =0.

The restrictiorrr; of the orthogonal projeetion pr. on {z =0} to a tri-
angle T, ,, is an affine map, then it is &, ,-quasiconformal; we com-
pute XK, .

If we choose appropriate coordinates on the plane =,, and
on the plane {z=0}, pryr,, is defined (up to translation) by

Fr (s y2) = (Y1, Ya 0837, ).

Then (ef.[A))

|1+ cos8,,, | +|1—cosdyp|

I{u.m = |1 + cos an.,m ] - |1 — CO8 3n,m i

and if we fix e, there exists 7(e) such that for every n > n(e)

1 1

K. .= = =K,
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Then for every = >n{:) and me ¥, Py, ,, 18 a K-quasiconformal
map with K independent on n, m.

It follows that pr.: E—pr.(E) is a piecewise affine homeomor-
phism and it is K- gquasiconformal on the complement of a set of zero
measure (the 1-skelton of E), then it is a K-quasiconformal map.

Hence, each end of S is conformally equivalent to a disc minus
one point.

Theorem 5.1 is proved. @

We remark that in Theorem 5.1, we can substitute the hypothe-
sis of finite topological type with uniformly good ends (by Theo-
rem 4.5).

6. = Good friangles and homogeneous ends.

In this Section, § is a polyhedral swface defined by a proper em-
bedding «:K—R* such that each end of S has L-bounded
growth.

We will discuss a class of polyhedral minimal surfaces which falls
to be in the hypothesis of Seetion 4.

DariNiTIoN 6.1. - We say that triangles of S are good if there
exists a constant 4 ="h{g) > 0 such that for each triangle 7 of S, the
ratio between the radius Ry of the circumseribed cirele and the
radius ry of the inscribed cireles is such that:

R
1< L <h,
rr

REMARK 6.2. — Let T a good triangle, g, 0, ay its edges and «;,
@z, o3 the angles opposite to these edges respectively (we often de-
note an edge and its length with the same symbol). By elementary
trigonometry, there exist two constants Ay, &, >0, which only de-
pend on the constant 4, such that

iy <ay,mg,05 <ha
and
t;
t;  gink,

sinf; < Vi,j=1,2,3.

REMARK 6.3. — Let 8 he a nolvhedral semi-minimal einrfane with

Semi-minimality and C(S) > — o imply that for each >0 there
exists n(e) such that for every n>mn{e) and for each vertex ve8nN
(RN B(0,n)), we have

2r<ayt ... tay<2mt+e

where «q,...,2p arve the angles at v of st(w). With notations
of Remark 6.2 we have Mh; <ux;+ ...+ ay<2x+z hence M<

(27 +2) /Ry 80
M<[~g~5~]
Iy

beecause ¢ is arbitrarly small; this means that the valency of the ver-
tices of S is bounded,

Let £ be an end of S and {v,} a sequence of vertices of E; if
v, e ENB(0,n) for each n, we say that the sequence tends to
infinity.

LEMMA 6.4. — Let S be o polyhedral properly embedded minimal
swrface, with C(8) > — « and good triongles and let E be an end of
S. For each sequence of vertices {v,}CE which tends to infinity,
there exists an unitary vector v e R® and a subsequence of {v,} such
that the normal vectors to the stars of the subsequence tend o v,

Proor. — Up fo subsequences we can assume that the valeney of
v, i8 M for each n (by abuse of notation we will often denote se-
quence and subsequence by the same symbol).

Let If', T/, N} and «}, j=1,...,M be the edges and the triangles
of st(v,), their normal unitary vectors and their angles at v,
respectively.
" Translate each st(v,) in the origin and divide each edge by
E} area (17'); denote by sty(v,) the obtain star.
' Avea (I7) =111}, sinaf, 7=1,...,M and as triangles are good,
there exists a pesitive constant % such that for each n, j, sina} >
sin’; then the edges of sty(v,) have bounded length.

Identify st,(v,) with the set of its edges i.e. an M-uple of vectors
in BY, say (uf,...,ul}) e (R3HY.

As each " has bounded, the set {(u},...,uj;)} is relatively eom-
pact in the topology of the M-uples of . Thus, there exists a subse-
riatinn that snnwanmac fa an A8 cenla 4, ae N~ TN

L SEIRAWACTIR. 1.?\[...N.T:@§W1.igrg.qlﬁ CACIMINCA LITY. OONDITIONS |1 S —
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Figure 6.1.

equal to 0, hence it is a planar star. Thus, there exists an unitary
vector N such that NY,...,Nj tend to N as n tends to infini-
ty. =

We remark that the «limit» of a semi-minimal star is not neces-
sarily semi-minimal: for example the cilindrieal star (not semi-mini-
mal) can be obtained as a limit of a sequence of semi-minimal stars as
in fig. 6.1. So in this lemma, minimality is essential.

Lemma 6.4 allows us to consider only one of the sequences {¥}},
to determine the limit vector v, that we eall the limit normal vector
to the sequence of stars. Once for all, we choose the sequence {N}}
and we denote it hy {N™}.

We introduce a further assumption on the ends of S, in order to
obtain a property which imitates the analyticity of the Gauss Map of
the smooth case.

DEFINITION 6.5, — Let E be an end of S and K a positive constant;
we say that E is K-omogeneous if for each sequence {v,} of vertices
of E which tends to infinity and such that N —uv there exists a {v, }
such that v, e B * ¥\ B, and N" —p. This means that for each accu-
mulation peint of the set of unitary normal vectors to E, there is a
sequence of unitary ‘normal vectors which tends to it, which has an

element in each BL*5N\ B

LeEmMA 6.8, - Let E be a K-homogeneus minimal embedded end
which has L-bounded growth and good friangles, then for each se-
quence {v,}eE which fends to infinity the sequence {N'-} con-
verges.

Proor. — It is enough to prove that there is only one accumula-

tion point for the set of normal unitarv vertors to ¥+ then wa annlv

arrmmarte I TR T M N TMA LIV ANy DITINNG BI85
SURFACES ~IN-ae o BIREL. M TR TAL TIONE Brds

By contradietion, suppose there exist two different accumulation
points, say v and w; as E i3 a K-homogeneus end we can find two se-
quences {v,} and {w,} such that v,, w,eBi"*\B;; and N"—v,
N — .

L-bounded growth implies that there exist al,...,aff™, H(n) <
KL vertices of a path made of edges in B{.;*K B, which joins v, and
w,,; without loss of generality we can assume H(n}= LK for each
ne .

For each n, st(v,) and st(a!)} have a triangle in common at least,
then by Lemma 6.5 there exists a subsequence of {a.} such that
{N"} converges to v.

By a diagonal process, we obtain v=w. Abswrd. &

COROLLARY 6.7. — Let S be a polyhedral embedded minimal swr-
face, with finite total curvature, good triangles, bounded growth
and homageneous ends. Then S has uniformly good ends.

ProoF. — By previous lemmas, such a surface has good ends. By
Theorem 3.3 each sequence of unitary normal vectors of stars which
tends to infinity either eonverges to v (or —v) or swings between
these two vectors. If ends are not uniformly good, there exists a se-
guence of vertices which tends to infinity such that the associated
sequence of normal vectors remains at a bounded distanee from v
and —uv: contradiction. &

Then we have the analogous of Theorem 4.3, 4.5 and 5.1.

THEOREM 6.8. — Let S be a minimal surfuce of finite total curva-
ture, with good triongles, bounded growth and homogeneous ends,
Then it has finite topological type ond

C(8) =2=(x(8) — k) .
THEOREM 6.9, — Let S be a minimal surfoce with finite tofal cur-
vature, good iriangles, bounded growth and homogeneous ends.

Then S is conformally equivalent to a Riemann surface minus o fi-
nite nmumbers of points.

7. — An example.

T+ +hin Canfimm rrrm ansmndbuead n Foameiler dnmasn i avse frera sanaanaas s
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Figure 7.1.

ends; they are a polyhedral realization of the classical catenoid
(ef. £OD).

First of all we deseribe a symplicial complex by one of its realiza-
tion in R% In the plane with coordinates w,#, consider the
strip[0,2=] X R; divide each segment {y=#n,nelN} N[0,2z] X R
in m equal portions and consider the triangulation with isosceles tri-
angles described in fig. 7.1,

Then, identify the lines x =0 and « =2x sueh that the point (0, n)
coincides with the point (27 ») for each =.

Denote by K(m) the symplicial complex obiained in this way; we
want to find a simplicial minimal immersion w,,: K{m)— B3 such
that:

() o, (K(m)) is symmetric with respect to the plane {z=0};

(i) 2, (K(m)) intersects the plane {z=0} in the regular m-
gon inseribed in the unitary circle around the origin;

(ifl) o, (K(m)) intersects each horizontal plane in a regular m-
gon inseribed in a eircle centred on the z axis,

The projection of such surface on the horizontal plane will be of
the kind indicated in fig. 7.2 (case m=486).

Let us construct the immersion. We eall step 1 the completion of
the stars of the vertices lying on the unitary circle of the plane {z=
0} and, by recurrence, step i the completion of the stars of the ver-
tices lying on the regular m-gon which is the image of the line

P e L =
T PULYHEDRAL TSURFACES "IN X7 7wl " sLINIFALIT T "CONDITIUIND i

Figure 7.2.

tal m-gon are equal, then to obtain minimality we must impose only
one condition along the horizontal component and one condition on
the vertical one at each step; further we ean restrict to the halfspace
{z=0}.

Denote by r;{m) the distance from the origin of the projection of
the vertices on {z=0} at step i; henee minimality on the horizontal
component means

7'0(?7’?:) =1 s
r(m) =b(m},
o ) =2bmyri(m) —rm_(m), iz1,

where b(m) = ((sin=/m)* + 1} (cos = /m)~'. We obtain the following
expression for »;(m)

ri{m) = %(b(m) + Vbim)® — 1)+ (b(m) + Vb(m)P*—1)"1, =0,

We remark that:

(1) bim)~1 as m— o

LI OL 1 e 1 ’
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Now we determine the vertical components.
Denote by £, the dihedral angle between the horizontal plane and
the triangles of step 1 which have an edge on {z=0}; by simmetry
we can chose 3; € (0,7 /2) arbitrarily. Denote by 2;(m,2,) the dihe-
dral angle between the horizontal plane and the triangles of step i
which have an edge on the (-1-th m-gon. By minimality we
obtain :

2 ~ 1! |
tanﬁiﬂ(ﬁ?z,ﬁl):fa(sinﬁz) [cos% (?'i(m)m?'ivl(m)cos;‘;z—)jl tang;,

hence the vertical skip is

2 _ -l
€ =9 r I3 7T
h(m,3,) ..(sm ey ) (cos - ) tang, .

We remark that:
(i) the vertical skip is independent on 4;

(ii) for each m and 2, we have

lim tang;(m,5,)=0,

lim ih(m,f3,) ==,

Lok

hence the ends are good and the sinface is not contained in a |
slab. .
‘We denote by S(m, ;) the polyhedral minimal surface obtained

by this immersion; for each m =6 and for each 2, = (0,7 /2)), S(m,3,) |

is a properly embedded polyhedral minimal surface of genus 0 and
two good ends.

Let us look at the angles of S(m,f2;).

At each step i there are only two different kinds of isosceles tri-
angles: those with the base on an edge of the (i-1)-th m-gon and -
those with the base on an edge of the i-th m-gon. It is clear that we
can restrict ourselves to the study of the first kind of triangles,
which form a dyhedral angle 8; with the horizontal plane; if we de-
note by ¢; the angle at the base we have that:

() —r_ (m) (CDS% )

POLYEEDRAL SURFACES IN R’ WITH MINIMALITY CONDITIONS 530

ana ﬁhen

.z oyl —
3+(sin-‘3—) )(cos - ) + 2 tan = tang,,

. | L
sup (tand;) < (2 sin — + " m W
1

e

il;_lf(tand‘i) 24(smﬁ) .

These inequalities imply that for each m and for each j, the swface
S(m,8,) has good triangles.

" 1t is natural to look at the connection between this family of sur-
faces and the smooth normalized catenoid C parametrized by:

x=coshvcosu,
y=coshvsinuw,

=,
where ve B and uel0,27).

THEOREM 7.1, — For each m 26 there exists f,(m) such that all
the vertices of S{m,B,(m)) lye an the catenoid C.

PROOF. — We want to evaluate the difference between the 3™ co-
ordinate z;{(m,B3,) of S(m,f;) at step i and z;(C) =arcosh(r;(m))
which is the 3" coordinate of the catenoid C in correspondence with

the circle of radius »;(m).
If we denote by 4;(m,3,) this difference, we have:

4;(m, ;) =arvcosh(r;(m)) — ik{m,2) =

i(ln(b(?n) + Y/ b(m)z—_ 1)~ 2(sin T: )g(cos% )_ltanﬂl) .

Thus, we have that 4;(m,3,)=0V¥i=0 if and only if

A, =pB,(m) = arctan ( % In(b(m) + VVb(m)* — 1) cos % (sin% )n) .

We remark that with this cheice of 3, we have
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J}i-{r:!n ’L(??Z,‘Bl(ﬂz,)) =0, "!j_f_’nw tan(ﬁl(m)) =,

so all is coherent. @
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